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Vegetation indexes have been widely used to qualitatively and quantitatively 
evaluate vegetation cover and its growth vigor. To further extend the study 
of vegetation indexes, this paper proposes to study the spatial and temporal 
distribution characteristics and specific driving mechanisms of vegetation indexes 
based on the example of Yunnan Province, China, and also adds the study of spatial 
and temporal prediction methods of vegetation indexes. This paper used data on 
this region’s normalized vegetation index (NDVI), three meteorological factors, 
and eight social factors from 1998 to 2019. The dynamic change in and driving 
mechanism of the NDVI were studied using mean value analysis, univariate linear 
trend regression analysis, and partial correlation analysis. In addition, the Fourier 
function model and the CA–Markov model were also used to predict the NDVI of 
Yunnan Province from 2020 to 2030 in time and space. The results show that: (1) 
The NDVI value in Yunnan Province is high, showing a significant growth trend. 
The increased vegetation coverage area has increased in the past 22 years without 
substantial vegetation degradation. (2) The positive promotion of meteorological 
factors is greater than the negative inhibition. The partial correlation of relative 
humidity among meteorological factors is the highest, which is the main driving 
factor. (3) The NDVI value is significantly positively correlated with population and 
economy and negatively correlated with pasture land and agricultural area. (4) 
The NDVI values are predicted well in time (R = 0.64) and space (Kappa = 0.8086 
and 0.806), satisfying the accuracy requirements. This paper aims to enrich the 
theoretical and technical system of ecological environment research by studying 
the dynamic change, driving mechanism, and spatiotemporal prediction of the 
normalized vegetation index. Its results can provide the necessary theoretical 
basis for the simulation and prediction of vegetation indexes.
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1. Introduction

Vegetation is an essential component of terrestrial ecosystems and 
is the link between elements of natural geography such as the 
atmosphere, water, organisms, rocks, and soil (Hédl et al., 2017; Xiao 
et al., 2018; Li et al., 2021), and it is the most fundamental component 
of the ecosystem on which all organisms need to depend directly or 
indirectly. Any change in terrestrial ecosystems will inevitably affect 
vegetation type, quantity, or quality (Torres-García et  al., 2022). 
Especially as a result of global warming, which has led to a series of 
changes in vegetation phenology events (Huang et al., 2019; Liu et al., 
2020), the frequency of extreme climate events has increased 
significantly worldwide, causing severe negative impacts on 
agricultural production, water resources, and the socioeconomic 
development of ecosystems (Zhao et al., 2018). Therefore, long-term 
dynamic monitoring and the study of vegetation changes and their 
driving factors are of great value to understanding global changes’ 
impact and achieving effective ecosystem management (Tong et al., 
2019). Ecological problems such as global natural disasters, accelerated 
desert degradation, and soil erosion are frequent, especially in 
northern latitudes (Myneni et al., 1997; Tucker et al., 2001). In the past 
30 years, ecosystems in more than half of the global regions and 
countries have experienced different degrees of degradation due to 
economic development and population growth. Issues such as land 
degradation, soil erosion, and desertification have occurred in China, 
especially in the northern regions (Wang et al., 2002). This has led 
researchers to conduct studies focusing on the northern part. In 
contrast, Yunnan Province, China, is a rare region with ultra-high 
vegetation cover and diverse vegetation, which needs to be studied due 
to the area’s unique geomorphological and vegetation characteristics. 
Therefore, a timely, scientific, and accurate assessment of the dynamics 
of vegetation indices in Yunnan, understanding the driving 
mechanisms of vegetation indexes changes, and modeling and 
predicting the development of vegetation indexes are essential 
references for the ecological effects in other similar regions.

The NDVI is closely related to vegetation cover, leaf area index, 
biomass, and land use, which can reflect the greenness of vegetation 
from macroscopic aspects and is related to photosynthesis in the 
vegetation canopy (Zhu, 2016). Studies addressing the dynamics of the 
NDVI and its response characteristics to climate change and human 
activities have been better developed in recent years. For example, 
nationwide, Jin et al. (2020) used time series data of the NDVI and 
meteorological factors such as precipitation and temperature to 
establish a residual analysis model to achieve quantitative separation 
of climate change effects on the NDVI and arrived at the conclusion 
that there are significant spatial differences in the impact of climate 
change and human activities on the NDVI changes, but the positive 
contribution is generally dominant. Liu et al. (2014) analyzed the 
differences in the correlation between the NDVI and climate change 
for different vegetation types in China, and the differences in the 
relationship between NDVI change trends and temperature and 
precipitation in different eco-geographical zones were also studied. 
Piao et al. (2015) analyzed the driving factors of vegetation change in 
China based on the leaf area index and believed that the increase in 
atmospheric CO2 concentration and nitrogen deposition might be the 
main reasons for promoting vegetation recovery in China. Li et al. 
(2020) analyzed the dominant factors of vegetation productivity 
changes in China from 1992 to 2013, and the results showed that 
radiation made the largest contribution to vegetation productivity 

changes, followed by temperature and precipitation. Chen et al. (2020) 
explored the response of vegetation to precipitation anomalies under 
different climatic and eco-geographical conditions in China. With the 
refinement of the research scale, Wang et al. (2013) found that climate 
warming had caused the edge of the cold-temperate forest in the 
southern part of the Greater Hinggan Mountains to retreat 140 
kilometers northward in the past century. The combined effects of 
moisture conditions and temperature promoted the growth of 
vegetation in the arid-humid transition zone in northern China (Sun 
R. et al., 2021). Decreased temperature led to reduced evaporation of 
soil moisture, alleviating the slight drought trend in southwestern 
China and resulting in a general increase in the vegetation index in 
the region (Sun et al., 2021a). The continuous warming of the climate 
has affected the senescence period and growing season length of 
grasslands in the temperate zone of China to varying degrees (He 
et al., 2022). Precipitation plays a decisive role in the changes in the 
NDVI in the Yarlung Zangbo River Basin on the Tibetan Plateau (Sun 
et al., 2019), while temperature is the dominant factor in the changes 
in the NDVI during the growing season in the permanently frozen 
area of Northeast China. Li et al. (2018) took the Inner Mongolia 
Plateau of China as their research object and concluded that the NDVI 
was positively correlated with extreme precipitation and extreme low 
temperature, negatively correlated with extreme high temperature, 
and that the sensitivity of different vegetation types to extreme climate 
was not the same. Many studies have analyzed the relationship 
between the NDVI and regional and meteorological factors (Tucker 
and Choudhury, 1987). Still, only a few studies have examined the 
driving mechanisms between the NDVI and relative humidity and 
other social factors, especially in Yunnan Province, China.

Therefore, this paper selects annual normalized difference 
vegetation index (NDVI) spatial distribution data (1998–2019) in 
China to study the dynamics of the vegetation index in Yunnan 
Province and analyzes the spatial and temporal changes in 
meteorological factors using air temperature, relative humidity data, 
and precipitation data and explores the partial correlation and 
significance with the NDVI. In addition, the influence of eight social 
factors on the NDVI is also investigated. These studies reveal the 
dynamics of the 22-year NDVI in Yunnan Province and its specific 
driving mechanisms in relation to meteorological and social aspects. 
Finally, the spatial distribution of the NDVI in Yunnan Province from 
2020 to 2030 is predicted through simulations using mathematical and 
statistical models (Fourier function model) and physical statistical 
models (CA-Markov model). This paper is intended to provide 
theoretical support and a reference basis for ecological protection 
construction in the region.

