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Location and tracking of 
environmental pollution sources 
under multi-UAV vision based on 
target motion model
Baohua Shen , Juan Jiang *, Daoguo Li  and Feng Qian 

Information Engineering College, Hangzhou Dianzi University, Hangzhou, Zhejiang, China

In computer vision, the detection and tracking of moving objects has become 
a hot topic today. The target tracking technology in this paper refers to the 
visual tracking of the ground moving target by the aircraft during the flight. 
Since both the aircraft and the target are moving, there are background 
and two motion vectors composed of the target and the background in the 
acquired image. Therefore, this paper proposed a research on the location 
and tracking of environmental pollution sources under multi-UAV vision 
based on the target motion model. This paper first introduced the UAV target 
tracking technology, and analyzed the development history and types of UAVs 
in detail. Then, based on the increasingly serious environmental pollution, this 
paper proposed to use UAV sensing technology to locate the pollution source. 
Finally, in the experimental part, this paper tested the UAV flight platform, and 
carried out the actual operation and positioning of the pollution source. The 
final experimental results showed that within 0 ~ 360 s, the attitude angle 
obtained by the gradient descent method had no divergence phenomenon, 
which could effectively reduce the error caused by the integration; the 
inclination angle deviation of the two groups of experimental equipment was 
within ±2.5°, the roll angle deviation was within ±3°, and the deviation angle 
was relatively large at some moments, but the average deviation was only 0.8°.
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1. Introduction

As one of the key technologies of UAV monitoring system, the recognition and tracking 
technology of moving targets is to obtain images of moving targets by visual means, and 
design algorithms to identify and track moving targets in real time, and estimate the 
position and trajectory of moving targets. It can be used as an important basis for UAVs 
to perform flight decisions. In recent years, China’s aviation industry has developed 
rapidly, and a large number of scientific researchers have invested in the aerospace field, 
which has rapidly improved the level of high-tech technologies such as flight control 
technology, sensor devices, and computer vision, and has developed rapidly in the civilian 
field. Especially in the fields of disaster relief aerial photography, map surveying and 
mapping, forest fire prevention, wire laying, modern agriculture, aerial monitoring and 
other fields, the development is rapid and the prospect is optimistic, and it has huge market 
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economic significance. With the continuous development of 
visualization technology, the secondary development of rotary-
wing UAV has reached a new level. Among them, the visual 
tracking of targets is an important direction for the development 
of UAVs. For example, when carrying out a ship landing task, the 
drone must be  able to recognize the symbols on the ship and 
complete the corresponding operation under certain conditions. 
It aims to optimize the attitude estimation algorithm and image 
processing algorithm, reduce the system operation time, and 
improve the real-time performance of target tracking in order to 
solve the problem of pollution sources.

The paper firstly introduced the target tracking technology of 
UAV, and analyzed the development and types of UAV in detail. 
Then, due to the increasingly serious environmental pollution, 
this paper proposed a method of using UAV detection technology 
to locate pollution sources, and in the experimental stage, the test 
was carried out, and the pollution source was practically operated. 
The innovation of this article is that the article not only studies 
UAV technology, but also analyzes its principle and sensing 
technology, so its experimental technical guidance is very 
rigorous. The data of the gyroscope, accelerometer and 
magnetometer are processed by the algorithm fusion, and the 
accurate estimation of the attitude angle is realized, and the 
reliability of the algorithm is verified by experiments.

2. Related work

The theoretical research of visual tracking algorithm has been 
going on for a long time, and the related applications have also been 
verified in practice. From traditional wireless communication systems 
and rescue operations to GNSS systems and drone tracking, the 
application of direction-of-arrival (DoA) technology has increased 
significantly in various fields. Oliveira M proposed a low-cost antenna 
array UAV tracking device for outdoor environments. The proposed 
solution was divided into hardware and software parts (Oliveira et al., 
2019). The focus of Ramamonjy et  al. (2017) was to develop a 
distributed network of compact microphone arrays for unmanned 
aerial vehicle (UAV) detection and tracking. UAVs can perform 
various flight tasks with different loads, while always guaranteeing the 
best flight performance. Li S developed an integral reinforcement 
learning algorithm for UAVs, so that it could learn the optimal control 
strategy online (Li et al., 2019). Target tracking is done by placing it in 
the center of the image, with the drone constantly adjusting to keep 
the target properly framed. To start tracking, Bnic M V proposed that 
the human operator must put the target he wishes to track in a frame. 
The functionality of this system was well suited for remote monitoring 
of targets (Bnic et al., 2019). However, there is no research on the 
pollution source localization algorithm of UAV, so its practical value 
cannot be realized.

