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Landscape ecological risk reflects the impact of human activities or natural

hazards on landscape patterns, functions, and processes in a region. The scientific

assessment of its evolutionary trends can play an essential role in maintaining

and improving regional human wellbeing. This study focused on the Fuchunjiang

River Basin in the suburbs of Hangzhou, a large city in China with a high degree

of landscape heterogeneity and rapid economic growth. Based on land use

data from 1990 to 2020, an ecological risk assessment model and geodetector

tools were combined to study the spatiotemporal variation characteristics and

influencing factors of landscape ecological risk in the basin. The results showed

the following: (1) from 1990 to 2020, the landscape pattern of various land

use types showed a general trend of an increasing degree of agglomeration

and decreasing loss index; (2) the spatial distribution pattern of landscape

ecological risk was “high in the northwest and low in the southeast.” From

basin to township scales, landscape ecological risk showed a decreasing trend

on long time scales, although the changes were relatively drastic in short time

periods; (3) GDP, human interference, area of urban and rural residential land,

area of arable land transferred in, and area of arable land transferred out were

the dominant influencing factors of landscape ecological risk; (4) the coupling

between landscape ecological risk and GDP in 2020 exhibited an inverted “U”

shaped relationship, indicating that the environmental Kuznets curve (EKC) may

have the same applicability in the ecological risk management; (5) according

to the main functions of different risk agglomerations, targeted ecological risk

management strategies were proposed. In short, this study carried out the

landscape ecological risk assessment at the township scale for the first time,

quantitatively analyzed the relationship between economic development and

Frontiers in Ecology and Evolution 01 frontiersin.org

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2023.1184273
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2023.1184273&domain=pdf&date_stamp=2023-05-11
https://doi.org/10.3389/fevo.2023.1184273
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fevo.2023.1184273/full
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-11-1184273 May 4, 2023 Time: 14:32 # 2

Cheng et al. 10.3389/fevo.2023.1184273

ecological risk, and proposed targeted risk prevention strategies, which are

instructive for other basin areas that are experiencing rapid urbanization in

the world.

KEYWORDS

landscape ecological risk, LUCC, landscape pattern, spatiotemporal evolution,
influencing factor, environmental Kuznets curve, risk management, landscape
sustainability

1. Introduction

Landscape sustainability is an integrated representation of the
capacity of ecosystems to provide services and goods that are
critical to maintaining and improving human wellbeing on a global
scale (Riggs et al., 2021; Wu, 2022). In the past decades, the
dramatic increase in human disturbance has posed various threats
to natural ecosystems, such as habitat fragmentation, biodiversity
loss, disruption of energy and material flow, and reduction of
service provisioning capacity, which hinder the development
of landscape sustainability globally (Baffoe and Matsuda, 2018;
Bhattachan et al., 2018; Bryan et al., 2018; Frazier et al., 2019;
Cui H. et al., 2022). For this, many efforts have been made in
many countries worldwide. For example, Europe proposed the
“European Landscape Convention” as early as 2000 to promote
the conservation, management and planning of landscapes in the
form of legislation, and to organize countries to cooperate on
landscape issues, thus promoting the development of landscape
sustainability and landscape governance (Pătru-Stupariu and Nita,
2022). However, there are still many regions in the world that
are undergoing or about to undergo rapid urbanization, and they
urgently need to promote economic development transformation
through intensive exploitation of land resources (Bamrungkhul and
Tanaka, 2022; Benti et al., 2022), which will continuously exacerbate
the evolution of landscape patterns and the increase of various
ecological risks in the region (Bryan et al., 2018; Xie et al., 2020).
It is foreseeable that the conflict between human living space and
ecological protection will become more intense. Therefore, it is
imperative to select suitable indicators to quantitatively identify
the current environment quality in rapidly urbanizing areas and
propose targeted control measures.

Ecological risk refers to the potential damage to ecosystem
structure and function when an area is subjected to external stress
(Wang et al., 2021; Ran et al., 2022). As a vital indicator of
characterizing environmental change, ecological risk assessment
plays an important role in indicating the sustainable supply
capacity, health status and management level of ecosystem services
and is widely used in assessing ecosystem security and predicting
future benefits (Levine et al., 2019; Nepal et al., 2020; Zhang D.
et al., 2022), thus providing a comprehensive characterization of
regional landscape sustainability (Xu et al., 2021). The origins
of ecological risk assessment can be traced back to the 1970s
(Barnthouse et al., 1987; Xie et al., 2021). Traditional ecological
risk assessment focused on assessing the potential adverse impacts
of microscopic factors, such as chemical contaminants, on the
ecosystem and human health in a small geographic area (Diggle,
1995; Landis, 2003; Raitano et al., 2018). With climate change
and the expansion of human activities, many regional crises and

challenges have arisen (Lal et al., 2021), making the scope of
ecological risk sources expand and gradually shifting from a single
chemical pollution factor to multiple factors, such as climate,
biology, natural disasters, and anthropogenic stresses (Peng et al.,
2015), and the traditional risk assessment framework is no longer
applicable. Therefore, to reasonably address multi-scale and multi-
source compound ecological risks (Hunsaker et al., 1990; Wang
et al., 2020), the concept of landscape ecological risk was proposed.
It was defined as a comprehensive reflection of the possible adverse
effects of human activities or natural disasters on the landscape’s
compositions, structures, functions, and processes based on the
perspective of landscape patterns (Mo et al., 2017; Jin et al., 2019;
Hou et al., 2020; Zhang et al., 2020).

Landscape ecological risk assessment includes two evaluation
methods based on risk source-sink and landscape patterns (Jin
et al., 2019; Hou et al., 2020). The rapid development of remote
sensing technology has led to the widespread application of
landscape pattern-based evaluation methods in current research
(Hou et al., 2020). With the advantages of multi-scale, high
resolution, dynamic monitoring, and wide observation range (Feng
et al., 2022), remote sensing data can rapidly and accurately
characterize regional landscape patterns, thus revealing the
dynamic response of landscape patterns to comprehensive risks
(Jin et al., 2019). Thus, this method can achieve comprehensive
characterization and spatiotemporal differentiated expression of
multisource risks without relying on large amounts of actual
measurement data (Peng et al., 2015). Currently, many scholars
have used this method to conduct numerous studies on landscape
ecological risk at multiple scales, mainly including countries
(Zhang X. et al., 2022), urban agglomerations (Li Z. et al., 2020),
plateaus (Hou et al., 2020), basins (Lin et al., 2020), lakes (Xie et al.,
2021), and other administrative and geographical units. Among
them, basins are the most fundamental ecosystem management
unit with unique geographic and socioeconomic characteristics
(Bai et al., 2016) and are an important object for landscape
ecological risk research. Research on landscape ecological risk in
basins has mainly focused on urban agglomerations and special
terrain areas, such as deserts and plateaus (Xue et al., 2019; Cui
B. et al., 2022). Fewer studies have focused on the suburban
areas of large cities, which are geographically special; this type
of area is characterized by active urbanization, rapid changes in
land use structure, and the significant evolution from a suburban
agricultural landscape into a combined urban and suburban
landscape (Tokarczyk-Dorociak et al., 2018). Also, suburban areas
are located within the ecological buffer zone of large cities and
have crucial ecological barrier functions. Therefore, it is essential
to explore the evolution of landscape ecological risk in the basins
of suburban areas of large cities for the development of landscape
sustainability.
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The Fuchunjiang River Basin is found in Hangzhou City,
Zhejiang Province, one of the most developed cities in China, and
has experienced rapid economic development since 2000, with a
clear decreasing gradient distribution of economic levels within the
basin from northeast to southwest. The region covers a wide variety
of topographical features, with high landscape heterogeneity and
the coexistence of urban and rural landscapes. It exhibits typical
suburban regional characteristics, making it an ideal subject of
study. After years of industrial development and unsustainable land
use, a series of water problems (Kong et al., 2021; Yuan et al.,
2023), such as high consumption, low use efficiency, and pollution
have emerged in the basin, thus triggering the deterioration of
the ecological environment and leading to frequent ecological
problems, such as the reduction of biodiversity, shrinkage of
wetland areas, and increase of landscape fragmentation, which
seriously threaten the ecological security of the Fuchunjiang
River Basin. As an essential ecological conservation corridor in
the upstream waters of Hangzhou city, the Fuchunjiang River
provides ecosystem services such as water cleanup and soil and
water conservation for the downstream areas. Therefore, the
conflict between urban development and ecological protection is
particularly prominent in this area.

