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Invasion risk by fruit trees
mealybug Rastrococcus invadens
(Williams) (Homoptera:
Pseudococcidae) under
climate warming

Abdelmutalab G. A. Azrag *, Samira A. Mohamed ,
Shepard Ndlela and Sunday Ekesi

International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
The mango mealybug Rastrococcus invadens (Williams) (Homoptera:

Pseudococcidae) is a destructive and important insect pest of fruit trees in Africa

and Asia, especially themango. Females and nymphs feed on plant leaves and fruits

and produce honeydew that causes sooty mold, leading to yield reduction.

Although it is an important pest, the distribution of R. invadens under different

climate change scenarios has not been established. In this study, we predicted the

suitable habitat for R. invadens occurrence under current and future [two Shared

Socioeconomic Pathways (SSPs) scenarios: (SSP2-4.5 and SSP5-8.5) for the years

2050s and 2070s], using environmental variables and four ecological nichemodels

viz., maxent, random forest, boosted regression trees, and support vector

machines. The performance and accuracy of these models were evaluated using

the area under the curve (AUC), the true skill statistic (TSS), correlation (COR), and

deviance. All models had high accuracy (AUC ≥ 0.96, TSS ≥ 0.88, COR ≥ 0.74 and

deviance ≤ 0.3) in predicting the potential distribution of R. invadens. Among the

four models, the random forest algorithm had the highest performance (AUC =

0.99, TSS = 0.95, COR = 0.91 and deviance = 0.14) in predicting the potential

distribution of R. invadens, followed by maxent (AUC = 0.97, TSS = 0.90, COR =

0.81 and deviance = 0.22). However, the maxent model was the best among the

four algorithms in predicting the ecological niche of R. invadens. The precipitation

of the wettest month (bio13) was the most crucial environmental variable that

contributed to the predictions of the four models. The results revealed that most

areas in East, Central, and West Africa were projected with high suitability for R.

invadens to occur under current climatic conditions. Similarly, Bangladesh, Laos,

Myanmar, India, Thailand, Vietnam and Cambodia in Asia, as well as Brazil, and

Venezuela in South America showed high suitability for R. invadens establishment.

However, under future climatic conditions (the years 2050s and 2070s), the

suitable areas for R. invadens will increase regardless of the SSPs scenario (SSP2-

4.5 and SSP5-8.5) indicating an expansion of the geographical range for this pest.

This expansion is projected to be higher for the years 2070s than the 2050s.

Similarly, the invasion risk of R. invadens is predicted to be higher under SSP2-4.5

scenario compared to SSP5-8.5 scenario, regardless of the year of the projection.

Our results serve as an early warning tool that could serve as a guide to prevent
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further spread and invasion of this pest to new areas as well as help in developing

an effective management strategy against R. invadens.
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1 Introduction

The invasion by alien insect pests is among the most serious

menace to biodiversity and agricultural production worldwide.

Climate change is considered to be one of the factors that

facilitate the movement of invasive pests to new areas (Early

et al., 2016; Tabor and Koch, 2021). Due to the temperature rise,

the geographical distribution of many insect pests in the future is

expected to substantially differ from the current scenario (Azrag

et al., 2018; Azrag et al., 2022; Istifanus et al., 2023). This change is

anticipated to raise the risk of biological invasions by alien species

(Early et al., 2016; Tabor and Koch, 2021), resulting in huge

economic losses, especially in the agricultural sector. Hence,

predicting the habitat suitability of invasive insect species has

become more relevant than ever to serve as an early warning

system to prevent the invasion of pests to new areas.

The fruit trees mealybug Rastrococcus invadens (Williams)

(Hemiptera: Pseudococcidae), is an important invasive insect pest

that causes severe damage to several fruit trees, including mango,

Mangifera indica L (Anacardiaceae) (Agounké et al., 1988). It is a

polyphagous pest attacking over forty-five plant species in twenty-

two families including economically important cultivated crops like

mango and Citrus, Citrus spp. (Rutaceae) (Agounké et al., 1988). R.

invadens is native to Southern Asia (Bokonon-Ganta and

Neuenschwander, 1995), but currently, it is distributed in over 27

countries in Asia, Africa, and French Guiana in Southern America

(CABI, 2022). Out of its native range, R. invadens invaded West

Africa in the 1980s, posing a serious threat to mango production in

the region (Narasimham and Chacko, 1988; Agricola et al., 1989). It

was reported in Togo, Benin, Ghana, Nigeria, Burkina Faso, Côte

d’Ivoire, Senegal, and Sierra Leone (Narasimham and Chacko,

1988). However, due to the classical biological control

programme that was undertaken against this pest in West Africa

(Agricola et al., 1989; Neuenschwander et al., 1994; Mohamed et al.,

2022), the population abundance of R. invadens and mango losses

caused by this pest has substantially reduced. Despite the impressive

impact of the imported parasitoids against the pest, R. invadens

continued to spread further to Central Africa region where it was

reported on mango in the Democratic Republic of Congo, Republic

of Congo (Matokot et al., 1992) and Gabon (Boussienguet and

Herren, 1992). Recently, R. invadens was detected in East Africa

specifically in Rwanda (IPPC, 2019) and Burundi (IPPC, 2022).

This indicates that the pest is expanding its geographical range

toward new areas and climate change might increase the infestation

risk and severity of R. invadens in the future. Yet, no studies have
02
been conducted to predict its potential range expansion under

varying climate change scenarios. Control and mitigation

strategies based on the ecological traits of R. invadens are also

urgently needed to minimize the risk.