The risk of pollution from industrial waste discharge or accidental 
leakage during transportation poses a considerable threat to the safety 
of rivers. The ability to quickly identify pollution sources is extremely 
important to achieve emergency disposal of pollutants. Yutao W U 
used the Reynolds equation and turbulence model to simulate the 
wake concentration field of a cylindrical hydraulic structure with 
different pollution source locations (upstream and downstream of the 

structure; Yutao et al., 2017). Wang J presented a new method for 
point source identification of sudden water pollution in rivers, aiming 
to determine where (source location), when (release time) and how 
much pollutants (release quality) were introduced into the river 
(Wang et al., 2018). Amiri S proposed conditions and rules for the 
arrangement (number and location) of pollutant concentration 
measurement points under various conditions. The reasonable 
arrangement of measurement points was of great significance because 
it solved the non-uniqueness of the inverse model. The most important 
factor affecting the arrangement of measurement points was the flow 
pattern (Amiri et al., 2019). They both introduced pollution source 
location technology and drone tracking technology, but did not 
combine the two.

3. UAV pollution source localization 
algorithm

3.1. UAV tracking technology

An unmanned aerial vehicle (UAV) is a reusable unmanned aerial 
vehicle that is automatically controlled by an onboard processor and 
remotely controlled on the ground (Chaoraingern et  al., 2020; 
Sugiarto, 2020). After more than 100 years of development in UAV 
technology, its achievements are obvious to all: from the initial 
military use to the current civilian and civilian use; from remote 
control before to autonomous driving now. According to its flight 
mechanism, UAVs can be divided into two types: fixed-wing and 
rotary-wing (Lee et al., 2018).

Figures 1, 2 show some representative fixed wings and rotors. 
Fixed-wing unmanned aircraft is a combination of wings and fuselage, 
with flight performance, suitable for long-range cruise or long-range 
flight; rotor UAVs are powered by high-speed rotating blades, and 
have the characteristics of good maneuverability, small size, easy 
portability, and vertical landing, and are suitable for medium and 
short-term missions (Cervone et al., 2017).

At present, UAV navigation systems mainly include: Inertial 
Navigation System (INS), Global Positioning System (GPS), INS/
GPS integrated navigation. Visual navigation is to obtain 
navigation information through images to achieve interaction 
with the surrounding environment. This method mainly detects, 
extracts, identifies, and tracks the target, and transmits the 
relative coordinates, position, speed and other motion 
information of the target to the flight controller to realize the 
corresponding control (Bazan et al., 2017; García-Segura et al., 
2017). Since images are the most important external information 
obtained by humans, the use of vision for secondary development 
has become a hot spot in current UAV research. Due to the small 
size and low power consumption of the miniature camera, it is 
suitable for quadrotor drones. UAVs can be  used to obtain 
important information on the ground, such as images, including 
still pictures and videos, from which timely and accurate 
battlefield information and precise positioning information can 
be obtained to capture strategic strike targets and complete tasks 
such as strike effect assessment (Hua, 2020; Zeng et al., 2022). 
Therefore, target tracking technology is a new hot spot in the 
development of UAVs.
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This project originated from the Seventh Aerial Robotics 
Competition (Giovanis et al., 2017). The task is to track moving 
objects on the ground through flying robots and expel them from 
specific areas. The main work of this paper is: using visualization 
technology to track the quadrotor in real time; at the same time, 
it also supports online replacement of tracked objects, and the 
visualization algorithm has been deeply studied to improve its 
accuracy and speed.