2. Materials and methods

2.1. Study area

Yunnan Province lies between 21° 8′ and 29° 15′ north latitude 
and 97° 31′ and 106° 11′ east longitude, with a total area of 394,100 
square kilometers, accounting for 4.1% of the total land area of the 
country and ranking eighth in size in China. In addition, the region is 
known as the Kingdom of Plants. It is the province with the most 
significant number of plant species, mainly including tropical, 
subtropical, temperate, and cold-temperate plants, among which 
ancient, derived, and exotic plants are abundant. Yunnan accounts for 
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more than 60% of China’s 30,000 species of higher plants. More than 
150 tree species are classified as national priorities for protection and 
development at the first, second, and third levels. The vegetation 
resources of Yunnan Province are remarkable, and the study of local 
vegetation indexes has essential reference values for ecological 
planning and conservation (Figure 1).

2.2. Data

2.2.1. Normalized difference vegetation index 
data

China’s annual normalized vegetation index data comes from the 
registration and publication system of resources and environmental 
science data.1

2.2.2. Other data
The air temperature data were obtained from the National Centre 

for Atmospheric Sciences in the UK.2 The relative humidity data were 
obtained from the National Earth System Science Data Center3 in 
China. The TRMM precipitation data were obtained from NASA 
Release 7 data, and the monthly precipitation data from 1998 to 2019 
were selected to calculate the annual average rainfall. In addition, the 
social factors associated with the NDVI changes were obtained by 
statistically and categorically classifying the statistical yearbook data.4

2.3. Methods

2.3.1. Average analyses of the normalized 
difference NDVI

In this paper, the annual NDVI and the three meteorological data 
were processed into an overall average of 22 years using the maximum 
value synthesis method. And the NDVI and the three meteorological 
factors are analyzed temporally and spatially. In addition, the annual 
data are analyzed temporally using the average of the NDVI and three 
meteorological data from raster images. The Maximum Value 
Composite (MVC) method is employed, with the specific calculation 
process as follows:

 
M NDVI i , , ; j , ,NDVI iji

� � � � �� �max 1 2 12 1 2 12 

 (1)

In the formula, MNDVIi represents the maximized NDVI value for 
the i year; i is an integer from 1 to 22, representing the years from 1998 
to 2019; NDVIij represents the monthly NDVI values for the i year, 
and j is an integer from 1 to 12, representing January to December.

2.3.2. Spatial trend analysis methods
A one-dimensional linear regression analysis model was used to 

quantitatively analyze the change in vegetation cover trends in Yunnan 
Province from 1998 to 2019, calculated as follows:

1 http://www.resdc.cn

2 https://crudata.uea.ac.uk/

3 http://www.geodata.cn

4 https://www.stats.gov.cn
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Where S represents the slope of the trend line, Ni represents the 
NDVI value in the first year of the image, and t = 22 (1998–2019) 
represents the observation time series of the data; S > 0 represents an 
increase in the NDVI value and an increasing trend of vegetation 
cover; S < 0 illustrates a decrease in the NDVI value and a decreasing 
trend of vegetation cover. We use the Mann-Kendall significance test 
to evaluate the significance of the NDVI spatial trends. The M-K test 
is a non-parametric method suitable for detecting trends in time series 
data. By calculating the test statistic and the corresponding value of p, 
we can determine whether the NDVI spatial trend is significant.

2.3.3. Partial correlation analysis
Partial correlation analysis is a standard method for examining 

the relationship between changes in the NDVI (Normalized Difference 
Vegetation Index) and the climatic factors. In this study, we employed 
a second-order partial correlation analysis model to identify the 
primary driving factors of the NDVI. Among the four variables, the 
partial correlation coefficient between any two variables is calculated 
by excluding the influence of the other two variables, which is referred 
to as the second-order partial correlation coefficient. The significance 
of partial correlation coefficients is assessed using an F-test based on 
the partial correlation analysis. The calculation formula is as follows:

 

r
r r r

r r
ij hm

ij h im h jm h

im h jm h

�
� � �

� �

�
�

�� � �� �1 12 2

 

(3)

A positive correlation is indicated by r > 0, while a negative correlation 
is represented by r ≤ 0. In this context, i, j, h, and m denote the 
combinations of the NDVI, the temperature, the precipitation, and the 
relative humidity, respectively. For instance, when investigating the 
partial correlation relationship between the NDVI and the temperature, 
the influence of the precipitation and the relative humidity is eliminated. 
This study also analyzes the spatiotemporal variations of the NDVI with 
the temperature, the precipitation, and the relative humidity, and explores 
the relationships between the NDVI and these factors. In addition, 
we  integrate and select eight social factors to analyze the impact of 
anthropogenic factors on the NDVI based on local statistical bureau 
information. IBM SPSS statistical software is used for the analysis of the 
NDVI. By utilizing 22 years of average the NDVI data, this study 
examines the correlation between the NDVI and the eight social factors.

2.3.4. Prediction model

2.3.4.1. Fourier function model
This paper predicts the future NDVI over the study area based on 

the historical data from 2000 to 2019. Three functions (i.e., the 
polynomial function, trigonometric function, and Fourier function) 
are selected for fitting the NDVI variation during 2000–2019. Then, 
the mathematical and statistical parameters (i.e., R2, SSE, and RMSE) 
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were calculated to compare the capacities of these fitting functions. 
Finally, the best-fit process was selected to predict the future NDVI 
over the study area for 2020–2030.

2.3.4.2. CA-Markov model
The Markov chain is a “non-sequential” state of affairs process, 

where the state of the change process Sn at time n + 1 is only related to 
the state at time n and is not related to the state before Sn (Mokarram 
and Pham, 2022; Sun et al., 2022; Zhou et al., 2022). Thus, Pij represents 
the probability of shifting from a vegetation index type Ei to another 
type of Ej and is calculated as:

 P P S j S iij n n� � �� ��1 /  (4)

In this paper, the number of NDVI change-type areas in 2012 and 
the NDVI change-type area in 2015 are constructed as a Markov 
transfer matrix:
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The NDVI type transfer state, where X(0) is the initial state vector, is 
calculated in this paper to obtain the probability of change of each the 
NDVI type in 2012 to each the NDVI type change in 2015 and the area 
size of each the NDVI type in 2017 and 2018 is inferred with this 
probability. The Markov model focuses on simulating quantitative 
changes. The CA model and Markov model were coupled to compensate 
for the deficiency of the Markov model in spatial analysis. Adaptive 
inertia mechanism-based meta-cellular automata simulations were 
applied to predict the distribution of each the NDVI type for 2020–2030.

2.4. Data preprocessing steps

To ensure the accuracy and consistency of the data, we adopted 
the following preprocessing steps:

 1. The NDVI data preprocessing: Firstly, we used ArcGIS software 
and the maximum value composite method to eliminate the 
influence of clouds, atmosphere, and solar zenith angle, 
generating monthly the NDVI data. Next, we  obtained the 
annual NDVI data by calculating the average values of the 
monthly data.

 2. Data consistency processing: We projected all data to the same 
coordinate system and used ArcGIS to resample to achieve the 
same spatial resolution (1 km x 1 km). Furthermore, for the 
lower spatial resolution of the TRMM precipitation data, 
we applied the Kriging spatial interpolation method to achieve 
the same resolution.

 3. Data synthesis: We integrated temperature, precipitation, and 
relative humidity data into yearly data for 1998–2019, 
ensuring they have the same temporal resolution. Then, 
we  calculated the annual averages of the NDVI and 
meteorological data using the multivariate analysis - band 
collection statistics method.

 4. Data clipping: By applying mask extraction and raster clipping, 
we retained the data required for the study area.

 5. Data classification: Based on the spatial distribution of the 
meteorological data and the NDVI data, we divided them 
into five classes. At the same time, we  classified the 
significance of the NDVI trends into five categories: 
significant degradation, moderately significant 
degradation, no significant change, moderately significant 
improvement, and significant improvement.

 6. The NDVI spatial prediction preparation: Before conducting 
spatial predictions, we reclassified the NDVI, dividing it into 
five categories: Lower (<0.5), Low (0.5–0.6), Normal (0.6–0.7), 
High (0.7–0.8), and Higher (>0.8).