In summary, the theoretical framework and research methods
of landscape ecological risk assessment have become increasingly
mature, and fruitful research results have been achieved for
comprehensive regional risk assessment on large-scale areas.
Although previous large-scale risk assessments supported the
formulation of risk management policies in theory, it was often
challenging to apply the theoretical results in practice due to the
lack of specific policy operation units. Therefore, this research
aims to construct an ecological risk assessment model based
on landscape patterns, selects the smallest administrative unit
in China’s three-level administrative divisions (townships) as the
research unit, and considers the Fuchunjiang River Basin as a case
study to implement landscape ecological risk assessment and the
influencing factor analysis of the basin in the suburban areas of
large cities, with the intention of answering the following three
questions: (1) How are the various types of land use in the
Fuchunjiang River Basin changing as the economy develops? What
is the impact on landscape patterns? (2) Does the comprehensive
ecological risk in the Fuchunjiang River Basin increase or decrease
over time? What are the characteristics of spatial distribution? (3)
What are the dominant influencing factors on landscape ecological
risk? How will these factors affect changes in landscape ecological
risk? Investigating the above issues can not only be an inspiration
for ecological assessment and policy-making in other regions that
are experiencing rapid urbanization in the world, but also provide
a model case for exploring the quantitative relationship between
economic development and ecological conservation in regions that
are in the late stage of development.

2. Materials and methods

2.1. Study area

The Fuchunjiang River is in the Yangtze River Delta of China—
Hangzhou city, Zhejiang province, flowing from southwest to

northeast through Jiande, Tonglu, Fuyang, Xiaoshan, and other
districts and counties. The river section is 110 km long and is
the main channel of the Qiantangjiang River (Figure 1). The
Fuchunjiang River Basin is located between 29.4◦–30.2◦N and
119.4◦–120.3◦E, with a basin area of 4,524 km2; it involves
many townships in Hangzhou. The topography of the basin is
complex and dominated by mountains and hills, which account
for approximately 68% of the total area. The hills and mountains
in the southwest are undulating, while the terrain in the northeast
is low-lying, forming a general topography surrounded by plains
and mountains with the Fuchunjiang River as the axis. The land
type is dominated by forest land, which accounts for about 70%
of the total area of the study area and is mainly distributed in
the southeastern part of the basin with high elevation, followed by
arable land and urban and rural residential land, accounting for
about 20 and 5% of the total area and distributing along the river.
The main climate type is subtropical monsoon climate, with an
annual average temperature of approximately 16.5◦C and annual
total precipitation of approximately 1,550 mm. In 2020, the GDP
and total population of the Fuchunjiang River Basin were US$48.88
billion and 1.84 million, respectively. With the increasing economic
radiation effect of the Hangzhou Bay Area, the Fuchunjiang River
Basin has shown remarkable economic vitality and population
clustering effects.

2.2. Data sources and processing

The data used in this study included three main categories:
land-use data, geographic data, and influencing factor data.

The land-use data were obtained from the Resource and
Environment Science and Data Center of Chinese Academy of
Sciences,1 including the spatial distribution data of land use/cover
remote sensing monitoring in China in 1990, 2000, 2010, and 2020
with a spatial resolution of 30 m. The dataset was based on Landsat
images, with an overall accuracy above 92%. According to the
“China Remote Sensing Monitoring Land Use/Cover Classification
System” and the actual situation of the study area, land use
in the study area was classified into seven types: arable land,
forestland, grassland, waters, urban and rural residential land,
other construction lands, and unused land. The specific spatial
distribution is shown in Figure 2.

The geographic data mainly included administrative
boundaries2 and river data.3

The influencing factor dataset contained four main
categories: topography data, climate data, accessibility data,
and socioeconomic data, which were used to analyze the dominant
driving factors and changing trends in landscape ecological risk for
2000, 2010, and 2020. Details and sources of the dataset are shown
in Table 1. Among them, the DEM and township government
location data slightly differed in year correspondence because of
small changes and little data information. Only the years in Table 1
were selected for analysis.

1 https://www.resdc.cn/

2 https://ditu.zjzwfw.gov.cn/

3 https://www.openstreetmap.org/
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FIGURE 1

Location of the study area. Note: (A) Administrative division of China. (B) Administrative division of Zhejiang. (C) Elevation and township boundary of
the Fuchunjiang River Basin.

FIGURE 2

Classification map of land use in the Fuchunjiang River Basin for (A) 1990, (B) 2000, (C) 2010, and (D) 2020.

2.3. Methods

As an intuitive feedback of human disturbance on regional
ecosystems, LUCC has been demonstrated to be closely related to
the spatiotemporal evolution of landscape ecological risk (Chen C.
et al., 2019; Jiang et al., 2020). Therefore, this article establishes
the relationship between LUCC and ecological risk using landscape
patterns as a medium, and the spatiotemporal dynamic evaluation

system of landscape ecological risk is proposed as follows: firstly,
based on land use data, spatial analysis and landscape pattern
index method are used to identify the overall characteristics of
dynamic changes of regional land use and landscape pattern;
secondly, taking townships as the minimum assessment unit, a
landscape ecological risk evaluation model is constructed based
on the obtained landscape pattern index values to evaluate the
spatial differences, temporal changes, transfer characteristics and

Frontiers in Ecology and Evolution 04 frontiersin.org

https://doi.org/10.3389/fevo.2023.1184273
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-11-1184273 May 4, 2023 Time: 14:32 # 5

Cheng et al. 10.3389/fevo.2023.1184273

TABLE 1 Influencing factor dataset details and sources.

Dataset Details Year Resolution Sources

Topography raster data Digital elevation model (DEM)a 2008 12.5 m The Earth Science Data Systems (ESDS)
(https://search.asf.alaska.edu/#/)

Normalized difference vegetation index
(NDVI) maximum data

2000
2010
2020

30 m Chinese Academy of Sciences Discipline Data
Center for Ecosystem
(http://www.nesdc.org.cn/)

Climate data Annual average temperature data of each
meteorological station in Hangzhou

2000
2010
2020

Point data China Meteorological Data Service Centre
(http://data.cma.cn)

Annual total precipitation data of each
meteorological station in Hangzhou

2000
2010
2020

Point data China Meteorological Data Service Centre
(http://data.cma.cn)

Accessibility datab Longitude and latitude of township
government location

2020 Point data AMAP open platform
(https://lbs.amap.com/ )

Longitude and latitude of Hangzhou city
government location

2000
2010
2020

Point data AMAP open platform
(https://lbs.amap.com/)

Socioeconomic raster data GDP data 2000
2010
2020

1 km Resource and Environment Science and Data
Center, Chinese Academy of Sciences
(http://www.resdc.cn)

Population density data 2000
2010
2020

100 m WorldPop data platform
(https://www.worldpop.org/)

aThe DEM data is resampled and the resolution is adjusted to 30 m to make it consistent with the resolution of the land use data.
bThe accessibility data include the longitude and latitude of township government location and longitude and latitude of Hangzhou city government location, which are mainly used to calculate
two accessibility influencing factors: the distance of each township from the Fuchunjiang River and the distance of each township from Hangzhou city.