3.2. Pollution source localization algorithm

Firstly, the diffusion pattern of pollutants in the river was 
analyzed, and the two-dimensional concentration distribution 
pattern of pollutants in the river was established. On this basis, 
this paper proposed a new pollution source localization algorithm 
based on the least squares method, which solved the application 
of the traditional least squares method in finite element analysis 
(Turabieh et al., 2019; Talaat et al., 2020). Finally, the effects of 
concentration measurement noise, node drift, and reflection 
coefficients were analyzed.

The discharge of sewage is usually concentrated on the banks 
of rivers and lakes. Contaminants along the coast are easily 

affected by reflections from the coast. According to its boundary 
type, it can be divided into: permeable boundary and impermeable 
boundary, the permeability of which depends on its soil 
composition. The focus of this paper is to investigate the bottom 
and surface boundaries of water bodies under different coastal 
infiltration effects. This paper locates the pollution sources in the 
still water environment of lakes and reservoirs, assuming that the 
pollution sources are located in an ideal still water body. In static 
water environment, the diffusion of pollutants is different from 
that of pollutants in still water, and the positioning error of the 
pollution source comes from the model itself and the error caused 
by the sensor node drifting and moving in the water. In a 
nearshore environment, the diffusion of pollutants is affected by 
the coastal environment, sensor measurement noise, floating 
motion, degradation of pollutants and other factors. When the 
river channel is narrow, it is also affected by the boundary 
boundary (Gao et al., 2019; Xiao et al., 2022).

Water depth g, transverse flow velocity va , longitudinal flow 
velocity ub , mass flow rate N of continuous point source, reflection 
coefficient χ , dispersion coefficient rwb , degradation coefficient R1
, m sensor positions a bj j,( ) , and its concentration detection values 
Ei , i m m= … ≥1 2 3, , , , are known. Pollution source position φ η,( )  

is estimated.

predator drone Wing Loong UAV

FIGURE 1

Fixed-wing UAV.

Fire Scout UAV DJI Wu series drones

FIGURE 2

Rotor UAV.
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3.2.1. Model of two-dimensional pollutant 
concentration distribution in rivers

Its effect depends on the nature of the boundary and can 
be  divided into three categories: total reflection (impenetrable 
boundary); incomplete reflection (ie, there is partial absorption and 
partial reflection, that is, incompletely permeable boundary); adequate 
absorption (full penetration range). Among them, when the 
adsorption capacity reaches saturation, it is hardly affected by the 
nearshore boundary (Singh and Dwivedi, 2019).

It is assumed that sewage is continuously discharged into the 
river channel at the near-shore position φ η,( )  of the same river 
section, and the sewage is immediately mixed evenly in the 
direction of water depth g after it enters the water. Its sewer velocity 
is P , the concentration is E0 , and the mass flow is N PE= 0  (the 
amount of pollutant discharge per unit time). Taking the water 
flow direction as the a axis and the vertical direction as the b axis, 
after the sewage enters the river, it immediately mixes with the 
water body evenly in the direction of the water depth. The 
transverse flow rate va  and the longitudinal flow rate ub  are 
recorded. During a certain period of time, when the monitoring 
value of the sensor node does not change (or is below a given 
certain threshold), the pollution diffusion in this area has entered 
a stable state, ββ

E
d = 0  and the concentration in the vertical direction 

is also 0. The diffusion equation of the two-dimensional steady-
state pollutant is as follows:
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According to the boundary of the water body, it can be divided 
into: not affected by boundary conditions and affected by 
boundary conditions.

3.2.1.1. Not affected by boundaries
It is also osmotic boundaries and unrestricted waters. Finding its 

analytical solution, it can be obtained:
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3.2.1.2. Affected by the boundary
The steady-state diffusion model equation under the influence of 

a single boundary is known:
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Under the action of the completely absorbing boundary, the 
pollution concentration and the completely reflecting boundary, the 
stable concentration distribution is:
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Figure  3 represents the distance from the boundary  
to the pollution point (Orlandi, 2018; Falco et  al., 2019).  
The corresponding virtual image source coordinates are  
as follows. Under the action of the impermeable boundary,  
the diffusion of pollutants has an additive effect. Among them,
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represents the diffusion term at true source φ η,( ) . 
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the diffusion term of the equivalent image source φ η, −( ) .
Under the boundary conditions, under the condition that the 

absorption capacity of the boundary is limited, its distribution 
boundary is between the two. To this end, this paper gives an 
approximate distribution pattern:
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Among them, χ  is the water permeability (reflectance) of the 
boundary. When the reflection coefficient χ = 0 , it is the Equation 
(3), and when the reflection coefficient χ =1 , it is the Equation (7). 
Its value χ  is related to the geological conditions and pollution types 
of the shore and can be estimated in advance.