FIGURE 1

Location of the study area and its basic geomorphology.
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 7. Correlated data selection: We selected eight statistical yearbook 
data closely related to the NDVI, including population density, 
GDP, industrial output, agricultural output, construction 
production output, forest area, grassland area, and cultivated 
land area, covering annual data from 1998 to 2019.

3. Results

3.1. Characteristics of NDVI time 
dimensional changes

In this study, we extracted the annual average NDVI values from 
raster images generated by the maximum value composite method 
and analyzed their temporal changes (Figure 2). We found that the 
NDVI values in Yunnan Province showed an overall upward trend, 
with an average NDVI of 0.768 and an annual increase of 0.00614. 
We also discovered that, over the 22-year period, the temporal changes 
in the NDVI values only experienced a continuous decline from 2009 
to 2011, reaching the lowest point in 2011 and then steadily 
rebounding until 2014. These results indicate that the temporal 
changes in Yunnan Province’s NDVI values not only reflect a 
significant increase in vegetation but also exhibit only one substantial 
fluctuation, further justifying our selection of this study area. 
Moreover, based on the unique change trends in the study area, 
research on the temporal changes in NDVI values in the study area is 
more targeted and facilitates the identification of the main driving 
factors behind vegetation changes.

In this section, we have discussed in detail the temporal change 
characteristics of the NDVI, analyzing its change trends and patterns 
on different time scales. To gain a deeper understanding of the 
dynamic change characteristics of the NDVI, in the following sections, 
we  will focus on studying the spatial distribution and changes in 
the NDVI.

3.2. Characteristics of NDVI spatial 
distribution variation

In this paper, we analyzed the spatial variation in the NDVI in 
Yunnan Province over a 22-year period using the maximum value 
synthesis method (Figure 3A). We found that high vegetation cover 
areas and higher vegetation cover areas in Yunnan Province 
accounted for 51.45 and 34.17%, respectively, and low vegetation 
cover areas accounted for 0.95%. The NDVI values in Yunnan 
Province show an overall increase from northeast to southwest, with 
scarce vegetation areas mainly in the northwest and some central 
urban peripheral areas; high vegetation areas are distributed 
primarily in the southwest, some significant sites, and the northeast 
Zhaotong (ZT) area. We analyzed the spatial trends of the NDVI in 
Yunnan Province over a 22-year period using a one-dimensional 
linear regression equation model at the metascale (Figure  3B). 
We found that the direction of increasing NDVI values accounted 
for 95.02% and decreasing NDVI values accounted for 4.98%, with 
a vast difference between the two. The NDVI values were only 
reduced in urban and mountainous areas, such as Kunming (KM) 
and Yuxi (YX) in the central part of the study area, and urban areas 
in Lijiang (LJ) and Dali (DL) in the north-central part of the study 
area as well as in the spreading areas of the Hengduan Mountains in 
the northwest. We further tested the significance of the regression 
trend by using the F-trend test method (Figure 3C). We found that 
the significant increase and decrease in the NDVI accounted for 89.3 
and 0.3%, respectively. The size of regions with an increasing trend 
in the NDVI was much larger than that of sites with a decreasing 
trend. Among them, the NDVI was significantly reduced in urban 
areas such as Yuxi (YX) and Qujing (QJ), and there was no significant 
change in many places in the northwest mountain range area and 
other mountain range areas. The distribution trend is more dispersed 
and patchier.

Therefore, the spatial variation and spatial movement of the NDVI 
and the spatial trend significance test results indicate that the areas 
with high NDVI values and the regions with increasing trends are 
much greater than the areas with low NDVI values and areas with 
decreasing trends in Yunnan Province.

In this section, we explored the spatial change characteristics of 
the NDVI and analyzed its distribution patterns in detail. To gain a 
deeper understanding of the various factors influencing the 
spatiotemporal changes in the NDVI, in the following sections, 
we focused on investigating the impact of climatic and socio-economic 
factors on the NDVI and attempted to identify the relationships and 
mechanisms involved.

3.3. Correlation analysis of the NDVI and 
climate factors

3.3.1. Impact of air temperature, precipitation, and 
relative humidity on the NDVI time dimension

This paper analyzes the temporal variation between meteorological 
factors and NDVI values through the annual mean values of air 
temperature, precipitation, and relative humidity extracted from raster 
images generated by the maximum value synthesis method (Figure 4). 
In terms of temporal variation, we found that the multi-year averages 
of NDVI values, air temperature, precipitation, and relative humidity 

FIGURE 2

Temporal variation of NDVI in Yunnan from 1998 to 2019.
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in Yunnan Province showed multi-peaked variations, with the annual 
average maximum value of NDVI occurring in 2019 at 0.833. The 
average yearly maximum values of air temperature, precipitation, and 
relative humidity occurred in 2019, 2001, and 2018, with maximum 
values of 15.7°C, 1377 mm, and 74.5%, respectively.

We further found that by comparing the temporal variation in 
NDVI values over the years the temporal variation in the NDVI 
values from 1998 to 2002 was not insignificant, while air 
temperature reached a minimum value of 14.5°C in 2000 and 
precipitation and relative humidity were much higher than other 
years during this period; the annual average NDVI values from 
2014 to 2019 were much higher than other years, and vegetation 
grew better. However, the air temperature during this period 
differed significantly from the NDVI temporal variation, while 
precipitation and relative humidity were in solid agreement with 
the NDVI temporal variation. Therefore, air temperature showed 
a negative correlation with NDVI material changes, and 
precipitation and relative humidity correlated positively.

3.3.2. Effects of air temperature, precipitation, 
and relative humidity on the spatial dimension of 
the NDVI

This paper uses the maximum value synthesis method to process 
the three examined meteorological data into an overall average of 
22 years to generate spatial variations in raster images (Figure 5). In 
terms of spatial variation, combined with (Figure 3), we found that the 
spatial distribution in the NDVI with air temperature, precipitation, 
and relative humidity all showed a decreasing trend from south to 
north. The relative humidity matched the spatial distribution of the 
NDVI the best.

We further found that the air temperature and relative humidity 
were numerically higher in the northeastern part of the study area, 
Zhaotong, at 15.5°C and 78.5%, respectively, while the precipitation 
was lower at 1050 mm, the NDVI was generally greater than 0.7, and 
the vegetation increased; in the central part of Kunming, the air 
temperature were higher at 16.9°C. The amount of precipitation and 
the relative humidity were lower at 67%, and 700 mm, respectively, 

FIGURE 3

Spatial change and significance test distribution of NDVI in Yunnan from 1998 to 2019. (A) Spatial variation of NDVI values. (B) Trend changes in NDVI. 
(C) NDVI significance test. SR, significantly reduced; MR, moderately reduced; NC, no significant change; MI, moderately increased; SI, significantly 
increased.

FIGURE 4

Evolution of annual mean air temperature, annual mean precipitation, and annual mean relative humidity in Yunnan from 1998 to 2019. (A) Time 
variation of NDVI and temperature. (B) Time variation of NDVI and precipitation. (C) Time variation of NDVI and relative humidity.
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and the vegetation did not increase as much as in the northern 
Zhaotong area. In the southern and southwestern parts of the study 
area, the air temperature, precipitation, and relative humidity were 
generally high in numerical values, 18.4°C, 2138 mm, and 79%, 
respectively, with the NDVI being 0.85, and the area observed the 
highest increase in vegetation. In the Northwest Transverse Range 
region, the air temperature, precipitation, and relative humidity were 
generally shallow, and vegetation showed an insignificant increase.

Therefore, there is some regional variability in the spatial 
variability and a spatial correlation between air temperature, 
precipitation, relative humidity, and the NDVI.

3.3.3. Partial correlation analysis between the 
NDVI and climatic factors

The related research results indicate that climate change is an 
important cause of increases in the NDVI, while air temperature, 
precipitation, and relative humidity are important indicators of 
climate change (Mao et al., 2022; Xu et al., 2022). Based on the findings 
of this paper on the temporal and spatial variation of the NDVI with 
air temperature, precipitation, and relative humidity, we  further 
validated our results through a partial correlation model based on the 
image metric scale (Figures 6A–F).