FIGURE 3

Research framework.
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TABLE 2 Formula for the landscape ecological risk index and its ecological significance.

Index Calculation formula Ecological significance and parameter explanation

Landscape
fragmentation index

Ci=
ni
Ai

To describe the degree of patches fragmentation for a certain landscape type (Lin et al., 2019).
ni , patch number of landscape type i; Ai , total area of landscape type i.

Landscape separation
index

Si=
li
Pi

li= 1
2

√
ni
A , Pi=

Ai
A

To describe the degree of patches separation for a certain landscape type (Lin et al., 2019).
li , distance index of landscape type i; Pi , area index of landscape type i; A, total area of the entire landscape.

Landscape dominance
index

Doi=
Qi+Mi

4 +
Li
2

Qi=
Bi
B , Mi=

ni
N , Li=

Ai
A

To describe the degree of patches importance for a certain landscape type (Lin et al., 2019).
Qi , the frequency of landscape type i; Mi , the density of landscape type i; Li , the ratio of landscape type i; Bi ,
number of samples appearing landscape type i; B, total sample number; N, total number of all types of patches.

Landscape disturbance
index

Di=aCi+bSi+cDoi To quantify the intensity of a landscape subjected to external interference (Lin et al., 2019).
a, b, and c are weights of indexes Ci , Si , and Doi , according to the previous research results, a = 0.5, b = 0.3, and
c = 0.2 (Xue et al., 2019).

Landscape fragility
index

Fi , obtained by experts
assignment and normalization

To indicate the sensitivity and vulnerability of different landscape types to external disturbances (Ran et al., 2022).
The landscape fragility index is classified into six grades: unused land = 6, waters = 5, arable land = 4, grassland = 3,
forestland = 2, urban and rural residential land = 1, other construction lands = 1 (Wang et al., 2019).

Landscape loss index Ri=Di×Fi To indicate the loss of natural properties of ecosystems of different landscape types caused by external disturbances.
The landscape loss index is characterized by a combination of landscape disturbance index (Di) and landscape
fragility index (Fi).

Landscape ecological
risk index

ERIk=
∑n

i=1
Aki
Ak
×Ri

The landscape ecological risk index is constructed by combining the area weight of landscape components and the
landscape loss index.
Aki , the area of landscape type i in township k; Ak , the total area of the township k; n, the number of landscape
types; ERIk , landscape ecological risk index of the township k.

change rate situation of landscape ecological risk in the study
area, and combined with spatial autocorrelation model to analyze
the spatial clustering characteristics of landscape ecological risk;
finally, based on the influencing factors dataset, the dominant
influencing factors of dynamic changes in landscape ecological risk
are analyzed from both static and dynamic levels with the help of
Geodetector model. The general framework of the study is shown
in Figure 3.

2.3.1. Landscape ecological risk assessment
Based on previous research results, in this article, landscape

fragmentation, separation, and dominance indexes were selected
to build the landscape disturbance index and were then combined
with the fragility index normalized by expert assignment to
characterize the landscape loss index (Lin et al., 2019; Xue
et al., 2019). The “loss and probability multiplication” model
was constructed to calculate each township’s landscape ecological
risk index (ERI) in the Fuchunjiang River Basin. The specific
calculation formula and ecological significance are shown in
Table 2.

According to the calculation formula of the landscape
ecological risk, the landscape ERI of each township was obtained
and divided into five classes according to equal intervals (Xu
et al., 2021): low ecological risk area (ERI < 0.007), sub-low
ecological risk area (0.007 ≤ ERI < 0.009), medium ecological
risk area (0.009 ≤ ERI < 0.011), sub-high ecological risk area
(0.011≤ ERI < 0.013), and high ecological risk area (ERI≥ 0.013).

2.3.2. Spatial autocorrelation analysis
2.3.2.1. Global spatial autocorrelation

Exploratory spatial data were used to analyze the spatial
distribution pattern of landscape ecological risk in the Fuchunjiang
River Basin (Zhao et al., 2018). The Global Moran’s I index was
used to determine whether there were clustering or dispersion

characteristics of landscape ecological risk. The calculation
formulas are as follows:

Global Moran′s I =
[∑n

i=1
∑n

j=1 Wij
(
Xi − X̄

) (
Xj − X̄

)]
/(

S2 ∑n
i=1

∑n
j=1 Wij

)
(1)

S2
=

1
n

∑n

i=1

(
Xi − X̄

)2
, X̄ =

1
n

∑n

i=1
Xi (2)

where Xi and Xj are the attribute values of spatial units i and j, Wij
is the spatial weight matrix, which indicates the proximity of each
spatial unit, and n is the number of risk units. The Global Moran’s
I index is between [−1, 1]. An index greater than 0 indicates a
positive spatial correlation, and the risk values show clustering
characteristics; an index less than 0 indicates a negative spatial
correlation, and the risk values show dispersal characteristics; an
index equal to 0 indicates no spatial correlation, and the risk values
are randomly distributed.

2.3.2.2. Local spatial autocorrelation

For the specific spatial distribution of high-value or low-value
clusters, global spatial autocorrelation cannot be used for further
analysis, so the Hot Spot Analysis tool (Getis-Ord Gi∗) was chosen
to identify spatial clusters with statistically significant high values
(hot spots) and low values (cold spots). The results can generate
maps of hot spot and cold spot distribution to show the spatial
correlation and distribution.

2.3.3. Geodetector
The geodetector is a set of statistical methods for detecting

spatial differentiation and revealing the driving forces behind it
(Wang and Xu, 2017). Referring to previous research results,
combined with the actual situation of the Fuchunjiang River
Basin, 12 static influencing factors were selected from four
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categories of topography, socioeconomic, accessibility, and climate:
elevation, slope, aspect, NDVI maximum, GDP, population density,
area of urban and rural residential land, human interference,
the distance of each township from the Fuchunjiang River,
the distance of each township from Hangzhou city, annual
average temperature, and annual total precipitation. Thirteen
dynamic influencing factors were selected from three categories
of land-use change metrics, expansion pattern of urban and rural
residential land and land-use transfer matrix: dynamic attitude
of urban and rural residential land area, patch number of in-
fill expansion mode, patch number of marginal expansion mode,
patch number of enclave expansion mode, patch area of in-fill
expansion mode, patch area of marginal expansion mode, patch
area of enclave expansion mode, area of arable land transferred
out, area of arable land transferred in, area of urban and
rural residential land transferred out, area of urban and rural
residential land transferred in, area of other construction lands
transferred out, and area of other construction lands transferred
in. These 25 influencing factors were input as variable X, and
the landscape ecological risk value and its dynamic attitude
were used as attribute Y of the static and dynamic influencing
factors, respectively, to explore the dominant driving factors of
landscape ecological risk changes. The specific formula is as follows:

q = 1−
∑L

h=1 Nhσ
2
h

Nσ2 (3)

where q is the detection value of the ecological risk influencing
factors, σ2

h denotes the discrete variance of Y, h is the
number of variable X, Nh denotes the township unit, N is
the total number of township units, and σ2 is the total
regional variance. q is between [0, 1], and the larger the
value of q is, the stronger the explanatory power of the
independent variable X on attribute Y. The value of q indicates
the proportion of landscape ecological risk explained by the
influencing factors.