3.2.2. Location of pollution sources
Because pollutants are usually near the coast, if the maximum 

distance between the discharge source φ η,( )  and the river bank is set 
to be α , then considering the direction of the water flow, there are 
two conditions:

 0 ≤ <η α  (8)

 
φ ≤ a j  

(9)

The objective function under this constraint:
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Among them, E j  is the concentration measurement value of the 
jth sensor node, and E a bj j, , ,φ η( )  is the concentration estimation 
value of the jth sensor node based on the model equation, namely:
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Given the concentration measurement value E j  at the jth sensor 
node and the position a bj j,( )  of the node, the localization problem 
is to find the position of the pollution source φ η,( ) , which is the 
smallest under the constraint equation, namely:
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It can be seen from the equation that the objective function of the 

nonlinear least squares problem contains 
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, and there is a complex nonlinear
 

relationship with the unknown φ η, . This will greatly affect the 
numerical stability and anti-interference ability of the algorithm.

By taking the logarithm of Equation (11), a new objective function 
is obtained to improve its numerical stability and anti-interference ability.
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FIGURE 3

Point source diffusion for impermeable single-edge reflection.
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It is written as:
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Let the new optimization objective function be:
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The positioning problem boils down to finding the location 
φ η,( )  of the pollution source so that I2  is the smallest under 

the constraint.
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That is, the sum of the squares of the logarithm of the logarithm 
of the measured concentration and the logarithm of the model 
estimated concentration is minimized.

Under the unified dimension, the degradation coefficient of many 
pollutants, especially organic pollutants, is very small relative to the 
flow rate. At this time, in the positioning application, g a bj j, , ,φ η( )  
can be corrected to f a bj j, , ,φ η( ) :
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There are many solution boundary constrained nonlinear least 
squares problems, such as interior point trust regions, modified 
Levenberg–Marquardt method, reflected Newton method, etc. Among 
these methods, the overall convergence of the trust region method 
is better.

4. Experiment on location and 
tracking of environmental pollution 
sources under multi-UAV vision

4.1. UAV flight platform test

As shown in Figure 4, in order to verify the method proposed in 
this paper, this paper designs a multi-rotor UAV flight platform, and 

performs static and dynamic tests on it to verify the effectiveness of 
the method.

In the actual test of this paper, the sampling frequency of 
MPU6000 is 1,000 Hz; the angular rotation speed of the gyroscope can 
reach ±1,000 degrees/s; the acceleration sensor can measure within 
±4 G; the measurement range of the magnetic compass is ±4 Gauss; 
the data transmission frequency of 433 MHz; the gradient descent 
method was used, and the calculation time was 1 millisecond; it took 
980 us to collect a gradient of degradation from the sensor data.

The MPU-6000 is the first six-axis motion processing unit with 
integrated gyro and accelerometer sensors, it includes three 16-bit 
analog-to-digital converters, and can be extended to nine axes by a 
digital processor. Since MPU-6000 does not use the expansion mode 
in the sensor module, it uses SPI to communicate with the main 
control module, which can reach a rate of 1 MHz and meet the data 
transmission requirements. SPI is a high-speed, full-duplex, 
synchronous serial peripheral. The SPI protocol has lower signal lines 
and smaller features:

Serial data transmission line SDI is adopted: mainly for receiving 
and transmitting data; serial data output line SDO: The host transmits 
and receives data from the device; when the chip is selected, it is at a 
high resistance value; a chip select signal CS of the slave device enable 
signal controlled by the master device; it is low when sent, and high 
otherwise; clock signal line SCLK: The transition of data is obtained 
by using its rising and falling edges. SPI read and write operations 
transfer at least two bytes at a time, usually an address byte, followed 
by one or more data bytes, and continuous data operations can 
be performed starting from a certain address bit. Its transmission 
protocol is shown in Table 1.