We found an overall positive spatial correlation between the 
NDVI and air temperature, with this accounting for 61.6%. The 
positively correlated areas were mainly Pu’er (PE), Xishuangbanna 
(XSBN), Wenshan (WS), and Honghe (HH) in the south-central part 
of the study area. Negative correlations were dominant in areas such 
as Nujiang (NJ) in the northwestern part and Qujing (QJ) in the 
northeastern region. The positive and negative correlations were only 
0.4% and were speckled in the study area. A total of 30.4% of the 
spatially negative correlations were found between NDVI and 
precipitation. The positive correlations were mainly in Zhaotong (ZT) 
and Wenshan in the northeastern part of the study area. The negative 
correlation was primarily in the central and western regions. 
Significant positive and negative correlation areas accounted for 1.70 
and 11.20%, respectively. A significant positive correlation was found 
in southern Qujing (QJ) and Wenshan (WS) in the northeastern part 
of the study area. A significant negative correlation was found between 
Diqing and Nujiang (NJ) in the northwestern part of the study area. 
A total of 69.6% of the NDVI was spatially positively correlated with 
the relative humidity. The positive correlation areas were mainly 

Chuxiong (CX) and Yuxi (YX) in the central part of the study area and 
Pu′er (PE), Lincang (LC), and Baoshan (BS) in the west. The negative 
correlation was dominant in the Zhaotong (ZT) area in northeast 
China and Qujing (QJ) and Wenshan (WS) areas in south-central 
China. Significant positive and negative correlation areas accounted 
for 19.10 and 7.20%, respectively, with substantial positive correlation 
areas distributed in the central and western Dali (DL), Chuxiong 
(CX), and Lincang (LC) regions. The significant negative correlations 
were distributed in the local areas of Zhaotong (ZT), Qujing (QJ), and 
Wenshan (WS) in the north. They were especially significant in 
Zhaotong (ZT) and Qujing (QJ).

Figure  5 shows the spatial distribution of temperature, 
precipitation, and relative humidity within the entire study area, which 
helps to explain the differences in the spatial correlations between the 
NDVI and the climatic factors observed in Figures 6A–F. Notably, in 
Figure 5, we found that the spatial distribution of relative humidity 
was most closely aligned with the spatial distribution of the NDVI, 
which is consistent with the highest positive spatial correlation 
between the NDVI and the relative humidity shown in Figures 6A–F. It 
is the spatial distribution differences in the climatic factors within the 
study area, as shown in Figure 5, that cause significant disparities in 
the spatial correlations between the NDVI and climatic factors in 
various parts. These differences contribute to our in-depth 
understanding of the impact of climate change on vegetation growth 
in different regions, thereby providing a basis for developing 
appropriate vegetation conservation and management strategies.

Therefore, there is some regional variability in the spatial 
correlation between the NDVI and meteorological factors, which is 
consistent with previous findings (Cheng et al., 2022). There is an 
overall positive spatial correlation between the NDVI and air 
temperature and relative humidity, with the highest positive spatial 
correlation with relative humidity. The negative spatial correlation 
being with precipitation further suggests that a combination of 
meteorological factors influences the NDVI.

3.4. Characteristics of NDVI time 
dimensional changes

A social–ecological system (SES) is a complex adaptive system 
closely linked between humans and nature, with unpredictable, 

FIGURE 5

Spatial characteristics of air temperature, precipitation and relative humidity in Yunnan, 1998–2019. (A) Spatial distribution of temperature. (B) Spatial 
distribution of precipitation. (C) Spatial distribution of relative humidity.
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self-organizing, and non-linear characteristics, and vegetation is an 
essential part of the ecosystem with it being more inextricably linked 
with society (Tong et al., 2016). In this paper, we analyzed the correlation 
between the NDVI of vegetation and eight social factors in Yunnan 
Province from 1998 to 2019 by using a bias correlation model (Table 1). 
As seen in Table 1, the NDVI had the strongest positive correlation with 
population density (R2 = 0.951) and the weakest positive correlation with 

arable land. The NDVI was negatively correlated with agricultural and 
pasture area changes with R2 of −0.460 and −0.724, respectively. There 
were also strong positive correlations between the NDVI and changes 
in gross product, industry, gross construction product, and forest area.

Following our previous research, we  have gained a thorough 
understanding of the spatiotemporal distribution characteristics of the 
NDVI and analyzed the influence of climatic and socio-economic 

FIGURE 6

Partial correlation coefficients and significance of NDVI and meteorological factors in Yunnan Province from 1998 to 2019. (A) The partial correlation 
coefficient between NDVI and temperature; (B) the significance of the correlation between NDVI and temperature; (C) the partial correlation 
coefficient between NDVI and precipitation; (D) the significance of the correlation between NDVI and precipitation; (E) the partial correlation 
coefficient between NDVI and relative humidity, and (F) the significance of the correlation between NDVI and relative humidity. SNC, significantly 
negative correlation; MNC, moderately negative correlation; MPC, moderately positive correlation; SPC, significantly positive correlation.

https://doi.org/10.3389/fevo.2023.1177849
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Han et al. 10.3389/fevo.2023.1177849

Frontiers in Ecology and Evolution 09 frontiersin.org

factors on the NDVI. In the following sections, we employed advanced 
modeling methods to precisely simulate and predict the NDVI in both 
temporal and spatial dimensions.

3.5. Normalized vegetation index spatial 
and temporal simulation projections for 
2020–2030

3.5.1. Impact of air temperature, precipitation, and 
relative humidity on the NDVI time dimension

A linear function and two periodic functions were constructed to 
fit the annual NDVI temporal variation for 1998–2019 (Table 2). The 
results show that the polynomial function includes the linear function 
better. In addition, the periodic functions (Fourier and trigonometric 
functions) performed much better than the linear function (primary 
function). The accuracy analysis (Table 2) showed that the Fourier 
function was the best-fitted function among the three functions 
constructed in this study. It effectively depicted the annual NDVI 
time-series variation in the study area.

The results of the prediction of the NDVI in Yunnan Province 
from 2020 to 2030 using the constructed Fourier function show 
(Figure  7) that the NDVI values in Yunnan Province show 
fluctuating changes. However, the NDVI values show a slight 
upward trend in general (0.0015/per year), reaching a maximum 
weight of 0.703  in September 2027 and a minimum of 0.498  in 
March 2030.

3.5.2. Modeled prediction of NDVI spatial 
distribution in 2020–2030

In this paper, based on the regional NDVI data of 2012 and 2015, 
the probability transfer matrix of each type of NDVI from 2012 to 
2015 was obtained. The simulated data for 2017 and 2018 were 
obtained using the CA-Markov model. The decomposition results of 
the NDVI for 2017 and 2018 were compared with the simulation 
results (Figure 8). The simulation results were also verified with Kappa 
coefficients. The predicted Kappa coefficient values of the NDVI for 
2015 and 2018 were 0.8086 and 0.806, respectively (generally, when 
the Kappa coefficient is greater than or equal to 0.75, the simulation 
prediction is considered to be more accurate) (Fu et al., 2018), so the 

TABLE 1 Correlation between NDVI and social factors in Yunnan, 1998–2019.

NDVI Population 
density

Gross 
production

Industry Agriculture Gross 
building 
product

Forests Pasture Cropland

NAVI 1

Population 

density

0.951** 1

Gross 

production

0.922** 0.916** 1

Industry 0.922** 0.947** 0.971** 1

Agriculture −0.460* −0.552** −0.363 −0.464* 1

Gross 

building 

product

0.901** 0.886** 0.991** 0.946** −0.295 1

Forests 0.932** 0.880** 0.924** 0.890** −0.410 0.922** 1

Pasture −0.724** −0.671** −0.838** −0.705** 0.089 −0.886** −0.803** 1

Cropland 0.277 0.355 0.199 0.220 −0.097 0.184 0.177 −0.105 1

*The correlation is significant at the 0.05 level (one-tailed). **At the 0.01 level (two-tailed), the correlation is significant.