2.3.4. Land-use change metrics
The concept of land-use dynamic attitude was introduced to

study the dynamic impact of the magnitude of changes in urban
and rural residential land on the landscape ecological risk, and its
expression is as follows (Zhou, 2022):

K =
Ub − Ua

Ua
×

1
T
× 100% (4)

where K is the area dynamic attitude of urban and rural residential
land in the study period, Ua and Ub are the areas of the urban
and rural residential land at the beginning and end of the study
period, respectively, and T is the difference between the years of
the study period.

2.3.5. Expansion pattern of urban and rural
residential land

The concept of the multi-order adjacency index was introduced
to investigate the dynamic influence of the number and area of
patches of various expansion patterns of urban and rural residential
land on the landscape ecological risk (Liu et al., 2018). This index
was used to describe the expansion of urban and rural residential

land by defining the degree of adjacency of the spatial relationship
between old and new patches, setting the buffer distance, and
quantifying the patch expansion characteristics using the multi-
order buffer method. Its calculation formula is as follows:

MAI = N − Ai/Ao (5)

whereMAI is the multi-order adjacency index of the new patches;N
is the number of buffers made for the new patches; A0 is the area of
the N-th buffer (the outermost buffer); and Ai is the area of the part
of the N-th buffer intersecting with the original patch. When the
value of MAI is between [0, 0.5), the expansion mode of urban and
rural residential land is in-fill expansion; when the value is between
[0.5, 1), it is marginal expansion; when the value is greater than 1, it
is enclave expansion.

2.3.6. Land-use transfer matrix
The land-use transfer matrix model was introduced to

investigate the dynamic influence of the area transferred in and out
of a certain land-use type on the landscape ecological risk and to
characterize the dynamic process of the interconversion between
the area of each land type at the beginning and the end of a period in
a certain region (Zhou, 2022). Its mathematical form is as follows:

Sij =


S11 S12 . . . S1n

S21 S22 . . . S2n

. . . . . . . . . . . .

Sn1 Sn2 . . . Snn

 (6)

where S represents the area; n is the number of land use types;
and i and j are the land use types at the beginning and end
of the study, respectively. Each row in the matrix represents the
transferred-out information of a certain land type, and each column
represents the transferred-in information of a certain land type.
In this article, ArcGIS10.6 software was used to cross-analyze data
of land use types in different periods and establish each period’s
land-use transfer matrix.

3. Results

3.1. Land use and landscape pattern
changes

The land use types in the Fuchunjiang River Basin that
changed from 1990 to 2020 accounted for 12.64% of the total
area (Table 3). During the period, the area of arable land
decreased by 216.18 km2, and the grassland area decreased by
69.66 km2. The area of these two land types decreased by
21.83 and 49.55%, respectively. The area of urban and rural
residential land increased by 89.11%, while the number of
patches showed a slight decrease, indicating that as the urban
and rural settlement clusters expanded, the area of patches
increased, and the edges gradually merged. The growth of other
construction lands was as high as 1,415.59%, and the number
of patches also increased by 526%, especially between 2000 and
2010. The area and number of patches increased by 845.29 and
462.79%, respectively, which was mainly related to the “Industrial
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TABLE 3 Landscape pattern indexes of various land use types in the Fuchunjiang River Basin from 1990 to 2020.

Type Year Patch
number

Patch
area/km2

Fi Ci Si Doi Di Ri

Waters

1990 161 155.02 0.2392 0.0104 0.2753 0.2792 0.1436 0.0344

2000 166 155.96 0.2392 0.0106 0.2778 0.2837 0.1454 0.0348

2010 174 161.13 0.2392 0.0108 0.2753 0.2844 0.1449 0.0347

2020 174 159.94 0.2392 0.0109 0.2774 0.2838 0.1454 0.0348

Arable land

1990 833 990.42 0.1573 0.0084 0.0980 0.4217 0.1180 0.0186

2000 543 945.05 0.1573 0.0057 0.0829 0.4084 0.1094 0.0172

2010 476 855.71 0.1573 0.0056 0.0857 0.3900 0.1065 0.0168

2020 551 774.25 0.1573 0.0071 0.1020 0.3866 0.1115 0.0175

Forestland

1990 448 3, 104.40 0.0650 0.0014 0.0229 0.6266 0.1329 0.0086

2000 394 3, 209.02 0.0650 0.0012 0.0208 0.6438 0.1356 0.0088

2010 401 3, 187.75 0.0650 0.0013 0.0211 0.6406 0.1351 0.0088

2020 404 3, 168.06 0.0650 0.0013 0.0213 0.6376 0.1346 0.0087

Grassland

1990 855 140.56 0.1017 0.0608 0.6996 0.3295 0.3062 0.0311

2000 386 67.55 0.1017 0.0571 0.9781 0.2958 0.3812 0.0388

2010 389 71.66 0.1017 0.0543 0.9256 0.2951 0.3638 0.0370

2020 401 70.91 0.1017 0.0566 0.9497 0.2950 0.3722 0.0379

Urban and rural residential land

1990 985 124.08 0.0413 0.0794 0.8506 0.3374 0.3624 0.0150

2000 975 137.58 0.0413 0.0709 0.7633 0.3621 0.3368 0.0139

2010 927 180.04 0.0413 0.0515 0.5687 0.3585 0.2681 0.0111

2020 847 234.65 0.0413 0.0361 0.4171 0.3544 0.2141 0.0088

Other construction lands

1990 50 7.55 0.0413 0.0663 3.1515 0.2546 1.0295 0.0425

2000 43 6.97 0.0413 0.0617 3.1637 0.2550 1.0310 0.0426

2010 242 65.89 0.0413 0.0367 0.7940 0.2804 0.3126 0.0129

2020 313 114.36 0.0413 0.0274 0.5203 0.2916 0.2281 0.0094

Unused land

1990 12 1.83 0.3543 0.0656 6.3733 0.2511 1.9950 0.7068

2000 8 1.76 0.3543 0.0454 5.3923 0.2510 1.6906 0.5990

2010 8 1.77 0.3543 0.0452 5.3759 0.2510 1.6856 0.5972

2020 8 1.78 0.3543 0.0450 5.3487 0.2509 1.6773 0.5943

Development” strategy proposed by Hangzhou in 2000. During
this period, the rapid development and dominance of industrial
manufacturing in the townships led to a dramatic expansion in
the area and the number of patches. Forestland was the dominant
landscape in the study area and has remained relatively stable
over the past 30 years, and waters and unused land also remained
unchanged.