As shown in Table 2, the MPU-6000 has various measurement 
ranges, and the appropriate range can be selected according to needs. 
In this paper, the gyroscope and acceleration are set to: 1 KHz, the full 
scale of the gyroscope is ±1,000 degrees, without self-testing, the full 
scale of the accelerometer is ±4 G, and it is also set to not self-test.

The design idea of the auxiliary gyroscope chip of L3GD20H is to 
use two different gyroscopes, and average the two normal gyroscopes, 
thereby reducing noise and achieving better results. The L3GD20H 
chip has the characteristics of small size, low power, sleep, wake-up 
and so on. Its main performance indicators are shown in Table 3.

4.1.1. Static analysis
It refers to the analysis of ground conditions through the attitude 

estimation system. As shown in Figure 5, in the pitch angle (Pitch), 
the frequency of the data sampling is 10 Hz. Figure 5A is the output of 
the tilt angle when the system is in a horizontal position, Figure 5B is 
the tilt angle measured by the accelerometer and the tilt angle 
measured by the algorithm in this paper. As shown in Figure 5A, in 
the horizontal test, the pitch angle swings between 0.02–0.16° without 
divergence, which can effectively overcome errors such as the 
integration of the gyro; there are a lot of glitches on the curve of the 
values measured on the accelerometer in Figure 5B. This method can 
not only track the acceleration value quickly, but also the curve is 
smoother. Thus, the white noise generated by the accelerometer is 
greatly reduced, and its estimation error is 0.26° on average.

4.1.2. Dynamic analysis
Dynamics testing and the physics system of the Pixhawk flight 

control will be installed on the flight platform. In the real-time analysis 

https://doi.org/10.3389/fevo.2023.1178990
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Shen et al. 10.3389/fevo.2023.1178990

Frontiers in Ecology and Evolution 07 frontiersin.org

of attitude estimation, the digital transmission frequency of Pixhawk 
is 915 MHz, and the attitude sampling frequency is 10 Hz. The data 
stored by the Pixhawk flight record and serial debugging assistant is 
entered into the Excell form. When the multi-rotor UAV is hovering, 
the pitch angle is used as a calculation example, and the output results 
are shown in Figure 6. Due to the vibration of the aircraft, the pitch 
angle of the aircraft changed around (−0.6, 0.8), which could ensure 
the calculation accuracy of the attitude solution of the aircraft in flight; 
at 162 s, due to the change in wind speed, the inclination of the 
fuselage also changed, and after 12 s, the pitch angle of the fuselage 
returned to its original level.

When the multi-rotor UAV performs the pitch, roll and yaw 
motions, the slope descent method and the Pixhawk flight control 
method are used to obtain Figures 7A,B, as well as Figure 7C. It can 
be seen from Figure 7 that in the time period of 0 ~ 360 s, the attitude 
angle calculated by the gradient descent method has no divergence, 
thus effectively reducing the error caused by the integration of the 
gyroscope; the inclination error of the two sets of test devices is 
within ±2.5°, the roll angle error is within ±3°, and some time errors 
of the yaw angle are very large, but the average error is only 0.8°. The 
system can well meet the actual flight requirements of the 
quadrotor UAV.

4.2. Simulation experiment

The impact on the positioning accuracy of pollution sources 
mainly includes the following three aspects:

The influence of the node measurement results of the sensor: Due 
to the complex factors such as river flow velocity, temperature 
difference, molecular diffusion, disturbance, convection, etc., the 
concentration monitoring will be affected. Due to the deviation of the 

distance of the sensor itself, the deviation of the measurement result 
of the concentration and the measured data is caused.

Influence on the positioning coordinates of the sensor node: 
When the sensor node is arranged, its node will float on the water, but 
in reality, it has a certain floating area.