TABLE 2 The accuracy analysis of the results by different fitting functions.

Fitting 
function

Function expression Number 
of terms

R2 SSE RMSE

Polynomial 

function

y = −4.4984E11 + 1.35304E9*x−1695626.94655*x2 + 1133.25223*x3 − 0.42601*x4 + 8.5408E−5*x5 

−7.13413E−9*x6

6 0.18** 1.40 0.006

Trigonometric 

function

y = 0.59975−18.38915*sin(pi*(x + 0.49874)/0.08951) – 0.61** 0.66 0.002

Fourier 

function

y = 0.5996 – 0.006659*cos(x*3.151)-0.005518*sin(x*3.151)−0.08763*cos(2*x*3.151) 

−0.01923*sin(2*x*3.151) + 0.002304*cos(3*x*3.151)−0.003563*sin(3*x*3.151)  

+ 0.001095*cos(4*x*3.151) + 0.01228*sin(4*x*3.151)  

+ 0.001425*cos(5*x*3.151) + 0.003636*sin(5*x*3.151)−0.007611*cos(6*x*3.151)  

+ 0.004719*sin(6*x*3.151)−0.001563*cos(7*x*3.151) + 0.005697*sin(7*x*3.151)

7 0.64** 0.62 0.050

*The correlation is significant at the 0.05 level (one-tailed). **At the 0.01 level (two-tailed), the correlation is significant.
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simulation prediction of each type of NDVI change passed the 
accuracy test.

In this paper, the CA-Markov model further predicted the spatial 
variation in the NDVI values from 2020 to 2030 (Figure 9). Combined 
with Figure 10, we found that the NDVI Lower type will basically 
remain unchanged over the next 11 years from 2020 to 2030 and is still 
distributed in urban areas and the northwestern highlands. The NDVI 
Low type decreased by 0.4%. The NDVI Normal and High types 
decreased by 0.9 and 2.8%, respectively, while the NDVI Higher type 
increased by 4%. This indicates that the NDVI Normal and High types 
were transformed into Higher types, where by the decreasing and 
increasing areas were mainly distributed in the northwestern and 
eastern regions, respectively, with a scattered distribution. Therefore, 
the vegetation in Yunnan Province still has a clear increasing trend 
from 2020 to 2030.

Up to now, we have comprehensively understood the spatiotemporal 
distribution characteristics of the NDVI in the study area, the degree of 
influence of climatic factors on the NDVI, and successfully predicted 
the spatiotemporal change trends of the NDVI in the study area for 
2020–2030. In the subsequent sections, we will continue to delve deeper 
into the relevant issues highlighted by these findings to ensure that our 
research conclusions are more rigorous and logical.

4. Discussion

4.1. Spatial and temporal distribution of the 
normalized difference vegetation index

Studying changes in vegetation dynamics in Yunnan Province is 
essential to improve vegetation ecological vulnerability assessment, 
especially as a result of climate change (Fernández et al., 2012; Min 
et al., 2015; Wang et al., 2016). In this study, we found a high increase 
in vegetation cover in Yunnan Province over the past 22 years 
(Figures 2, 3), with an annual growth rate of 0.00614, like previous 
results based on VIs (Li et al., 2021; Sun et al., 2021b). We also found 

that the temporal variation in NDVI values showed a significant 
decreasing trend in the mean NDVI values around 2011, with a faster 
rate of vegetation recovery in the subsequent years. On the one hand, 
this is attributed to the fact that meteorological factors (Figure 4) were 
at low values in around 2011, which made it unsuitable for vegetation 
growth. On the other hand, during this period, when the 11th and 
12th Five-Year Plans converged, the development of industry and 
agriculture was promoted nationwide, and many natural areas in 
Yunnan Province were reclaimed. A total of 24.4% of agriculture and 
56.7% of industrial enterprises above the scale were increased 
cumulatively in 4 years. The scale of arable land and buildings was 
fully expanded, and the vegetation growth environment was damaged, 
resulting in a sharp decrease in natural vegetation.

The spatial variation in NDVI values shows a trend of 
decreasing from south to north (Sun et al., 1998; Xie et al., 2021). 
The low NDVI values are mainly in the northwestern plateau, Gobi 
region, and urban areas. The plateau Gobi region indicates that the 
natural environment primarily influences vegetation, while the 
urban areas suggest that human activities affect vegetation changes. 
The higher NDVI values in the southern and southwestern regions 
are due to the favorable climate and more distribution of rivers in 
these regions, on the one hand, and a greater emphasis on vegetation 
ecosystem construction in these regions. Regarding spatial trend 
changes in NDVI values, vegetation in northwestern Yunnan 
Province is severely reduced, while vegetation in the southern and 
southwestern areas is better developed. This shows that the trend of 
plateau globalization in the northwest is due to the harsh natural 
environment. However, a series of policy measures implemented by 
the state to improve the ecological environment, such as ecological 
restoration and the planting of plantation forests, enhanced the 
environmental climate in the northwest (Du et al., 2019; Hu et al., 
2022); more time is still needed for the poorer economy and small 
population in the northwest. In contrast, the environment is very 
suitable in the southern and southwestern regions, the population 
density is low, and the vegetation improvement shows more of a 
natural progression.

FIGURE 7

Fourier function model fitted prediction results of NDVI values for 2020–2030. The brown box represents the monthly NDVI values, the solid black line 
represents the finished prediction results, and the gray dashed line represents the linear fit. The linear fit function is y = 0.0015*x-2.4.
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4.2. Effects of temperature, precipitation, 
relative humidity, and social factors on the 
normalized difference vegetation index

Meteorological factors influence vegetation growth, providing 
vegetation’s necessary water and heat conditions (Aili et al., 1907). Air 
temperature, precipitation, and relative humidity are the main controls 
among meteorological factors that affect vegetation index changes 
(Jiang et  al., 2019). We  found that the vegetation index showed a 
significant decreasing trend in regions with lower air temperature, 
precipitation, and relative humidity, most likely due to the 
inconvenience caused by low temperature, low precipitation, and low 
humidity regions to the natural growth of vegetation and the artificial 
cultivation of vegetation and other behaviors. Therefore, beneficial 
human activities in warmer climatic regions are conducive to 
increasing vegetation growth and the vegetation index.

Our analysis of the biased relationship between vegetation and 
meteorological factors revealed an overall positive spatial correlation 
between the NDVI and air temperature and relative humidity, with 
the highest positive spatial correlation being with relative humidity. In 
addition, there is a negative spatial correlation between the NDVI and 
precipitation, further indicating that the NDVI is affected by multiple 

meteorological factors. It was found that air temperature and relative 
humidity had different effects on the growth and development of 
vegetation at various stages due to climate warming. In general, they 
promoted vegetation growth (Liu et al., 2018). We further found that 
the areas with a negative correlation between the NDVI and 
precipitation were mainly in the south-central region, attributed to the 
fact that this region is mostly in the tropics, where precipitation itself 
is high. If precipitation increases further, it will weaken vegetation 
photosynthesis and, thus, reduce vegetation.