The changes in land-use structure and function caused
significant changes in the landscape pattern of the Fuchunjiang
River Basin. Overall, the dynamic responses of landscape pattern
indexes in various land types to land-use changes during the study
period showed strong consistency. The fragmentation, separation,
and dominance indexes of urban and rural residential land
patches gradually declined, and the loss index also maintained
the same decreasing trend, from 0.015 to 0.009, with a total
decrease of 40.92%. The fragmentation and separation index
of other construction lands exhibited a decreasing trend, and
the dominance index increased slightly, among which the
separation index dropped sharply from 3.16 to 0.79 between

2000 and 2010, with a drop of 74.90%, which directly led
to a significant decrease in the disturbance and loss index,
decreasing from 1.03 to 0.31 and 0.04 to 0.01, respectively. The
changing trend of the landscape pattern in grassland was the
same as that of arable land patches, with the fragmentation
and dominance index decreasing and the separation index
increasing, reflecting the decrease in arable land patches and
the increase in grassland patches in terms of the loss index.
The landscape pattern indexes of unused land showed a slight
downward trend, while the landscape pattern indexes of waters and
forestland patches remained stable. In general, the fragmentation
and separation index of multiple types of land patches had
an obvious downward trend, and the degree of agglomeration
increased. The loss degree from highest to lowest was as
follows: unused land > grassland > waters > other construction
lands > arable land > urban and rural residential land > forestland.
The results indicated that the loss of unused land was the
greatest and forestland was the most stable when subjected to
human disturbance.
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3.2. Spatiotemporal variation
characteristics of landscape ecological
risk

3.2.1. Spatial differences in landscape ecological
risk

The spatial distribution of landscape ecological risk in the
Fuchunjiang River Basin varied greatly, showing a spatial pattern of
“high in the northwest and low in the southeast” (Figure 4). High-
risk townships were mainly concentrated in the downstream areas
of the Fuchunjiang River Basin, including Wenyan Subdistrict,
Changhe Subdistrict, and Shuangpu Town, where the landscape
was dominated by construction lands such as settlements and
industrial gathering areas, with dense cities, a vibrant economy,
and high land-use intensity. The sub-high ecological risk areas
were distributed along the periphery of the high-risk areas and
the middle reaches of the Fuchunjiang River, including subdistricts
such as Shushan, Zhuantang, and Puyan and towns such as Yiqiao,
Linpu, and Hengcun, with the landscape type still dominated
by construction land. The low ecological risk areas were mainly
distributed in the eastern part of the study area bordering
Shaoxing city, including Changlv Town, Huyuan Township, Xinhe
Township, Dayuan Township, and other townships, where there
were many mountains with forestland and grassland as the main
landscape types, and the degree of human interference was low.
The sub-low ecological risk areas were mainly distributed in
the southern part of the study area, adjacent to the Jiande and
Chun’an areas. The medium-risk townships were concentrated in
the northwest block of Fuyang and Tonglu, where the terrain was
relatively flat, and the arable land area was large and wide-ranging.

3.2.2. Temporal changes in landscape ecological
risk

From 1990 to 2020, the landscape ecological risk in the
Fuchunjiang River Basin generally showed a downward trend. The
4-year landscape ecological risk values were 0.0129, 0.0124, 0.0120,
and 0.0119, with an overall decrease of 7.75%. At the same time,
the annual maximum and average values of the landscape ERI of
the 51 townships also gradually decreased (Figure 4). As seen in
Figure 5, the area proportion of regions with landscape ecological
risk levels from low to high was approximately 10, 59, 21, 7, and 3%
during the study period, and the sub-low and medium ecological
risk areas were always dominant. Except for 1990, when the area
of the medium ecological risk areas accounted for the highest
percentage (39.44%), the rest of the years were dominated by the
sub-low ecological risk areas, which accounted for more than 55%
of the total area, and the number of townships was the largest,
increasing from 16 to 25; the area and number of townships in sub-
high and high ecological risk areas gradually decreased, and the area
proportion stabilized below 10%. A comparison of three periods
revealed that the area of ecological risk areas at all levels changed
significantly during the period from 1990 to 2000, except for the
high ecological risk areas. The area of low and sub-low ecological
risk areas increased by 62.24 and 45.01%, respectively, while the
area of medium and sub-high ecological risk areas decreased by
45.66 and 51.04%. Overall, due to the changes in landscape pattern,
the area of low and sub-low ecological risk areas continued to
increase, which led to a significant decrease in regional landscape

ecological risk and a gradual improvement in habitat quality and
ecological safety.

3.2.3. Landscape ecological risk transfer analysis
From 1990 to 2020, the ecological risk level of each township

in the Fuchunjiang River Basin mainly shifted from high-risk to
low-risk levels, with a total shift of 2,039.29 km2, accounting for
83.72% of the total transferred area (Figure 6A). Divided into three
stages, from 1990 to 2000, the ecological risk level of 14 townships
changed, and the landscape ecological risk level decreased in all
of them. The number of townships that shifted ecological risk
levels from sub-high to medium, medium to sub-low, medium
to low, and sub-low to low was 4, 7, 2, and 1, respectively, with
a total shift of 1,460.45 km2. From 2000 to 2010, there were 6
townships with elevated ecological risk levels, among which 2, 1,
and 3 townships shifted ecological risk levels from medium to sub-
high, sub-low to medium, and low to sub-low, respectively, with
a total shift of 359.44 km2. There were 2 townships with decreased
risk levels; Changhe Subdistrict changed from high to sub-high risk,
and Linpu Town changed from sub-high to medium risk. From
2010 to 2020, there was only one township (Yushan Township) with
elevated ecological risk levels, changing from low to sub-low risk.
There were 6 townships with decreased risk levels; two changed
from sub-high to medium, two changed from medium to sub-low,
and two changed from sub-low to low risk, with a total shift of
522.95 km2. In terms of spatial distribution (Figure 6B), from 1990
to 2020, the areas with frequent changes in ecological risk levels
were mainly distributed in the townships along the Fuchunjiang
River and close to the center of Hangzhou, primarily shifting from
the high-risk level to the low-risk level. It is indicated that the
comprehensive ecological risk in the Fuchunjiang River Basin was
alleviated, and the pressure on the ecological environment caused
by human activities gradually improved.

3.2.4. Change rate of landscape ecological risk
After analyzing the comprehensive transfer of ecological risk

across townships over a 30-year period, the magnitude of change
in landscape ecological risk was further explored over three time
intervals (Figure 7). From 1990 to 2000, the change rate of risk
in the study area was between 0 and −28.09%, with only two
townships having a slightly elevated risk, both with growth rates
below 1%. From 2000 to 2010, the number of townships with rising
ecological risk increased significantly, mainly concentrated on the
south bank of the Fuchunjiang River, and the risk grew at a faster
rate, with the highest growth rate of 15.05%. From 2010 to 2020, the
block with elevated risk shifted southward, forming two clusters in
the north and south, but the growth rate decreased compared to the
previous period, and the decline in risk became greater. In general,
the growth rate of landscape ecological risk in the three stages
showed a trend of increasing and then decreasing. The groups with
high growth rates gradually moved south from the north, and the
number of townships gradually increased.

3.3. Spatial autocorrelation analysis of
landscape ecological risk

Based on the spatial distribution of the landscape ERI in
each township, the Global Moran’s I of landscape ecological
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FIGURE 4

Spatiotemporal variation characteristics of landscape ecological risk in the Fuchunjiang River Basin for (A) 1990, (B) 2000, (C) 2010, and (D) 2020.
Note: ERI is the abbreviation of the landscape ecological risk index (1990ERI means the landscape ecological risk value in 1990); overall represents
the overall landscape ecological risk value of the Fuchunjiang River Basin; max represents the maximum value of landscape ecological risk among 51
townships; min represents the minimum value of landscape ecological risk among 51 townships; average is the average value of landscape
ecological risk among 51 townships.