Reflectance error: In practical applications, there is a certain error 
in the estimation of the reflection coefficient. In the simulation test, 
this paper focuses on the influence of the three conditions on the 
location of the pollution source and it is divided into three cases: 
complete absorption, incomplete reflection and complete reflection. 
This paper uses the Matlab simulation platform to verify the 
previous method.

Setting: The sensor nodes are evenly distributed in the range of 
50 m × 20 m, the parameters are N = 5,000 g/s, g = 5, ua =2.0 m/s, rwb
=0.65 m2/s, R1 =0.2*(3600*24 s)– 1, the position a bj j,( )  of the 
known sensor node, j = 1,2,...n, n ≥ 3; assuming that the pollution 
sources appear uniformly in the area of 0 10≤ ≤η  and 0 20≤ ≤φ , 
the theoretical value E j  of the simulation is obtained according to the 
diffusion mode.

4.2.1. Influence of concentration noise on 
positioning accuracy

The influence of the concentration noise on the positioning 
accuracy is simulated, and the measured values are obtained by taking 
5, 10 and 15% of the theoretical concentration value E j  as the zero 
mean white noise of the reference difference. Firstly, a pollution source 
is randomly generated near the monitoring point, the concentration 
of 3 sensor nodes is used for location estimation, and a node is added 
to each location for location estimation, and then the location 
estimation of the pollution source is increased to 25.

In Figure 8, the x-axis represents the number of sensor nodes, and 
the y-axis represents the average error of 100 simulations. In the case 
of different number of sensor nodes, the root mean square error when 
using the location algorithm (12) for positioning is 5, 10, and 15%. In 
three different cases, the average error of the localization algorithm 
(17) is used. In the case of different concentrations of noise, the 
influence of density noise on the positioning accuracy is discussed; 
Figure  8A shows the results of localization under different noise 
densities at a value of 0; Figure 8B shows the location at different noise 

FIGURE 4

Test flight platform.

TABLE 1 SPI transfer protocol.

SPI address byte format

R/W A6 A5 A4 A3 A2 A1 A0

SPA data byte format

D7 D6 D5 D4 D3 D2 D1 D0
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FIGURE 5

Static test. (A) Horizontal test. (B) Comparison of pitch angle output when external force is applied.

densities at a value of 0.5; Figure 8C shows the position at different 
noise densities at a value of 1.

It can be seen from Figure 8 that when 3–5 nodes participate 
in the position, the positioning accuracy of the two algorithms is 

not high; in 6 ~ 7 nodes, the positioning accuracy of the location 
algorithm (12) is significantly improved. When the number of 
nodes participating in the position exceeds 8, the positioning 
accuracy of the algorithm will not improve with the increase of the 
number of sensor nodes. As the concentration noise increases, its 
localization accuracy also increases. In 6 ~ 11 nodes, the 
localization accuracy of the location algorithm (17) is significantly 
improved. When the number of sensor nodes participating in the 
location exceeds 10, the positioning accuracy of the location 
algorithm (17) will not improve with the increase of the number 
of sensor nodes. Under 3 different noise densities and 3 different 
reflection factors, the position accuracy is basically kept no more 
than 0.2 meters. The positioning accuracy of the positioning 
algorithm (12) is all greater than 0.2 meters. Compared with (12), 
the localization algorithm (17) is better. This is due to the strong 
nonlinearity in (12), while the nonlinearity in (17) decreases in 
the pair array, resulting in better convergence. The result is better 
numerical stability and anti-jamming capability (12) compared to 
localization algorithms (17).

The results show that the positioning accuracy of (17) 
decreases with the increase of density noise. However, as the 
number of nodes increases, its positioning accuracy improves and 
tends to be stable; the location algorithm of (17) is better than the 
localization algorithm of (12), and the numerical stability and 
anti-jamming performance are better. In practical applications, 

TABLE 2 MPU-6000 main performance.