In addition, the vegetation/land change caused by human 
activities is the main factor that affects the NDVI (Zhang et al., 2016; 
Bai and Li, 2022) and an essential driver of vegetation cover change 
(Zhang et al., 2011, 2019). We found the strongest positive correlation 
between the NDVI values and population density. Negative 
correlations were found with changes in agricultural and grazing land 
areas. The influence of population density on vegetation dominated 
densely populated areas, cities, and peri-urban areas. The balanced 
population growth in Yunnan Province has exceeded 20% in the last 
22 years. The continuous rise of economic growth and urban 
population has led to the expansion of metropolitan construction land 
area, resulting in a decreasing trend in vegetation cover in some areas. 
Still, overall, it remained significantly and positively correlated with 

FIGURE 8

Comparative analysis of NDVI accuracy projections for 2017 and 2018. (A,B) Represent the original images for 2017 and 2018, respectively, while 
(A1,B1) represent the simulated prediction images. Note that lower indicates NDVI values <0.5; low represents NDVI values 0.5–0.6; normal denotes 
NDVI values 0.6–0.7; high corresponds to NDVI values 0.7–0.8; higher signifies NDVI values >0.8.
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the NDVI, stemming from the concentrated distribution of population 
growth in the study area.

We found that NDVI values were negatively correlated with 
changes in agricultural and grazing land areas. The increase in 

agriculture is attributed to the fact that, on the one hand, it represents 
an increase in agricultural land. On the other hand, excessive 
agricultural exploitation destroys the natural environment, causing 
problems such as land desertification, soil erosion, and soil pollution, 

FIGURE 9

Projected spatial distribution of NDVI in Yunnan Province from 2020 to 2030.
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which in turn leads to a significant decrease in vegetation cover. The 
livestock industry in the study area is more developed and has been 
further developed in recent years, leading to a further increase in 
grazing land. The increase in grazing land represents an increase in 
grazing, which mainly transforms the vegetation structure 
morphology and reduces the vegetation cover through behaviors such 
as animal foraging and trampling.

The NDVI is also significantly and positively correlated with GDP, 
industry, and construction GDP, indicating that improved socio-
economics can increase natural vegetation cover. Since the 21st 
century, the state has attached great importance to preventing and 
controlling stone desertification and ecological restoration in Yunnan. 
It has implemented a series of environmental engineering measures 
that have played a vital role in the restoration of vegetation, not only 
improving the vegetation cover in the study area but also playing an 
essential role in improving the survival environment of vegetation 
communities, effectively reducing the degree of regional stone 
desertification, and improving the regional vegetation cover (Cheng 
et al., 2022).

Combining the results shown in Figure 6, we found that climatic 
and social factors synergistically affected vegetation index changes. 
The vegetation growth in the study area was positively and negatively 
inhibited by social factors, and the overall positive promotion of 
regional vegetation growth dominated. The development of ecological 
projects has led to an increase in vegetation cover. Still, the inhibitory 
effect of unreasonable human development in the development of the 
economy on vegetation growth should be addressed.

4.3. Normalized vegetation index spatial 
and temporal simulation prediction

In this paper, three functions were used to fit the time series of the 
historical NDVI in Yunnan Province, and it was found that the 
periodic function of the Fourier function performed the best. Roy 
et al. predicted future changes in the NDVI by using machine learning 
methods, but large data sets are needed for prediction (Ahmad et al., 
2023). In contrast, this paper predicts the NDVI in Yunnan Province 
based on historical NDVI data in a simple and effective mathematical, 

statistical way (i.e., Fourier function). As confirmed by previous 
studies (Tchepel and Borrego, 2010; Güler and Özcan, 2019), these 
studies also used the Fourier function for analysis and prediction. 
Notably, the curve fit predicted using monthly data was better than 
that indicated by their use of interannual data by comparing it with 
Zhou et al. (2022). Thus, the Fourier function model was more suitable 
for relevant monthly data. In addition, the current use of CA-Markov 
models lies mainly in the simulation and prediction of land use 
patterns (Xu et al., 2022; Luan et al., 2023), and fewer research cases 
have been used for the simulation and prediction of the NDVI, which, 
as a type of cover, is a dynamic change in land cover. Simulating and 
predicting a single vegetation change is more straightforward than the 
interconversion between different land use types. Simulating and 
predicting a single vegetation change is shorter than the 
interconversion between different land use types.

Of course, there are uncertainties in the prediction set out in this 
paper. In time series prediction, the Fourier function is a mathematical, 
statistical method that uses historical data to fit and predict the NDVI, 
limited by the information provided by historical data; in addition, it 
can superimpose periodic information from historical data into the 
future predicted values. In spatial distribution prediction, since this 
study is the first attempt to directly simulate and predict the NDVI 
distribution now using the CA-Markov model, it focuses on affecting 
the spatial and temporal patterns under natural evolutionary 
conditions. At the same time, NDVI change is a complex process 
influenced by various uncertainties such as nature, human activities, 
and land use development policies. Therefore, how to adjust the model 
parameters based on a comprehensive analysis and integrated 
consideration of the effects of multiple factors also needs to be further 
explored in depth. In response to these situations, it is strongly 
recommended to use new and better methods in future investigations.

5. Summary and conclusion

To further expand upon research on the vegetation index, this 
paper plans to take Yunnan Province as an example; in addition to 
studying the spatiotemporal distribution characteristics and specific 
driving mechanism of its vegetation index, a new spatiotemporal 

FIGURE 10

Percentage change of NDVI by type in Yunnan from 2020 to 2030.
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prediction method of the vegetation index is also added. In this paper, 
the normalized vegetation index (NDVI) data from 1998 to 2019, three 
meteorological factors, and eight social factors were used to analyze the 
topographic characteristics of the region. The dynamic change and 
driving mechanism of the NDVI were are studied using mean value 
analysis, univariate linear trend regression analysis, and partial 
correlation analysis. In addition, the Fourier function and CA-Markov 
models were used to predict the time and space of the NDVI in Yunnan 
Province from 2020 to 2030. The main conclusions are as follows:

 1. From 1998 to 2019, the NDVI value of Yunnan Province 
showed a significant growth trend, and the annual growth rate 
was 0.00614. In terms of time, the NDVI value fluctuated but 
showed an upward trend. In space, the NDVI gradually 
increased from north to south.

 2. The NDVI has a positive spatial correlation with air 
temperature and relative humidity and a spatial correlation 
with precipitation. The positive promotion of meteorological 
factors is more significant than negative inhibition. The partial 
correlation of relative humidity among the meteorological 
factors is the highest, which is the main driving factor.

 3. The NDVI values had the strongest positive correlation with 
people, the weakest positive correlation with cropland, and a 
negative correlation with pasture and agricultural area.

 4. In the time series prediction, The NDVI values in Yunnan 
Province fluctuated, but there was a slight upward trend in the 
NDVI values (0.0015/per year). In the spatial distribution 
projection, the vegetation in Yunnan Province still has a 
significant increasing trend from 2020 to 2030.

This study provides necessary theoretical support for NDVI 
simulation and forecasting. The predicted NDVI values offer valuable 
information for decision-makers and strategists in ecological  
environments.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Author contributions

YH, YL, and PZ: conceptualization, methodology, visualization, 
and writing – first draft. YH and PZ: software and funding acquisition. 
YL, JD, and ZC: validation. YH: formal analysis and investigation. JD 
and ZC: supervision. PZ: writing – review and editing. All authors 
contributed to the article and approved the submitted version.

Funding

This research was funded by the National Natural Science Foundation 
of China (grant no. 41761081), The Basic Research Program of Yunnan 
Province (grant no. 202201AU070112), The Kunming University of 
Science Technology introduced talent research start-up fund project 
(grant no. KKZ3202021055), and Yunnan Province Philosophy and Social 
Science Planning Project (grant no. PY202129).

Acknowledgments

The authors would like to thank the researchers who have 
provided the open-source algorithms, which have been extremely 
helpful to the research in this manuscript.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Ahmad, R., Yang, B., Ettlin, G., Berger, A., and Rodríguez-Bocca, P. (2023). A 

machine-learning based ConvLSTM architecture for NDVI forecasting. Intl. Trans. in 
Op. Res. 2020, 1–24. doi: 10.1111/itor.12887

Aili, A., Xu, H., Zhao, X., Zhang, P., and Yang, R. (1907). Dynamics of vegetation 
productivity in relation to surface meteorological factors in the Altay Mountains in 
Northwest China. Forests 2022:13.