Infestation of R. invadens causes a serious threat to small-scale

farmers, especially in regions where fruits such as mango and citrus

are the most available crops for income generation and livelihood

improvement (Pitan et al., 2002). Females and nymphs feed on

leaves and fruit leading to severe damage (Pitan et al., 2002; Nébié

et al., 2016). Feeding damage can be categorised into two types: -

firstly, sap-sucking can lead to shrivelling and dryness of the

affected inflorescences, leaves, and twigs (Fall et al., 2017b), with

severe infestation and feeding affecting fruit set and leading to

dropping of fruit, hence yield reduction. Secondly, R. invadens

produces honeydew that causes the growth of sooty mould on the

branches, leaves and fruits. This affects the photosynthetic activity

of the plant resulting in yield reduction (Lanjar et al., 2015; Fall

et al., 2017b). In addition, the growth of sooty mould on fruits

reduces the potential export to foreign markets, hence a lower profit

margin (Pitan et al., 2002).

The environmental variables such as temperature, precipitation

and humidity are the primary factors that influence the survival,

geographical distribution, seasonal variation and population

dynamics of R. invadens (Nébié et al., 2016; Fall et al., 2017b). As

temperature increases, the geographical distribution of several

insect species is anticipated to shift from the current scenario as a

result of global warming (Bale et al., 2002; Azrag et al., 2018) and R.

invadens is no exception and could expand its geographical

distribution and invade new areas in the future as already

reported in East Africa. Species distribution models like maxent,

GLMs, and random forest are powerful tools that have been

previously utilised to predict the habitat of several insect species

(Merow et al., 2014; Norberg et al., 2019; Valavi et al., 2022). These

models use the correlation method to correlate the presence of the

species to the climatic conditions where the species is found to

calculate the probability of occurrence. They use statistical and

machine learning algorithms to predict the suitable habitat for the

species to establish and survive (Merow et al., 2014). Therefore,

ecological niche models enable researchers to evaluate the

consequence of varying climates on distribution and spread of the

species, to guide decision-making. However, each modelling tool

has a certain level of uncertainty, and this results in different

outputs for the same dataset when different models are used for

the prediction (Norberg et al., 2019; Valavi et al., 2022). To

overcome the issue of uncertainty, joining single models in an
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ensemble has been introduced to maximize the prediction accuracy

(Capinha et al., 2011). The advantage of an ensembled model does

not only improve the accuracy and performance, but also reduces

the overfitting and underfitting by balancing the trade-off between

bias and variance, using different subsets and features of the data.

Many studies have shown that climate change will directly

impact the geographical distribution, abundance, and outbreak of

many insect species (Azrag et al., 2018; Aidoo et al., 2022a; Aidoo

et al., 2022b). This might increase the extent of crop losses, leading

to food security issues, especially in developing countries. The

recent invasion of R. invadens in East Africa (IPPC, 2019; IPPC,

2022), and French Guiana in Southern America (Germain et al.,

2015), suggests that the pest might expand its geographical range

toward new areas due to temperature rise, causing a serious impact

on mango production. This highlights the urgent need of predicting

the potential distribution and suitable habitat for this pest to guide

for monitoring and surveillance of future invasion pathways to new

areas. However, the effects of climate change on the distribution of

R. invadens have never been predicted at the local, regional or global

scale. In addition, the environmental predictors that drive the

geographical distribution of R. invadens are still unknown. In this

regard, our study aimed to i) predict the potential distribution

(habitat suitability) of R. invadens under different climate change

scenarios using environmental variables and four ecological niche

models, ii) project the output of the four algorithms in a single layer

using ensemble projection method to maximize the prediction

accuracy of R. invadens occurrence.
2 Methodology

2.1 Occurrence datasets

The occurrence records of R. invadens were gathered from the

Global Biodiversity Information Facility (GBIF https://

www.gbif.org/) (GBIF, 2022) and published literature (Bokonon-

Ganta and Neuenschwander, 1995; Bokonon-ganta et al., 2002;

Pitan et al., 2002; Hala et al., 2004; Pitan, 2008; Nébié et al., 2016;

Fall et al., 2017a; Nebie et al., 2018; Fall et al., 2021). These articles
Frontiers in Ecology and Evolution 03
contained R. invadens occurrence records and they were obtained

by a comprehensive literature search in Science Direct, Web of

Science Google Scholar, and PubMed. Although R. invadens is

present in Ghana, Burkina Faso, Burundi, Rwanda, and Uganda as

well as some countries in South-East Asia (CABI, 2022), our search

did not result in accurate georeferenced points that could be used

for modelling (Figure 1). In other words, the exact geographical

locations where the pest has been found are unknown in these

countries. As a result, these countries were excluded from the

analysis. Overall, 204 records were obtained from GBIF and

literature searches. These records were filtered using Excel and

spThin R package to remove the duplicated records as well as the

records within 5 km2 to reduce the spatial autocorrelation (Boria

et al., 2014). This filtering reduced the number of occurrence

records to 166 which were utilized in predicting the suitable

habitat of R. invadens (Figure 1).
2.2 Environmental variables

A total of 19 environmental predictors were gathered from

Worldclim database and then used to model the habitat suitability

of R. invadens (Table 1). These environmental variables are

generated from temperature and precipitation, and they have

been intensively utilized to predict the habitats suitability of many

insect species (Biber-Freudenberger et al., 2016; Tepa-yotto et al.,

2021; Aidoo et al., 2022b; Azrag et al., 2022). In this study, we used

interpolated historical data for the years 1970-2000 to project the

suitable habitat for R. invadens establishment in the current

scenario (Hijmans et al., 2005). For future scenarios (2050s and

2070s), we used environmental variables simulated by the Hadley

Centre Global Environmental Model version 2-Earth System

(HADGEM2-ES) of two Shared Socioeconomic Pathways

scenarios, SSP2-4.5 and SSP5-8.5 (previously known as

Representative Concentration Pathways scenarios, RCP4.5 and

RCP8.5) (Collins et al., 2011). We used the SSP2-4.5 climate

change scenario because it is considered to be the moderate

greenhouse gas emissions scenario that stabilises the emissions by

utilizing various technologies and mitigation measures (Fujino
FIGURE 1

Occurrence records used to predict the habitat suitability of R.invadens.
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et al., 2006). The radiative force of SSP2-4.5 is 4.5 Watts for each

square meter (W/m2), while the emission of carbon dioxide (CO2)

for this scenario is 538 parts per million (ppm) (Riahi et al., 2011).