Name Quantity value Unit

Full scale range
±250-2000(Top) 

±2 – ± 16(Accelerometer)
dps(dps/s) g

Working current 5(Top) 500(Accelerometer) mA μA

Supply voltage 2.5–3.3 V

TABLE 3 Main performance indicators of the gyro chip L3GD20H.

name Quantity value unit

Full scale range ±245 – ± 2000 dps(dps/s)

Update frequency 757.6 Hz

Operating voltage 22–3.6 V

Working current 5 mA

Sleep current 2.5 mA

Interface SPI,I2C /
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FIGURE 6

Hover test.

FIGURE 7

Angle comparison during pitch, roll, and yaw motion. (A) Pitch angle. (B) Roll angle. (C) Yaw angle.
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A

C

B

FIGURE 8

Analysis of noise localization results with different values. (A) The localization results of different concentrations of noise when the value is 0. (B) The 
localization results of different concentrations of noise when the value is 0.5. (C) The localization results of different concentrations of noise when the 
value is 1.

since the nonlinearity of the positioning algorithm (17) is reduced, 
the complexity of the operation is reduced, so that the running 
time of the system can be increased.

4.2.2. Influence of drift error on positioning 
accuracy

In the simulation of drift error, zero-mean Gaussian noise is 
the coordinate value generated after standard deviations of 0.1 m, 
0.2 m, and 0.3 m. The influence of different concentration 
deviations on the measurement accuracy was found in 
the experiment.

In Figure 9, the x-axis represents the number of sensor nodes, 
and the y-axis represents the average root mean square error of 100 

simulations. At 3 different drift errors, 0.1, 0.2 and 0.3 were used. At 
3 different drift errors, algorithm (17) was used for the calculation. 
The influence of drift error on ranging accuracy under various offset 
deviation conditions was studied; Figure  9A shows the position 
results under different drift errors when the value is 0; Figure 9B 
shows the position results for different drift errors at a value of 0.5. 
Figure 9C shows the position results for different drift errors when 
the value is 1.

As shown in Figure 9, as the drift error increases, the error in 
its position also increases. Under the conditions of three different 
reflection factors, if the number of nodes participating in the 
position is less than 6, the localization accuracy of the two methods 
is not high. The main reason is that the number of nodes 
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participating in the position is small and there is a large drift error. 
When 6 ~ 10 sensor nodes participate in the position, the 
positioning accuracy is significantly improved, and the position 
error of (17) is larger than that of (12); in Figures (b) and (c), the 
position error of the position algorithm (17) is slightly smaller 
than that of (12). When the number of nodes participating in the 
positioning exceeds 10, the positioning error of the positioning 
algorithm (17) is much smaller than that of the positioning 
algorithm (12) under the corresponding drift error, and the 
accuracy of the two positioning algorithms tends to be stable; the 
positioning algorithm (17) has an error of 0.1 m to 0.4 m, while the 
positioning algorithm (12) has an error of 0.18 nm to 1 m. The 
position accuracy shown in Figure (a) is higher than Figures (b) 
and (c), because when the value is 0, the reflection term is not 
considered and the positioning error is reduced.

The results show that: in the case of large water drift error, more 
sensor nodes are required to participate in the position; the location 
algorithm of algorithm (17) has good convergence performance and 

is better than the location algorithm of (12) in terms of numerical 
stability and anti-interference ability. Therefore, in the actual layout, 
the drift error should be  minimized to reduce the impact on the 
ranging accuracy.