Bai, Y., and Li, S. (2022). Growth peak of vegetation and its response to drought on 
the Mongolian plateau. Ecol. Indic. 141:109150. doi: 10.1016/j.ecolind.2022.109150

Chen, Z., Wang, W., and Fu, J. (2020). Vegetation response to precipitation 
anomalies under different climatic and biogeographical conditions in China. Sci. Rep. 
10, 1–16. doi: 10.1038/s41598-020-57910-1

Cheng, Y., Zhang, L., Zhang, Z., Li, X., Wang, H., and Xi, X. (2022). Spatiotemporal 
variation and influence factors of vegetation cover in the Yellow River Basin 
(1982–2021) based on GIMMS NDVI and MOD13A1. Water 14:3274. doi: 10.3390/
w14203274

Cheng, Z., Zhao, T., Zhu, Y., and Li, H. (2022). Evaluating the coupling 
coordinated development between regional ecological protection and high-quality 
development: a case study of Guizhou. China. Land. 11:e0228426 doi: 10.3390/
land11101775

Du, Z., Zhao, J., Pan, H., Wu, Z., and Zhang, H. (2019). Responses of vegetation 
activity to the daytime and nighttime warming in Northwest China. Environ. Monit. 
Assess. 191:721. doi: 10.1007/s10661-019-7855-8

Fernández, G., María, E., Baival, B., and Batjav, B. (2012). Cross-boundary and cross-
level dynamics increase vulnerability to severe winter disasters (dzud) in Mongolia. 
Global Environ. Chang. 22, 836–851. doi: 10.1016/j.gloenvcha.2012.07.001

Fu, X., Wang, X., and Jeffrey Yang, Y. (2018). Deriving suitability factors for CA-
Markov land use simulation model based on local historical data. J. Environ. Manage. 
206, 10–19. doi: 10.1016/j.jenvman.2017.10.012

Güler, E., and Özcan, B. (2019). PM2.5 concentration prediction based on winters’ 
and Fourier analysis with least squares methods in Çerkezköy district of Tekirdağ. Int. 
J. Environ. Pollut. Environ. Modell. 4, 8–16.

He, Y. J., Kong, Z., Hu, X., Zhang, J., Wang, M., Peng, C. H., et al. (2022). Water and 
heat conditions separately controlled inter-annual variation and growth trend of NDVI 
in the temperate grasslands in China. Acta Ecol. Sin. 42, 766–777. doi: 10.5846/
stxb202101130143 (in Chinese)

Hédl, R., Bernhardt-Römermann, M., Grytnes, J., Jurasinski, G., and Ewald, J. (2017). 
Resurvey of historical vegetation plots: a tool for understanding long-term dynamics of 
plant communities. Science 20, 161–163. doi: 10.1111/AVSC.12307

https://doi.org/10.3389/fevo.2023.1177849
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://doi.org/10.1111/itor.12887
https://doi.org/10.1016/j.ecolind.2022.109150
https://doi.org/10.1038/s41598-020-57910-1
https://doi.org/10.3390/w14203274
https://doi.org/10.3390/w14203274
https://doi.org/10.3390/land11101775
https://doi.org/10.3390/land11101775
https://doi.org/10.1007/s10661-019-7855-8
https://doi.org/10.1016/j.gloenvcha.2012.07.001
https://doi.org/10.1016/j.jenvman.2017.10.012
https://doi.org/10.5846/stxb202101130143
https://doi.org/10.5846/stxb202101130143
https://doi.org/10.1111/AVSC.12307


Han et al. 10.3389/fevo.2023.1177849

Frontiers in Ecology and Evolution 15 frontiersin.org

Hu, J., Zhou, Q., Cao, Q., and Hu, J. (2022). Effects of ecological restoration measures 
on vegetation and soil properties in semi-humid sandy land on the Southeast Qinghai-
Tibetan plateau. China. Glob. Ecol. Conserv. 33:e02000. doi: 10.1016/j.gecco.2022.e02000

Huang, W., Ge, Q., Wang, H., and Dai, J. (2019). Effects of multiple climate change 
factors on the spring phenology of herbaceous plants in Inner Mongolia, China: 
evidence from ground observation and controlled experiments. Int. J. Climatol. 39, 
5140–5153. doi: 10.1002/joc.6131

Jiang, H., Xu, X., Guan, M., Wang, L., Huang, Y., and Liu, Y. (2019). Simulation of 
spatiotemporal land use changes for integrated model of socioeconomic and ecological 
processes in China. Sustainability 11:3627. doi: 10.3390/su11133627

Jin, K., Wang, F., Han, J. Q., Shi, S. Y., and Ding, W. B. (2020). Effects of climate change 
and human activities on vegetation NDVI change in China from 1982 to 2015. J. Geogr. 
Sci. 75, 961–974. doi: 10.11821/dlxb202005006  (in Chinese).

Li, J., Chen, Q., Li, Q., Zhao, C., and Feng, Y. (2021). Influence of plants and environmental 
variables on the diversity of soil microbial communities in the Yellow River Delta wetland. 
China. Chemosphere. 274:129967. doi: 10.1016/j.chemosphere.2021.129967

Li, C., Wang, J., Hu, R., Yin, S., Bao, Y., and Ayal, D. Y. (2018). Relationship between 
vegetation change and extreme climate indices on the Inner Mongolia plateau, China, 
from 1982 to 2013. Ecol. Indic. 89, 101–109. doi: 10.1016/j.ecolind.2018.01.066

Li, M., Yin, L., Zhang, Y., Su, X., Liu, G., Wang, X., et al. (2021). Spatio-temporal 
dynamics of fractional vegetation coverage based on MODIS-EVI and its driving factors 
in Southwest China. Acta Ecol. Sinica. 41, 1138–1147. doi: 10.5846/STXB201907101451 
(in Chinese)

Li, J., Yu, S. Y., and Liu, L. (2020). Determining the dominant factors of the variability 
of terrestrial ecosystem productivity in China during the last two decades. Land Degrad. 
Dev. 31, 2131–2145. doi: 10.1002/ldr.3580

Liu, Y., Wang, J., Dong, J., Wang, S., and Ye, H. (2020). Variations of vegetation 
phenology extracted from remote sensing data over the Tibetan plateau hinterland 
during 2000–2014. J. Meteorol. Res. 34, 786–797. doi: 10.1007/s13351-020-9211-x

Liu, S. H., Yan, D. H., Shi, X. L., and Yuan, Z. (2014). Interannual variation and 
correlation between vegetation NDVI and climatic factors in China. Arid Land 
Geography. 37, 480–489. doi: 10.13826/j.cnki.cn65-1103/x.2014.03.008 (in Chinese).