In addition, we used the SSP5-8.5 climate change scenario because it

is an extreme emission scenario with an increase in greenhouse gas

emissions and temperature over time. This scenario has a maximum

CO2 emission of 936 ppm and a radiative force of 8.5 W/m2 (Riahi

et al., 2011).
2.3 Variable selection for the modelling

Two selection criteria viz., variance inflation factor (VIF) and

Pearson correlation were used to select uncorrelated predictors for

modelling the suitable habitat of R. invadens. This is because the

correlated predictor variables affect the model performance and

sometimes lead to overfitting. The VIF assess whether the variance

is inflated due to multicollinearity that exists between the

predictors. Variables that have VIF higher than 10 indicate that

these variables have multicollinearity thus they were removed when

the model was fitted. In contrast, Pearson correlation is also one of

the methods used to evaluate the multicollinearity amongst the

predictor variables based on the correlation coefficient |r|. The

variables that have |r|≥ 0.7 indicate high correlation (Figure 2)

and therefore they were eliminated from the model fitting. Both

selection methods produced 9 independent variables (Figure 2;
Frontiers in Ecology and Evolution 04
Table 1), which were utilized in modelling the habitat suitability

of R. invadens.
2.4 Modelling framework

We used “sdm” package in R software (Naimi and Araújo,

2016) to predict the habitat suitability of R. invadens. This package

employs object-oriented, repeatable, and extendable techniques to

integrate several ecological niche models on a single platform

(Naimi and Araújo, 2016). There are 18 ecological niche and

machine learning algorithms embedded in “sdm” package that

can be used to predict the habitat suitability of the species. This

package provides a standardized and unified structure for handling

species distribution data and modelling techniques (e.g. a unified

interface is used to fit different models offered by different

packages). Nevertheless, model parameterization can influence the

prediction output of the species’ occurrence. The parameterization

usually varies form one algorithm to another, and they are chosen

depending on the species attributes such as thermal limits,

biological interpretation of the niche and addressing issues related

to small sample size (Merow et al., 2013). Although these settings

improve the prediction accuracy, they sometimes lead to overfitting

in predicting the suitable habitat for the species’ occurrence

(Radosavljevic and Anderson, 2014). Therefore, we used the

default modelling parameters for each method as defined in the
TABLE 1 Environmental predictors used for predicting the habitat suitability of R. invadens.

Environmental variables Abbreviation/Unit Variance Inflation Factor

Annual mean temperature bio1 (°C) 238.9

†Mean diurnal range (mean of monthly (max temp - min temp)) bio2 (°C) 2.62

Isothermality (Bio2/Bio7) (× 100) bio3 (°C) 3.64

Temperature seasonality (standard deviation ×100) bio4 (°C) 15.75

Max temperature of the warmest month bio5 (°C) 21.12

Min temperature of the coldest month bio6 (°C) 18.43

Temperature annual range (Bio 5 - Bio 6) bio7 (°C) 25.02

The mean temperature of the wettest quarter bio8 (°C) 8.44

The mean temperature of the driest quarter bio9 (°C) 7.84

The mean temperature of the warmest quarter bio10 (°C) 242.4

The mean temperature of the coldest quarter bio11 (°C) 57.95

Annual precipitation bio12 (mm) 97.22

Precipitation of the wettest month bio13 (mm) 4.05

Precipitation of driest month bio14 (mm) 1.98

Precipitation seasonality (coefficient of variation) bio15 (mm) 2.54

Precipitation of the wettest quarter bio16 (mm) 163.6

Precipitation of the driest quarter bio17 (mm) 178.4

Precipitation of the warmest quarter bio18 (mm) 3.71

Precipitation of the coldest quarter bio19 (mm) 3.06
†The variables in bold text are those that were selected based on Pearson correlation coefficients and variance inflation factor for predicting the suitability of R. invadens.
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“sdm” modelling platform (Naimi and Araújo, 2016). We used the

standard default settings for all models to enable us to compare the

output of the four models and avoid bias and overfitting of

parameterization settings. Because we used presence-only data, we

first employed the “sdmData” function in “sdm” package to

randomly generate 1000 pseudo-absence records for R. invadens

throughout the study area for each model run (maximum entropy

(maxent) random forest (RF), boosted regression trees (BRT), and

support vector machines (SVM). These background data were used

against 166 presence-only records to predict the habitat suitability

of R. invadens. Then, we used “sdm” and “predict” functions,

respectively to calibrate the model and predict the suitable areas

for R. invadens establishment. We employed four machine learning

algorithms for the predictions viz., maxent RF, BRT, and SVM. A

summary of these models’ packages used by “sdm” and their

execution syntax are given in Table 2. Maxent is a well-known

tool that has been intensively utilized for projecting the habitat of

many species worldwide (Phillips and Dudıḱ, 2008; Merow et al.,
Frontiers in Ecology and Evolution 05
2013). It correlates the species occurrence to the predictor variables

to determine the probabilities of the species establishment (Phillips

and Dudıḱ, 2008; Elith et al., 2011). FR is a machine learning

algorithm which has been intensively employed in species

distribution modelling and land use/land cover mapping (Liaw

andWiener, 2002; Pal, 2005; Shabani et al., 2016). The prediction of

RF is based on the highest votes of the class that generate using

decision trees in a forest (Pal, 2005). The BRT is one of the most

popular models for predicting the distribution and habitat

suitability of the species (Elith et al., 2008; Yu et al., 2020). It

combines both decision tree algorithms and boosting methods to

predict species occurrence (Elith et al., 2008; Yu et al., 2020). The

SVM algorithm predicts the divergence of class categories using

hyperplane (Karatzoglou et al., 2004; Vapnik, 2006). The selection

of these algorithms was based on the fact that they are widely used

in complex modelling processes and provide predictions with high

accuracy (Elith et al., 2008; Merow et al., 2013; Shabani et al., 2016).