FIGURE 5

The area ratio and the number of townships in various levels of landscape ecological risk areas in the Fuchunjiang River Basin from 1990 to 2020.
The data in the left column of each year are the area ratio in various levels of landscape ecological risk areas, and the data in the right column of
each year are the number of townships in various levels of landscape ecological risk areas.

risk in the Fuchunjiang River Basin from 1990 to 2020 was
0.5542, 0.5033, 0.4672, and 0.3561, respectively, and the Z
scores were all greater than 1.96. During the study period, the
landscape ERI in the Fuchunjiang River Basin showed significant
spatial autocorrelation, i.e., townships with high or low landscape
ecological risk values were clustered.

The Hot Spot Analysis (Getis-Ord Gi∗) tool was used to further
analyze the landscape ecological risk aggregation characteristics of
the study area, which were divided into four categories according to
the Z score: cold spot (Z score <−1.96), sub-cold spot: (−1.96≤ Z
score < 0), sub-hot spot: (0 < Z score ≤ 1.96), and hot spot: (Z
score > 1.96). Overall, the Fuchunjiang River was used as a dividing
line to separate the cold and hot spot areas. The northern area

of the Fuchunjiang River was dominated by hot spots and sub-
hot spots, while the southern bank of the river was dominated by
cold spots and sub-cold spots, which exhibited strong consistency
with the spatial pattern of risk levels (Figure 8). The hot spot
areas were mainly found in the more populous and economically
developed northern area, with towns and subdistricts such as
Wenyan, Zhuantang, and Shuangpu as the core to form a group.
The sub-hot spot areas were mainly distributed in the northwest,
located in the territory of Fuyang and Tonglu. The cold spot areas
were distributed in the eastern area with high altitude and mainly
forestland, with Shangguan, Huyuan, Changlv, and other townships
as the core; the sub-cold spot areas were mainly located in the
southern part within the Jiande area.
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FIGURE 6

Area change and spatial distribution of landscape ecological risk shift areas in the Fuchunjiang River Basin from 1990 to 2020. (A) Area change.
(B) Spatial distribution. A, B, C, D, and E represent low risk area, sub-low risk area, medium risk area, sub-high risk area, and high risk area,
respectively. 0, 1, 2, and 3 represent 1990, 2000, 2010, and 2020, respectively, and the area unit in the figure is km2.

FIGURE 7

Change rate and spatial distribution of landscape ecological risk in the Fuchunjiang River Basin for (A) 1990–2000, (B) 2000–2010, and (C)
2010–2020.

FIGURE 8

Spatial distribution of hot spots and cold spots in landscape ecological risk in the Fuchunjiang River Basin for (A) 1990, (B) 2000, (C) 2010, and (D)
2020.
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FIGURE 9

Geodetector results of static and dynamic influencing factors of landscape ecological risk in the Fuchunjiang River Basin from 2000 to 2020.
(A) X1 elevation; X2, slope; X3, aspect; X4, NDVI maximum; X5, GDP; X6, population density; X7, area of urban and rural residential land; X8, human
interference; X9, the distance of each township from the Fuchunjiang River; X10, the distance of each township from Hangzhou city; X11, annual
average temperature; X12, annual total precipitation. (B) X1, dynamic attitude of urban and rural residential land area; X2, patch number of in-fill
expansion mode; X3, patch number of marginal expansion mode; X4, patch number of enclave expansion mode; X5, patch area of in-fill expansion
mode; X6, patch area of marginal expansion mode; X7, patch area of enclave expansion mode; X8, area of arable land transferred out; X9, area of
arable land transferred in; X10, area of urban and rural residential land transferred out; X11, area of urban and rural residential land transferred in; X12,
area of other construction lands transferred out; X13, area of other construction lands transferred in.

3.4. Landscape ecological risk
influencing factor analysis

3.4.1. Analysis of the static influencing factors
Based on the results of previous studies and the field

situation of the Fuchunjiang River Basin, a total of 12 static
indicators in four categories of topography, socioeconomic,
accessibility, and climate were selected to explore the main
influencing factors of landscape ecological risk in 3 years, 2000,
2010, and 2020. The factor-detector tool of the geodetector was
used to obtain the detection power (q-value) corresponding
to each factor. The results showed that the explanatory
power of each static influencing factor was from high to low:
X8 > X7 > X10 > X5 > X9 > X11 > X1 > X12 > X2 > X4 > X6 > X3
(Figure 9A). The q-values of the human interference factor and
the area of urban and rural residential land factor were both above
0.5, with average q-values of 0.74 and 0.55, respectively, which
had a significant influence. Overall, the explanatory power of
socioeconomic and accessibility factors was significantly higher
than that of topography and climate factors. Among all the
influencing factors, the explanatory power of human interference
increased year by year. Except for the four factors of aspect,
NDVI maximum, GDP, and the distance of each township from
Hangzhou city, whose influence fluctuated upward with the year,
all the other factors showed a decreasing trend. The explanatory
power of the annual average temperature and total precipitation
factors declined the fastest, decreasing by 63.89 and 26.43%,
respectively, indicating that climate factors were becoming less
influential on the landscape ecological risk.

3.4.2. Analysis of the dynamic influencing factors
From the situation of urban and rural residential land

expansion and land use transfer, a total of 13 dynamic indicators
in three categories of land-use change metrics, expansion pattern

of urban and rural residential land, and land-use transfer matrix
were selected. The dynamic attitude of landscape ecological
risk was considered the dependent variable, and two periods
(from 2000 to 2010 and from 2010 to 2020) were defined
for factor influence detection to obtain the corresponding q
values. The results showed that the explanatory power of
each dynamic influencing factor was in descending order:
X9 > X8 > X10 > X5 > X11 > X2 > X1 > X4 > X7 > X13 > X6
> X12 > X3 (Figure 9B). The two factors of the area of arable
land transferred out and the area of arable land transferred in
were dominant, and the average explanatory power was above 0.3.
Except for the factors of patch number of marginal expansion
mode of urban and rural residential land, patch area of marginal
expansion mode of urban and rural residential land, and the area of
other construction lands transferred out which showed a decreasing
trend, the explanatory power of all the other factors increased. The
patch area of in-fill expansion mode of urban and rural residential
land grew the fastest with a growth rate of 457.05%. In general, the
influence of the land-use transfer matrix factors was generally more
significant than that of the expansion pattern of urban and rural
residential land and the land-use change metrics factors.

4. Discussion

4.1. Spatial heterogeneity of landscape
ecological risk

Shifts in landscape structure and function are often caused by
LUCC, and landscape ecological risk is mainly generated based on
the evolution of landscape patterns (Jiang et al., 2021). Therefore,
this article constructs a close correlation between LUCC and
landscape ecological risk using landscape pattern as a medium, and
provides a theoretical approach for ecological risk assessment. It
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can be seen that the heterogeneity of land use largely determines
the spatial heterogeneity of landscape ecological risk (Chen C. et al.,
2019; Jiang et al., 2020).