4.2.3. Influence of reflection coefficient on 
positioning accuracy

In the simulation, the reflection coefficient is χ , and the 
influence of the reflection coefficient on the positioning accuracy 
in three cases was discussed. The influence of different 
concentration deviations on the measurement accuracy was found 
in the experiment. In Figure 10, the x-axis represents the number 
of sensor nodes, and the y-axis represents the average root mean 
square error after 100 simulations, which are 0.30, 0.70, and 0.90, 
respectively, during the simulation. Among them, the three 
reflection factors are 0.30, 0.70, 0.90, and the position errors of the 
three reflection factors are 0.30 ln, 0.70 ln and 0.90 ln, respectively. 
The influence of reflection coefficient error on measurement 
accuracy under different reflection coefficient errors was 
discussed; Figure (a) is the positioning result of different reflection 
coefficient errors when the value is 0, Figure (b) is the positioning 
result of different reflection coefficient errors when the value is 
0.5, and Figure (c) is the positioning result of different reflection 
coefficient errors when the value is 1. As shown in Figure 10: In 
Figure 10A, under the actual reflection coefficient, at 3–5, the 
positioning effect of the two positioning methods is poor; when 
the number of participating position sensors exceeds 5, it can 
be clearly seen that the positioning accuracy of the positioning 
algorithm (12) is only improved in time, and the positioning effect 
in the other two cases is very poor; the localization algorithm of 
(17) has good convergence performance. In Figure 10B, under the 
actual reflection coefficient, in 3 ~ 5 positions, the positioning 
efficiency of the two positioning methods is low; in 6 ~ 11 
locations, with only reflection coefficients, the localization 
accuracy of these two methods is high, while the localization 
results of the other two methods are not ideal. In Figure  10C, 
under the actual reflection coefficient, at 3–5, the positioning 
efficiency of the two positioning methods is low; when the number 
of nodes participating in the position exceeds 5, in the case of only 
the reflection factor, the positioning accuracy of the positioning 
algorithm (12) is low. Other localization effects vary with different 
reflection parameters, where the location algorithm (17) is more 
accurate than (12).

The research results show that when the boundary conditions 
are considered, if the difference between the reflection coefficient 
and the measured value is large, the accuracy of the measurement 
result will be greatly affected. If the parameter setting is too large, 
the positioning result of the positioning algorithm (12) will have 
errors, while the positioning algorithm of (17) will obtain a 
satisfactory positioning accuracy; the algorithm (17) has good 
convergence performance and better anti-interference ability than 
the positioning algorithm (12).

Therefore, it is very necessary to accurately measure the 
reflection coefficient of riparian geology to certain pollutants in 
practical applications. If the boundary is not completely reflected, 
only when the complete reflection or complete absorption 
treatment is not advisable for the localization of the 
pollution source.

A

B

C

FIGURE 9

Different values and different drift error positioning results. (A) The 
positioning results of different drift errors when the value is 0. 
(B) The positioning results of different drift errors when the value is 
0.5. (C) The positioning results of different drift errors when the 
value is 1.
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5. Conclusion

In this paper, an in-depth study of the visual tracking problem 
of quadrotor UAV was carried out. Firstly, the overall scheme of 
flight control and visual tracking of the aircraft was given, and the 
selection of hardware was explained; secondly, based on the 
overall design of the hardware, the software of the quadrotor 

target tracking UAV was described in detail. The adopted 
algorithm and optimal solution were emphatically expounded, 
and its basic principle and flight control law were discussed, and 
the pollution diffusion under the condition of no boundary and 
near-shore boundary in the river channel was analyzed. A 
comprehensive model that considered the completely absorbing 
boundary effect, the incompletely reflecting boundary effect and 
the completely reflecting boundary effect was proposed. In order 
to solve the problem of the location of pollution sources in the 
river, this paper improved the least squares method based on the 
sum of squares of measured data and theoretical values under 
boundary conditions, and verified the proposed method. The 
positioning principle needs to be improved. The camera used in 
this paper is vertically downward, and the tracking characteristics 
of the ground characters are not obvious, and it is not convenient 
to observe the face of the characters. The follow-up camera can 
form a certain angle with the ground, which is convenient to 
observe the target features, especially when tracking the character 
features, the positioning principle should be improved.

Data availability statement

The original contributions presented in the study are included in 
the article/supplementary material, further inquiries can be directed 
to the corresponding author.

Author contributions

All authors listed have made a substantial, direct, and intellectual 
contribution to the work and approved it for publication.

Funding

This work was supported by research and development of data 
management integration for intelligent control equipment of industrial 
wastewater treatment based on deep learning algorithm (KYP022204) 
and Research on the Blockchain-backup System of Digital Collections 
(KYH2022011).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

A

B

C

FIGURE 10

Error location results for different reflection coefficients with 
different values. (A) The positioning results of different reflection 
coefficient errors when the value is 0. (B) The positioning results of 
different reflection coefficient errors when the value is 0.5. (C) The 
positioning results of different reflection coefficient errors when the 
value is 1.
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