In this modelling framework, we processed results for each model
TABLE 2 Models, their packages and R codes utilized by “sdm” to project the habitat suitability R. invadens.

Algorithm R Package used R code in “sdm” package Reference

Maximum entropy dismo “maxent” Phillips et al. (2006)

Random forest randomForest “rf” Liaw and Wiener (2002)

Boosted regression trees gbm “brt” Elith et al. (2008)

Support vector machines Kernlab “svm” Karatzoglou et al. (2004)
FIGURE 2

Collinearity matrix for environmental predictors utilized to model the habitat suitability of R. invadens. Darker shaded red and blue circles reflect high
multicollinearity between the predictors, while light shades show low multicollinearity between the predictor variables.
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independently using one run. However, due to the fact that different

models have some level of uncertainty and provide different

outcomes for the same dataset, we combined the results of

the four models using an “ensemble” function that is embedded in

the “sdm” package to maximize the prediction accuracy using the

weighted average of each pixel.
2.5 Models’ validation and
accuracy assessment

We employed 10-fold cross-validation (CV) technique to test

and validate the models and assess their prediction accuracy. The

CV procedure provides more robust results because each data point

in the dataset is tested only once, and thereafter these points are

utilized to train the dataset k-1 times. Therefore, CV reduces the

selection bias and prevents model overfitting, hence providing an

accurate prediction. In this study, we used four metrics namely the

area under the curve (AUC), true skill statistic (TSS), correlation

(COR), and explained deviance between the calibrated and

evaluated values to assess the performance and accuracy of each

model (Allouche et al., 2006). Overall, AUC ranges from 0 to 1, with

value 1 proving the maximum accuracy and performance of the

algorithm in predicting the habitat suitability of the species. In

contrast, TSS range between −1 and +1, with the value +1

demonstrating the highest agreement among the predicted and

observed values of the species establishment. Generally, models

with AUC and TSS of ≥ 0.7 demonstrate high predictive power and

performance and therefore accurately predict the potential

distribution and habitat suitability of the species (Tsoar et al.,

2007). The correlation (COR) is a discrimination metric that

measures the relationship between the model’s predictions for the

presence data (test data) versus the absence data (background data)

(Elith and Graham, 2009). It has values between 0 and 1, with

higher values (close to 1) indicating huge differences in predicting

the presence and absence records, hence large differences in the

habitat suitability. The deviance expresses the magnitude of the

deviations of the fitted values from the observations. It measures

whether the model reliably predicted the occurrence records (Elith

and Graham, 2009). The small values of deviance indicate that there

is a low unexplained variance in the dataset, hence good

model performance.
3 Results

3.1 Variables selection and model accuracy

Though 19 environmental predictors were gathered for

modelling, only 9 were appropriate for predicting the potential

distribution of R. invadens (Table 1). The eligible environmental

variables selected based on VIF, and correlation metrics were bio2,

bio3, bio8, bio9, bio13, bio14, bio15, bio18 and bio19 (Table 1;

Figure 2). These environmental predictors had VIF lower than 10

and correlation coefficient |r|< 0.7 (Figure 2; Table 1), indicating

their suitability in the modelling of the habitat suitability of R.
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invadens. The receiver operating curves (ROC) for 10-fold

replication (light blue lines) in each fitted model showed that the

outcome of the replication was relatively similar in their predictions

(Figure 3). The four algorithms accurately projected the habitat

suitability of R. invadens with high test AUC ranging from 0.96 to

0.99, TSS of 0.88 to 0.95, COR ≥ 0.81 and deviance between 0.14

and 0.3 (Table 3). Among the four models, the random forest

algorithm had the highest performance (AUC = 0.99, TSS = 0.95,

COR =0.91 and deviance = 0.14) in predicting the occurrence of R.

invadens, followed by maxent (AUC = 0.97, TSS = 0.90, COR = 0.81

and deviance = 0.22) (Table 3).
3.2 Variable importance

The significance of the 9 environmental predictors in predicting

the habitat suitability of R. invadens for each model is illustrated in

Figure 4. Amongst the 9 predictors, precipitation of the wettest

month (bio13) was the most relevant variable that contributed to

the performance of the four algorithms (Figure 4). This

environmental variable had the highest influence in projecting the

habitat of R. invadens with a contribution of 29.1%, 30.3%, 43.2%

and 62.6% for RF, SVM, maxent and BRT, respectively. The

environmental variables bio9, bio13, bio14, and bio15 were the

most important in modelling the habitat of R. invadens using

maxent (Figure 4A). Similarly, the RF algorithm selected bio3,

bio13, bio14, and bio15 as the most environmental predictors that

contributed to predicting the habitat suitability of R. invadens

(Figure 4B). The bio13, bio14, bio15 and bio19 were selected by

BRT as the most crucial environmental variables in predicting the

occurrence of R. invadens (Figure 4C). For SVM, all environmental

variables relatively contributed to the model performance except

bio14 and bio19 which had the lowest contribution amongst the 9

predictors that were eligible for modelling (Figure 4D).
3.3 Predicting the habitat suitability of R.
invadens under current climatic conditions

Under the current climatic scenario, the predicted habitat

suitability of R. invadens varied among the four models

(Figure 5). Countries in East, Central and West African regions

were projected by the maxent algorithm with high suitability for R.

invadens occurrence under current climatic conditions (Figure 5A).