The spatial distribution of landscape ecological risk in the
Fuchunjiang River Basin from 1990 to 2020 showed significant
heterogeneity, forming a spatial pattern of “high in the northwest
and low in the southeast.” The townships with high risk were
mainly concentrated in the northwestern part of the study area,
which was the downstream region of the Fuchunjiang River
Basin, while the townships with low risk were distributed in the
southeastern region (Figure 4). The spatial differences in landscape
ecological risk between the northwest and southeast were mainly
related to the economic development, policy guidance, and natural
attributes of the suburban areas of Hangzhou city (Karimian
et al., 2022). Compared with the southeast, the northwest part,
which was closer to the central area of Hangzhou, was an area
of concentrated population and developed economy, where high-
intensity industrial activities and accelerating urbanization put
great pressure on the regional ecosystems and increased the local
ecological risk (Karimian et al., 2022). This result was generally
consistent with the previous study’s results (Zhou et al., 2022). In
contrast, the southeastern part of the study area had significantly
less human disturbance to the environment due to the overall
high elevation (Figure 1). There were several national forest parks
in and around the area, such as Qiandao Lake, Dachishan, and
the Fuchunjiang River, with high vegetation coverage (Figure 2).
These factors were conducive to maintaining the natural landscape
and ecological vitality (Lu et al., 2020), and thus, the ecological
risk in the region was generally low. The spatial autocorrelation
analysis results of ecological risk also showed the same distribution
characteristics: The Fuchunjiang River was a dividing line to
separate the cold and hot spot areas. The northern area of the
Fuchunjiang River was dominated by hot spots and sub-hot
spots, while the southern bank of the river was dominated by
cold spots and sub-cold spots (Figure 8). This suggested that
the distribution of regional geographical elements would affect
the spatial heterogeneity of ecological risks (Lin et al., 2019);
for example, the Fuchunjiang River as a natural geographical
barrier objectively limited the spread of ecological risks from the
north to the south bank. In conclusion, the spatial heterogeneity
characteristics of landscape ecological risk in the Fuchunjiang River
Basin were also corroborated by many previous studies on the
ecological environment assessment in the Hangzhou area (Li et al.,
2021; Zhang et al., 2023). It is the spatial heterogeneity of landscape
ecological risk in the study area that requires decision makers to
develop targeted management strategies for different blocks (Lu
et al., 2020) to reduce risks in the area or prevent new risks from
arising.

4.2. Temporal evolution of landscape
ecological risk

From 1990 to 2020, the evolution of ecological risk in the
Fuchunjiang River Basin over time showed a trend of “changes
dramatically in short time scales and declines in long time scales”
at both the basin and township scales. At the basin level, with the
reduction in medium, sub-high and high risk areas (from 52.33

to 28.14%, Figure 5), the overall landscape ecological risk of the
Fuchunjiang River Basin showed a downward trend during the
study period, with an overall decrease of 7.75%. By stage, the
magnitude of the decrease in the overall ecological risk became
progressively smaller in the three time intervals, especially between
2010 and 2020, in which it remained almost constant (only 0.83%).
This time-scale feature was consistent with the study of Guo et al.
(2022). Combined with studies of Zhou et al. (2022) and Fu et al.
(2022) on environmental optimization and policy protection in
the Hangzhou area, it can be seen that this phenomenon was
mainly attributed to the fact that after 2000, under the interaction
of the urbanization process and ecological protection policies
in Hangzhou, the disturbance and restoration of the ecosystems
tended to balance and gradually reached a stable state (Ma et al.,
2019). From the township perspective, the landscape ecological
risk maintained a decreasing trend generally during the study
period. There were 17 townships with declining ecological risk
levels, accounting for 37.88% of the total area of the study area,
while there were only 2 townships whose ecological risk levels
increased, accounting for 1.46% of the total area of the study area
(Figure 6). On this basis, further analysis of the change rate in
landscape ecological risk in each township during the three time
periods (Figure 7) revealed that more than 40% of the townships
had increasing ecological risk in two time periods from 2000 to
2010 and 2010 to 2020, with a maximum growth rate of 15.05%.
This result was in agreement with the study of Shen et al. (2023) on
the plateau scale. It is likely that the averaging effect at long-time
scales (DeFries et al., 2010) made changes in landscape ecological
risk at short-time scales appear relatively drastic. Overall, there
was a decreasing trend in landscape ecological risk at both the
basin and township levels over long time scales. This finding was
inextricably linked to the “three rivers and two banks” ecological
landscape protection and construction project implemented by the
Hangzhou Government (Wang, 2014): Since 2010, the Hangzhou
Government has invested approximately US$445 million in this
project, completing 58 km2 of forest-nurturing projects and 204 km
of forest ecological landscape green belts, as well as a series of water
pollution remediation and greenway construction projects, which
have contributed significantly to the environmental improvement
of the Fuchunjiang River Basin. However, studies on ecological risk
in areas of plateau and opencast coal mine have shown a rising
trend in landscape ecological risk with economic development (Xu
et al., 2021; Li et al., 2022), differing significantly from the results of
this study, which might be more related to economic inputs. The
improvement of ecological risks requires significant government
investment. Thus, in the process of ecological risk control, many
regions face a trade-off between improving ecological risks and
economic investment.

4.3. Dominant influencing factors of
landscape ecological risk

Among the static impact factors, socioeconomic factors were
considered the dominant influencing factors on the landscape
ecological risk in the Fuchunjiang River Basin (Figure 9A),
especially the human interference and GDP factors, with strong
explanatory power. This result has been corroborated by a large
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FIGURE 10

Coupling relationship between the average value of landscape ecological risk and the GDP of townships.

number of studies (Ai et al., 2022; Karimian et al., 2022; Shi
et al., 2022). However, this study found that natural factors such
as topography and climate had less influence on ecological risks in
the study area and exhibited a decreasing trend, which was quite
different from the results of some studies for particular topographic
areas (Hou et al., 2020; Wang et al., 2021). A primary reason
was that in rapidly urbanizing areas, the active socioeconomic
factors had a greater impact on landscape ecological risk than
natural factors. It can be seen that the dominant driving factors of
landscape ecological risk could change significantly with changes
in the study area’s location, social environment, and other factors.
Among the dynamic impact factors, the influence of land use
transfer factors was generally greater than that of other factors
(Figure 9B). The transfer intensity of arable land and urban and
rural residential land, as areas with frequent human activities, had
the greatest impact on landscape ecological risk, which further
confirmed the findings of Zhang S. et al. (2022) and Li W.
et al. (2020). Accurate identification of the dominant influencing
factors of landscape ecological risk was the basis for carrying
out targeted risk management, making it possible to prevent and
control ecological risks.

To explore the association between economic development
and ecological risk, the representative socioeconomic factor GDP
was selected for coupling analysis with landscape ecological risk
(Figure 10). The average value of landscape ecological risk in
2000 and 2010 fluctuated upward with the increase in the GDP
of townships, indicating that the ecological environment was
damaged to a deeper extent with socioeconomic development.
The average value of landscape ecological risk in 2020 showed
an inverted U-shaped relationship with the GDP of townships.
The landscape ecological risk gradually increased with the increase

of GDP at the beginning; after the discrete value of GDP
reached 17 (US$29.2 million–122.7 million/km2), the increase of
GDP led to a decrease of ecological risk, which confirmed that
the environmental Kuznets curve (EKC) might have the same
applicability in ecological risk management. However, the GDP of
townships in 2000 and 2010 had not yet reached the tipping point,
so their landscape ecological risks were still in a state of fluctuating
increase. The figure shows that the landscape ecological risk
corresponding to the same discrete value of GDP decreased as the
year increased, and the area enclosed by the inverted “U” curve also
decreased, which was similar to the results of empirical studies of
the Kuznets curve between environmental pollution and economic
development at the micro level (Chen X. et al., 2019; Yu et al., 2022).
This could be due to the rapid development of the social economy
promoting the change in urban industrial structure, and the unit
output of the service and high-tech industries had less impact
on the environment (Hamann et al., 2015). At the same time,
comparing the study of the “economy-ecology” relationship by Leal
and Marques (2022) and Yuan et al. (2022), it can be seen that
the early experience of environmental problems management, the
development of new technology, and the role of government policy
guidance will also make environmental restoration costs lower and
time shorter in the context of rapid economic development.