Similarly, maxent predicted high suitability areas for R. invadens to

thrive in Thailand, India, Vietnam, Bangladesh, Laos, Myanmar,

and Cambodia (Figure 5A). These areas were also projected by the

RF algorithm to be appropriate for R. invadens establishment

(Figure 5B). However, the predicted suitable areas by RF were

lower than those predicted by maxent. In contrast, the most

predicted areas by maxent across the world were projected by

BRT to be either low or medium suitable under current climatic

conditions (Figure 5C). The prediction based on the SVM algorithm

projected high suitability for R. invadens occurrence in Ethiopia,

South Sudan, Cameroon, Nigeria, Côte d’Ivoire, Ghana, Togo,

Benin, India, Vietnam, Thailand, Bangladesh, Myanmar, Laos,
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Cambodia and some parts of Brazil (Figure 5D). Overall, the

maxent algorithm gave the best prediction for the ecological niche

of R. invadens compared to the other three algorithms.
3.4 Predicting the habitat suitability of R.
invadens under future climatic scenarios

The future projection for both SSP2-4.5 and SSP5-8.5 scenarios

for the years 2050s revealed that the suitable habitat of R. invadens
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establishment would increase in the future with a slightly higher risk

projected for the SSP2.4.5 scenario (Figure 6), compared to SSP5-

8.5 scenarios (Figure 7). The highly suitable areas predicted by

maxent were in East, Central, West and some regions in Southern

Africa, with an increase in the risk under both SSP2-4.5 and SSP5-

8.5 scenarios (Figures 6A, 7A). The same is true for India, Laos,

Bangladesh, Vietnam, Myanmar, Thailand, Cambodia and Brazil,

Venezuela and Mexico (Figures 6A, 7A). The RF algorithm predicts

range expansion in suitable habitats by 2050s, with most areas

projected in Ethiopia, South Sudan, Cameroon, Nigeria, Togo,
TABLE 3 The accuracy assessment of the four ecological niche models used to predict the habitat suitably of R. invadens.

Model name AUC TSS COR Deviance

Maxent 0.97 0.90 0.81 0.22

Random forest (RF) 0.99 0.95 0.91 0.14

Boosted Regression Trees (BRT) 0.96 0.88 0.82 0.3

Support Vector Machines (SVM) 0.97 0.89 0.74 0.27
fr
The accuracy evaluation metrics are: Area Under the Curve (AUC), true skill statistic (TSS), correlation (COR) and deviance.
D

A B

C

FIGURE 3

The area under the curve (AUC) of the receiver operating characteristic (ROC), and the true skill statistic (TSS) of the four machine learning
algorithms used to project the suitable habitat of R. invadens, with (A) maxent; (B) RF; (C) BRT; and (D) SVM. The red line describes the average AUC
of the training dataset, the dark blue line is the average AUC for the testing dataset, and the light blue lines in each model are representing the 10-
fold replication of the training dataset.
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Ghana, Côte d’Ivoire, and Benin (Figures 6B, 7B). Although BRT

projected some low suitable areas in China which were not

predicted by other models, the predicted climate suitability for R.

invadens occurrence was classified as low or medium under both

SSP2-4.5 and SSP5-8.5 scenarios (Figures 6C, 7C). However, most

areas predicted by SVM for the years 2050s fall in the category of

highly suitable which agreed to some extent with maxent

prediction, regardless of climatic scenario (Figures 6D, 7D).
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Though these models produced different results, their future

prediction for the year 2070s under both SSP2-4.5 and SSP5-8.5

showed that the invasion risk by R. invadens would highly increase

as its suitable habitat for the establishment will increase under

future climatic scenarios (Figures 8A-D, 9A-D). The models’

projection showed the range expansion of R. invadens in sub-

Saharan Africa, China and Australia by 2070s (Figures 8A-D, 9A-

D). However, the risk of R. invadens in 2070s is projected to be
FIGURE 5

The potential distribution (habitat suitability) of R. invadens under the current climate scenario projected using four machine learning algorithms
(A) Maxent; (B) RF; (C) BRT; and (D) SVM.
FIGURE 4

The contribution of the selected environmental predictors for modelling the potential distribution of R.invadens, with (A) maxent; (B) RF; (C) BRT,
and (D) SVM. The bars indicate 95% confidence interval.
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slightly higher under the SSP2-4.5 scenario compared to the SSP5-

8.5 scenario (Figures 8A-D, 9A-D).
3.5 Ensembling the prediction of R.
invadens occurrence under different
scenarios

The ensemble prediction combined the results of the four

models using a weighted average of each pixel to project the

suitable areas for R. invadens occurrence under current and

future climate change scenarios (SSP2-4.5 and SSP5-8.5)

(Figures 10A-E). Overall, the ensemble model predicted the

suitable habitat for R. invadens occurrence with high performance
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and accuracy (AUC = 0.96, TSS = 0.85, COR = 0.84 and deviance =

0.22). Under current climatic conditions, most areas in Africa are

predicted to be either low or medium suitable for R. invadens

establishment except Ethiopia, Nigeria, Benin, Côte d’Ivoire, Togo,

and Ghana, where the risk is projected to be higher (Figure 10A).

However, under the future scenarios (SSP2-4.5 and SSP5-8.5), an

expansion in highly suitable areas is expected, especially in India,

Myanmar, Bangladesh, Thailand, Laos, Vietnam, Cambodia and

Brazil, Venezuela, and Mexico (Figures 10B-E). Similarly, in Africa,

the risk is expected to be higher in Ethiopia, South Sudan,

Cameroon, Nigeria, Mozambique, Côte d’Ivoire, Benin, Ghana,

Togo, Madagascar, Central Africa Republic, Rwanda, and the

Democratic Republic of the Congo (Figures 10B-E). Overall, the

suitable areas in the future are predicted to be higher for the year
D
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C

FIGURE 7

The potential distribution (habitat suitability) of R. invadens under the future climate change scenario SSP5-8.5 for the year 2050s predicted using
four machine learning algorithms with (A) maxent; (B) RF; (C) BRT; and (D) SVM.
D

A B

C

FIGURE 6

The potential distribution (habitat suitability) of R. invadens under the future clinate change SSP2-4.5 scenario for the year 2050s predicted using
four machine learning algorithms with (A) maxent; (B) RF; (C) BRT; and (D) SVM.
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2070s (Figures 10D, E), compared to 2050s (Figures 10B, C),

indicating that the changing climate may increase the invasion

risk by R. invadens. The projection also showed that the risk of R.

invadens would slightly be higher under SSP2-4.5 scenario

compared to SSP5-8.5 scenario, regardless of the year of

projection (Figures 10B-E)
4 Discussion

Rastrococcus invadens is an invasive pest which causes massive

economic losses to various fruit trees in Africa and Asia. Recently,

this pest has expanded its geographical range to new areas in East

Africa (IPPC, 2019; IPPC, 2022) and French Guiana in Southern
Frontiers in Ecology and Evolution 10
America (Germain et al., 2015). This indicates that R. invadensmay

continue to spread further in the future causing huge damage to

fruit crops. Although it is an important pest in the horticultural

industry, the potential distribution under current and future climate

change scenarios is largely unknown to prevent the invasion of this

R. invadens to new areas. Therefore, in the present study, we

projected the suitable habitat of R. invadens worldwide using four

machine learning algorithms and their ensemble (maxent, RF, BRT

and SVM) under two climate change scenarios (SSP2-4.5 and SSP5-

8.5). These models were developed by utilizing the same occurrence

dataset of R. invadens using the method developed by Naimi and

Araújo, 2016 and Araújo et al., 2019. Our results revealed a high

prediction accuracy by the four algorithms with AUC ranging from

0.96 to 0.99, TSS ranging between 0.88 and 0.95, COR ≥ 0.74 and
D

A B

C

FIGURE 9

The potential distribution (habitat suitability) of R. invadens under future climate change scenario SSP5-8.5 for the year 2070s is predicted using four
machine learning algorithms with (A) maxent; (B) RF; (C) BRT; and (D) SVM.
D

A B

C

FIGURE 8

The potential distribution (habitat suitability) of R. invadens under future climate change scenario SSP2-4.5 for the year 2070s is predicted using four
machine learning algorithms with (A) maxent; (B) RF; (C) BRT; and (D) SVM.
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deviance ≤ 0.3. These findings indicate that the four algorithms

projected the habitat of R. invadens occurrence with high predictive

power and accuracy (Elith et al., 2010).

The predicted habitat suitability results of the four algorithms

were relatively different though the same dataset was used for

modelling. This could be attributed to the fact that different

algorithms employ different methodologies for predicting the

habitat suitability of the species, and therefore, different outputs

are expected when various models are fitted to the same dataset

(Naimi and Araújo, 2016). Similar results were found in early

studies that employed different algorithms to project the potential

distribution of arthropods using the same dataset (i.e., Hao et al.,

2019; Guan et al., 2020; Azrag et al., 2022). Nonetheless, our results

showed that the maxent algorithm was the best among the four

models in projecting the suitable habitat of R. invadens confirming

its outstanding performance in predicting the potential distribution

of many species (Norberg et al., 2019; Valavi et al., 2022). However,

the results of Maxent, RF and SVM showed a huge overlap,

especially in West Africa and Asia, where R. invadens is known to

be well-established. We joined the results of the four models

together using an ensemble function to maximize the prediction

accuracy of R. invadens. Joining single models in an ensemble has

been recommended for habitat suitability modelling rather than

using an individual model (Capinha et al., 2011; Naimi and Araújo,

2016). This is due to the fact that the reliability of the individual
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model has some uncertainty and therefore this issue could be

resolved by utilizing several algorithms and their ensemble to

maximise the projection accuracy by averaging the weight of each

pixel in each model (Capinha et al., 2011; Naimi and Araújo, 2016).

Under the current climatic conditions, models’ predictions were

consistent with the current known distribution of R. invadens in

Togo, Côte d’Ivoire, Benin, Nigeria, Ghana, Burkina Faso, Sierra

Leone, and Senegal (Narasimham and Chacko, 1988), where our

models projected high suitable habitat for R. invadens

establishment. In Asia, Bangladesh, India, Laos, Myanmar,

Cambodia, Thailand, and Vietnam were projected by maxent, RF

and SVM to have highly suitable areas for R. invaden to thrive.