4.4. Potential ways to prevent ecological
risks

Many processes and functions of ecosystems are scale
dependent, and in this study, landscape ecological risk was also
found to be scale-dependent at the spatial level. During the period
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FIGURE 11

Zoning control map of landscape ecological risk in the Fuchunjiang River Basin.

from 2000 to 2020, some townships experienced a significant
increase in landscape ecological risk (Figure 7), but the overall
ecological risk of the basin remained on a downward trend
(Figure 4). This means that the increase in ecological risk in
local small-scale areas did not definitely lead to the reduction in
overall large-scale regional ecological safety. Similar results have
been verified in studies on ecosystem services. Ecosystem services
for which trade-offs exist at small scales behave synergistically on
larger spatial scales (Yang et al., 2015).

In this context, while designating the overall management and
control scheme of the basin, it is also indispensable to implement
differentiated ecological risk management according to the main
functions of different agglomerations. Therefore, to scientifically
maintain the ecological security in the suburban areas of Hangzhou
city, the Fuchunjiang River Basin was divided into key control area,
strict control area, and general control area of landscape ecological
risk (Figure 11) based on the findings of this study. The following
control strategies are proposed according to the divided blocks:

4.4.1. Key control area
This area mainly contains sub-high and high ecological risk

areas, which is in the downstream areas of the Fuchunjiang River
Basin with a dense economy and population and undertakes a
crucial regional development function. If conventional control
methods such as strict land use restrictions are still used to reduce
regional ecological risks (Liang et al., 2022), it will inevitably reduce
the living space for human beings. Therefore, compared to the
studies of Ran et al. (2022) and Lu et al. (2020), such regions

should adopt economic tools such as promoting benign iterations
of industrial structure and increasing ecological compensation
investment for ecological restoration, while land control should
still be aimed at ensuring the living space necessary for the
growing population, optimizing the land use structure, increasing
infrastructure development, and significantly improving human
welfare.

4.4.2. Strict control area
This area is mainly located in the southeastern part of the

study area and contains sub-low and low ecological risk areas,
with an excellent natural substrate and low human disturbance.
Wang et al. (2021) pointed out that such areas were key areas for
controlling ecological security and stability. Therefore, such regions
need managers to change the development mindset, incorporate
risk prevention and control into regional development planning,
and play a vital role in safeguarding the overall stability of landscape
ecological risk in the Fuchunjiang River Basin by reasonably
delineating ecological protection red lines, strictly limiting human
activities in ecological conservation areas (Melnykovych et al.,
2018), and regulating regional development and construction
(Karimian et al., 2022).

4.4.3. General control area
This area mainly contains the medium ecological risk areas

in the middle reaches of the basin, which is strongly radiated
by Hangzhou’s economy and has frequent risk transitions (Cui
et al., 2018). Appropriate policy guidance and financial support
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(Zhang et al., 2020) can be provided to strengthen the optimization
and integration of construction land, restore the damaged
ecological environment, improve ecosystem stability, and avoid the
transformation from medium risk to high risk.

4.5. Limitations and future prospects

The spatial and temporal evolutionary characteristics and
the dominant influencing factors of landscape ecological risk in
the Fuchunjiang River Basin on long time scales were explored
in this study. The results can not only be an inspiration for
ecological assessment and policy-making in other regions that are
experiencing rapid urbanization in the world, but also provide
a model case for exploring the quantitative relationship between
economic development and ecological conservation in regions
that are in the late-stage of development. However, limited
by the methodology and data availability, this study still had
some limitations.

First, due to the difficulty of obtaining the early data of impact
factors, only data after 2000 were included for analysis, and the
correspondence between the year of data and the year of study
needs to be further improved.

Second, the scale of this study is relatively singular. At the
temporal level, only 4 years were selected for analysis, with a long
time span; at the spatial level, the township was considered as
the smallest assessment unit, and no multi-scale spatial validation
was performed. It cannot be assumed that the results would
remain stable after cross-scale deduction. Therefore, follow-up
should continue to strengthen comprehensive multi-scale research
to enhance the scientific validity of the results (Li W. et al., 2020).

Third, there is less research on EKC based on ecological
risk. This article only makes a preliminary exploration of EKC
between landscape ecological risk and GDP, and further theoretical
or practical verification should be strengthened in the future to
explore the applicability of EKC in the field of ecological risk.

Fourth, a detailed analysis of landscape ecological risk for the
period from 1990 to 2020 was explored in this study. However,
to better apply the assessment results to decision-making and
local management, land use simulations can also be conducted by
combining FLUS, PLUS, and CLUE-S models to carry out landscape
ecological risk prediction studies in the future (Gao et al., 2022).

Fifth, although landscape ecological risk assessment methods
based on landscape patterns have been widely used, their evaluation
endpoints are still unclear (Gong et al., 2021), creating a challenge
for implementing the assessment results at the specific decision-
making level. Therefore, using an analytical approach that overlays
ecosystem service with landscape ecological risk, introducing
ecosystem services as an evaluation endpoint into ecological risk
assessment will be the focus of subsequent research (Munns et al.,
2016), which can provide effective interactive spatial information
for adaptive landscape management, thus providing a more
solid theoretical and methodological basis for improving human
wellbeing.

5. Conclusion

Based on the land use data of the Fuchunjiang River Basin for
four periods from 1990 to 2020, a study on the spatiotemporal

variation pattern of landscape ecological risk and its influencing
factors of the basin in the suburban area of large cities was carried
out, with the following conclusions:

(1) During the study period, the area of various land use types
changed considerably and the landscape pattern showed
a general trend of increasing agglomeration degree and
decreasing loss index.

(2) The landscape ecological risk in the Fuchunjiang River Basin
showed a spatial pattern of “high in the northwest and low
in the southeast,” with high and low values clustering on the
north and south sides of the Fuchunjiang River, respectively.
During the study period, the overall landscape ecological
risk of the basin declined continuously, but the magnitude
of the decrease became smaller in three time intervals; the
ecological risk level of townships mainly shifted from high-
risk to low-risk levels, but more than 40% of townships were
of increased risk during 2000–2020. It can be seen that rapid
economic development has contributed to the reduction of
landscape ecological risk in the basin, and the ecological
environment has been restored with economic inputs to some
extent. Thus, in the process of ecological risk control, many
regions face a trade-off between improving ecological risks
and economic investment.

(3) Among all the influencing factors, socioeconomic and land
use transfer category factors had the strongest explanatory
power on landscape ecological risk and its changes. GDP,
human interference, area of urban and rural residential
land, area of arable land transferred in, and area of arable
land transferred out were the dominant influencing factors.
Accurate identification of the dominant influencing factors of
landscape ecological risk is the basis for carrying out targeted
risk management, making it possible to prevent and control
ecological risks.

(4) Coupling landscape ecological risk with GDP, it can be found
that the relationship between landscape ecological risk and
GDP in 2020 presented as an inverted U-shaped curve. The
landscape ecological risk gradually increased with the increase
in GDP at the beginning, and after reaching a tipping point,
increases in GDP led to decreases in ecological risk. This
result suggests that the EKC might have the same applicability
in ecological risk management. Therefore, it is theoretically
possible to manage ecological risks within the safety boundary
through appropriate management policies.

(5) According to the main functions of different ecological
risk gathering areas, the Fuchunjiang River Basin was
divided into key control area, strict control area and
general control area, and targeted risk control strategies
were proposed in each area. This can be connected with
the subsequent territorial spatial planning and help to
clarify the development direction and the core focus of
ecological management in the Fuchunjiang River Basin in the
future.
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