Furthermore, the individual models, as well as the ensemble

projection, showed medium to high suitable areas for R. invadens

in Brazil, Venezuela, Mexico, Ethiopia, South Sudan, Central Africa

Republic, Kenya, Tanzania, Rwanda, Burundi Malawi, Zambia,

Mozambique, and Madagascar. Since R. invadens has recently

been reported in Rwanda and Burundi (IPPC, 2019; IPPC, 2022),

it is posing a serious risk of invasion to the neighbouring countries

especially Tanzania and Uganda as well as the whole East African

region. The same is true for Southern America where the pest

currently exists in French Guiana (Germain et al., 2015), posing a

serious threat to Suriname and Brazil. The future prediction showed

that the invasion risk by R. invadens would increase especially in

sub-Saharan Africa and South America, regardless of the model
D
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FIGURE 10

The potential distribution (habitat suitability) of R. invadens projected using the ensemble of the four machine learning algorithms (Maxent, RF, BRT
and SVM) with (A) ensemble projection under the current climatic scenario; (B) ensemble projection for the future scenario SSP2-4.5 for the year
2050s; (C) ensemble projection for the future SSP5-8.5 scenario for the year 2050s; (D) ensemble projection for the future SSP2-4.5 scenario for the
year 2070s and (E) ensemble projection for the future SSP5-8.5 scenario for theyear2070s.
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used for the prediction. Models’ projections showed a range

expansion of the pest in West and East African countries where

the climate will be more appropriate than the current scenario,

especially under the SSP2-4.5 scenario. Similarly, an increase in

climate suitability is projected in South America which raises the

alert of invasion risk of this pest in South America. This indicates

that there is an urgent need for strong phytosanitary management

and quarantine restrictions to minimize the invasion risk of R.

invadens in countries where the pest has not yet to invade.

In the current study, the precipitation of the wettest month

(bio13) and the precipitation of the driest month (bio14) were the

most crucial bioclimatic factor that explained the occurrence of R.

invadens using the four ecological niche models. Indeed, some

studies from West Africa have shown that the amount of rainfall

significantly affects the population abundance of R. invadens (Hala

et al., 2011; Fall et al., 2017a). Rainfall could positively impact the

population abundance of R. invadens at the beginning of the rainfall

due to the vegetative growth, particularly the new leaves that have

high nutrients for the pest to develop (Hala et al., 2011). However,

the frequent and heavy rainfall washes R. invadens from the plant

leaves and this results in a decline in the population abundance

(Hala et al., 2011; Fall et al., 2017b). Apart from the precipitation,

temperature variables, especially isothermality (bio3) and the mean

temperature of the driest quarter (bio9) also relatively contributed

to the occurrence of R. invadens. In fact, previous studies

demonstrated that temperature is the most crucial environmental

variable that affects insect developmental time, survivorship and

reproduction (Ahmed et al., 2016; Azrag et al., 2018). To this end,

our results clearly indicate that the change in temperature and the

amount of precipitation are vital in evaluating the habitat suitability

and establishment of R. invadens.

The change in climate especially temperature increase and

change in precipitation has accelerated the spread of invasive

species (Aidoo et al., 2022c), and R. invadens is no exception as

the current study shows an increase in suitable areas under future

climatic conditions. Indeed, the change in environmental variables

significantly impacts the geographical distribution, reproductive

success, abundance, establishment, and survival of insect species

(Ahmed et al., 2016; Azrag et al., 2018). Therefore, climate change

might have a considerable impact on the distribution and spread of

R. invadens toward new areas and this might lead to huge crop

losses. In this regard, there is an urgent need to develop effective

phytosanitary measures and efficient control strategies to prevent

future spread and curb the current invasion. Identifying the areas

that are at high risk of R. invadens invasion is critical for

surveillance, monitoring and developing management strategies.

In this regard, our prediction will be useful for national plant

protection and regulatory organizations, especially in uninvaded

countries to develop pest risk analysis areas to prevent the invasion

of R. invadens and safeguard future spread.

Even though we employed four machine learning algorithms

and their ensembled weighted averages to project the potential

distribution and habitat suitability of R. invadens, our study has

certain limitations. In this study, we only utilized environmental

variables as predictors to project the suitable habitat for R. invadens

establishment. There are some important biotic factors like natural
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enemies such as parasitoids and predators and host plants that

determine the potential distribution and establishment of the pest,

which were not considered in this study. In addition, were did not

incorporate topographic variables like elevation, aspect and slope in

our model. These factors might influence the dispersal capacity of

insects. Nevertheless, predicting the potential distribution and

suitable habitat of the pest using environmental variables provides

relevant information on the ecological niche of the insect species,

hence helping in decision-making and developing appropriate

management measures against the pest (Biber-Freudenberger

et al., 2016; Tepa-yotto et al., 2021; Azrag et al., 2022). Another

limitation of our study is that the georeferenced points were

obtained only from West Africa and Asia where the pest is

currently known to occur. There are some unconfirmed reports of

R. invadens in some countries in South-East Asia, where our models

showed unsuitable areas of this pest. Adding more georeferenced

records from the newly invaded areas in the future could certainly

improve the prediction. Nonetheless, our results provide an

important overview and raise an alert on the invasion risk of

R. invadens.

In conclusion, this is the first study that predicted the habitat

suitability of R. invadens occurrence worldwide. We used four

machine learning algorithms (maxent, RF, BRT and SVM) to

predict the potential distribution of R. invadens. The evaluation

metrics including AUC, TSS, COR and deviance were excellent for

the four models, suggesting that these models well predicted the

habitat suitability of R. invadens. However, the maxent algorithm

was the best among the four models in projecting the suitable

habitat of R. invadens confirming its outstanding performance in

predicting the potential distribution of many species. Due to the fact

that ecological niche models have some levels of uncertainty, we

combined the results of the four models in ensembled layers to

maximize the prediction accuracy. Our findings could serve as an

early warning tool and a guide that could inform policy formulation

and also guide to prevent further spread and invasion of this pest to

new areas. The results also could help in developing an effective

management strategy against R. invadens adapted to specific

agroecological zones.
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Hala, N., Bajougué, D., Achille, N. A., Félix, C., Alphonse, N. Y., andMamadou, D. (2011).
Population dynamics of the mango mealybug, Rastrococcus invadensWilliams (Homoptera:
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Phillips, S. J., and Dudıḱ, M. (2008). Modeling of species distributions with Maxent:
new extensions and a comprehensive evaluation. Ecograp. (Cop.). 31, 161–175.
doi: 10.1111/j.0906-7590.2008.5203.x

Pitan, O.O. R. (2008). Variations in the population of themangomealybugRastrococcus
invadens (Homoptera: Pseudococcidae), and its parasitism , in relation to smoke pollution.
Int. J. Trop. Insect Sci. 28, 119–125. doi: 10.1017/S174275840806757X

Pitan, O. O. R., Mwansat, G., Akinyemi, S. O. S., Adebayo, O. S., and Akinlosotu, T. A.
(2002). Effect of mangomealybug and sooty mould attack onmango and the impact of the
released Gyranusoidea tebygi Noyes on yield. Fruits 57, 105–113. doi: 10.1051/fruits

Radosavljevic, A., and Anderson, R. P. (2014). Making better Maxent models of
species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643.
doi: 10.1111/jbi.12227

Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., et al. (2011). RCP 8.5-A
scenario of comparatively high greenhouse gas emissions. Clim. Change 109, 33–57.
doi: 10.1007/s10584-011-0149-y

Shabani, F., Kumar, L., and Ahmadi, M. (2016). A comparison of absolute
performance of different correlative and mechanistic species distribution models in
an independent area. Ecol. Evol. 6, 5973–5986. doi: 10.1002/ece3.2332

Tabor, J. A., and Koch, J. B. (2021). Ensemble models predict invasive bee habitat
suitability will expand under future climate scenarios in hawai’i. Insects 12, 443.
doi: 10.3390/insects12050443

Tepa-yotto, G. T., Tonnang, H. E. Z., Goergen, G., Subramanian, S., Kimathi, E.,
Abdel-rahman, E. M., et al. (2021). Global habitat suitability of Spodoptera frugiperda
(JE Smith) (Lepidoptera, Noctuidae): key parasitoids considered for its biological
control. Insects 12, 273. doi: 10.3390/insects12040273

Tsoar, A., Allouche, O., Steinitz, O., Rotem, D., and Kadmon, R. (2007). A
comparative evaluation of presence- only methods for modelling species distribution.
Divers. Distrib. 13, 397–405. doi: 10.1111/j.1472-4642.2007.00346.x

Valavi, R., Guillera-Arroita, G., Lahoz-Monfor, J. J., and Elith, J. (2022). Predictive
performance of presence-only species distribution models: a benchmark study with
reproducible code. Ecol. Monogr. 92, e01486. doi: 10.1002/ecm.1486

Vapnik, V. (2006). Estimation of dependences based on empirical data (New York:
Springer Science & Business Media).

Yu, H., Cooper, A. R., and Infante, D. M. (2020). Improving species distribution
model predictive accuracy using species abundance: Application with boosted
regression trees. Ecol. Modell. 432, 109202. doi: 10.1016/j.ecolmodel.2020.109202
frontiersin.org

https://doi.org/10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI3-17
https://doi.org/10.11646/zootaxa.3905.3.11
https://doi.org/10.1016/j.ecoinf.2019.101024
https://doi.org/10.4314/aga.v16i3.1651
https://doi.org/10.1111/ddi.12892
https://doi.org/10.1002/joc.1276
https://www.ippc.int/en/countries/Rwanda/pestreports/2019/10/mango-mealybug-rastrococcus-invadens-williams/
https://www.ippc.int/en/countries/Rwanda/pestreports/2019/10/mango-mealybug-rastrococcus-invadens-williams/
https://www.ippc.int/en/countries/Rwanda/pestreports/2019/10/mango-mealybug-rastrococcus-invadens-williams/
https://www.ippc.int/fr/countries/Burundi/pestreports/2022/01/cochenille-farineuse-du-manguier/
https://www.ippc.int/fr/countries/Burundi/pestreports/2022/01/cochenille-farineuse-du-manguier/
https://doi.org/10.3390/d15020157
https://doi.org/10.18637/jss.v011.i09
https://doi.org/10.1007/BF02372981
https://doi.org/10.1111/ecog.00845
https://doi.org/10.1111/j.1600-0587.2013.07872.x
https://doi.org/10.1016/j.cois.2022.100945
https://doi.org/10.1111/ecog.01881
https://doi.org/10.1017/S000748530001556X
https://doi.org/10.4314/ijbcs.v12i6.21
https://doi.org/10.9734/AJEA/2016/24819
https://doi.org/10.9734/AJEA/2016/24819
https://doi.org/10.1007/bf00343337
https://doi.org/10.1002/ecm.1370
https://doi.org/10.1080/01431160412331269698
https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://doi.org/10.1111/j.0906-7590.2008.5203.x
https://doi.org/10.1017/S174275840806757X
https://doi.org/10.1051/fruits
https://doi.org/10.1111/jbi.12227
https://doi.org/10.1007/s10584-011-0149-y
https://doi.org/10.1002/ece3.2332
https://doi.org/10.3390/insects12050443
https://doi.org/10.3390/insects12040273
https://doi.org/10.1111/j.1472-4642.2007.00346.x
https://doi.org/10.1002/ecm.1486
https://doi.org/10.1016/j.ecolmodel.2020.109202
https://doi.org/10.3389/fevo.2023.1182370
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org

	Invasion risk by fruit trees mealybug Rastrococcus invadens (Williams) (Homoptera: Pseudococcidae) under climate warming
	1 Introduction
	2 Methodology
	2.1 Occurrence datasets
	2.2 Environmental variables
	2.3 Variable selection for the modelling
	2.4 Modelling framework
	2.5 Models’ validation and accuracy assessment

	3 Results
	3.1 Variables selection and model accuracy
	3.2 Variable importance
	3.3 Predicting the habitat suitability of R. invadens under current climatic conditions
	3.4 Predicting the habitat suitability of R. invadens under future climatic scenarios
	3.5 Ensembling the prediction of R. invadens occurrence under different scenarios

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	References