Liu, H., Zhang, M., Lin, Z., and Xu, X. (2018). Spatial heterogeneity of the relationship 
between vegetation dynamics and climate change and their driving forces at multiple 
time scales in Southwest China. Agric. For. Meteorol. 256–257, 10–21. doi: 10.1016/j.
agrformet.2018.02.015

Luan, Y., Huang, G., and Zheng, G. (2023). Spatiotemporal evolution and prediction 
of habitat quality in Hohhot City of China based on the InVEST and CA-Markov 
models. J. Arid. Land 15, 20–33. doi: 10.1007/s40333-023-0090-8

Mao, X., Ren, H. L., and Liu, G. (2022). Primary interannual variability patterns of the 
growing-season NDVI over the Tibetan plateau and main climatic factors. Remote Sens. 
14:5183. doi: 10.3390/rs14205183

Min, S. K., Son, S. W., and Seo, K. H. (2015). Changes in weather and climate extremes 
over Korea and possible causes: a review. Asia-Pacific J. Atmos. Sci. 51, 103–121. doi: 
10.1007/s13143-015-0066-5

Mokarram, M., and Pham, T. M. (2022). CA-Markov model application to predict crop 
yield using remote sensing indices. Ecol. Indic. 139:108952. doi: 10.1016/j.ecolind.2022.108952

Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., and Nemani, R. R. (1997). 
Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 
698–702. doi: 10.1038/386698a0

Piao, S., Yin, G., Tan, J., Cheng, L., Huang, M., Li, Y., et al. (2015). Detection and 
attribution of vegetation greening trend in China over the last 30 years. Global 21, 
1601–1609. doi: 10.1111/gcb.12795

Sun, C., Bao, Y., Vandansambuu, B., and Bao, Y. (2022). Simulation and 
prediction of land use/cover changes based on CLUE-S and CA-Markov models: a 
case study of a typical pastoral area in Mongolia. Sustainability 14:15707. doi: 
10.3390/su142315707

Sun, R., Chen, S., and Su, H. (2021). Climate dynamics of the spatiotemporal changes 
of vegetation NDVI in northern China from 1982 to 2015. Remote. Sens. Basel. 13:187. 
doi: 10.3390/rs13020187

Sun, H., Wang, X., Fan, D., and Sun, O. J. (2021a). Contrasting vegetation response to 
climate change between two monsoon regions in Southwest China: the roles of climate 
condition and vegetation height. Sci. Total Environ. 802:149643 doi: 10.1016/j.
scitotenv.2021.149643

Sun, W., Wang, Y., Fu, Y. H., Xue, B., Wang, G., Yu, J., et al. (2019). Spatial heterogeneity 
of changes in vegetation growth and their driving forces based on satellite observations 

of the Yarlung Zangbo River basin in the Tibetan plateau. J. Hydrol. 574, 324–332. doi: 
10.1016/j.jhydrol.2019.04.043

Sun, H., Wang, C., Niu, Z., and Li, B. (1998). Analysis of the vegetation cover change 
and the relationship between NDVI and environmental factors by using NOAA time 
series data. J. Remote Sens. 3, 204–210.

Sun, H., Wang, J., Xiong, J., Bian, J., Jin, H., Cheng, W., et al. (2021b). Vegetation 
change and its response to climate change in Yunnan Province. China. Adv. Meteorol. 
20:8857589. doi: 10.1155/2021/8857589

Tchepel, O., and Borrego, C. (2010). Frequency analysis of air quality time series for 
traffic related pollutants. J. Environ. Monit. 12, 544–550. doi: 10.1039/B913797A

Tong, L., Liu, Y., Wang, Q., Zhang, Z., Li, J., Sun, Z., et al. (2019). Relative effects of 
climate variation and human activities on grassland dynamics in Africa from 2000 to 
2015. Ecol. Inform. 53:100979. doi: 10.1016/j.ecoinf.2019.100979

Tong, S., Zhang, J., Ha, S., Lai, Q., and Ma, Q. (2016). Dynamics of fractional 
vegetation coverage and its relationship with climate and human activities in Inner 
Mongolia. China. Remote. Sens. 8:776. doi: 10.3390/rs8090776

Torres-García, M. T., Oyonarte, C., Cabello, J., Guirado, E., Rodríguez-Lozano, B., and 
Salinas-Bonillo, M. J. (2022). The potential of groundwater-dependent ecosystems to 
enhance soil biological activity and soil fertility in drylands. Sci. Total Environ. 
826:154111. doi: 10.1016/j.scitotenv.2022.154111

Tucker, C. J., and Choudhury, B. J. (1987). Satellite remote sensing of drought 
conditions. Remote Sens. Environ. 23, 243–251. doi: 10.1016/0034-4257(87)90040-X

Tucker, C. J., Slayback, D. A., Pinzon, J. E., Los, S. O., Myneni, R. B., and Taylor, M. G. 
(2001). Higher northern latitude normalized difference vegetation index and growing 
season trends from 1982 to 1999. Int. J. Biometeorol. 45, 184–190. doi: 10.1007/
s00484-001-0109-8

Wang, R., Cherkauer, K. A., and Bowling, L. C. (2016). Corn response to climate stress 
detected with satellite-based NDVI time series. Remote Sens. 8:269. doi: 10.3390/
rs8040269

Wang, X. Y., Zhao, C. Y., and Jia, Q. Y. (2013). Impacts of climate change on Forest 
ecosystems in Northeast China. Adv. Clim. Chang. Res. 4, 230–241. doi: 10.3724/
SP.J.1248.2013.230

Wang, T., Zhu, Z., and Wu, W. (2002). Sandy desertification in the north of China. 
Science 45, 23–34. doi: 10.1007/BF02878385

Xiao, J., Wang, S., Bai, X., Zhou, D., Tian, Y., Li, Q., et al. (2018). Determinants and 
spatial-temporal evolution of vegetation coverage in the karst critical zone of South 
China. Acta Ecol. Sinica. 38, 8799–8812. doi: 10.5846/stxb201805061010 (in Chinese).

Xie, J., Lu, Z., Xiao, S., and Yan, C. (2021). Driving force and ecosystem service values 
estimation in the extreme arid region from 1975 to 2015: a case study of Alxa league. 
China. Chinese Geogr. Sci. 31, 1097–1107. doi: 10.1007/s11769-021-1244-2

Xu, X., Liu, J., Jiao, F., Zhang, K., Ye, X., Gong, H., et al. (2022). Ecological engineering 
induced carbon sinks shifting from decreasing to increasing during 1981-2019 in China. 
Sci. Total Environ. 864:161037 doi: 10.1016/j.scitotenv.2022.161037

Xu, D., Zhang, K., Cao, L., Guan, X., and Zhang, H. (2022). Driving forces and 
prediction of urban land use change based on the geodetector and CA-Markov model. 
Int. J. Digit. Earth. 15, 2246–2267. doi: 10.1080/17538947.2022.2147229

Zhang, C., Lu, D., Chen, X., Zhang, Y., Maisupova, B., and Tao, Y. (2016). The 
spatiotemporal patterns of vegetation coverage and biomass of the temperate deserts in 
Central Asia and their relationships with climate controls. Remote Sens. Environ. 175, 
271–281. doi: 10.1016/j.rse.2016.01.002

Zhang, G., Xu, X., Zhou, C., Zhang, H., and Ouyang, H. (2011). Responses of grassland 
vegetation to climatic variations on different temporal scales in Hulun Buir grassland in 
the past 30 years. J. Geogr. Sci. 21, 634–650. doi: 10.1007/s11442-011-0869-y

Zhang, G., Yan, J., Zhu, X., Ling, H., and Xu, H. (2019). Spatio-temporal variation in 
grassland degradation and its main drivers, based on biomass: case study in the Altay 
prefecture. China. Glob. Ecol. Conserv. 20:e00723. doi: 10.1016/j.gecco.2019.e00723

Zhao, A., Zhang, A., and Liu, X. (2018). Spatiotemporal changes of normalized 
difference vegetation index (NDVI) and response to climate extremes and ecological 
restoration in the loess plateau. China. Theor. Appl. Climatol. 132, 555–567. doi: 10.1007/
s00704-017-2107-8

Zhou, P., Zhao, D., Liu, X., Duo, L., and He, B.-J. (2022). Dynamic change of vegetation 
index and its influencing factors in Alxa league in the arid area. Front. Ecol. Evol. 
10:922739. doi: 10.3389/fevo.2022.922739

Zhu, H. (2016). A biogeographical comparison between Yunnan, Southwest China, 
and Taiwan, Southeast China, with implications for the evolutionary history of the east 
Asian Flora. Ann. Mo. Bot. Gard. 101, 750–771. doi: 10.3417/2011037

https://doi.org/10.3389/fevo.2023.1177849
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://doi.org/10.1016/j.gecco.2022.e02000
https://doi.org/10.1002/joc.6131
https://doi.org/10.3390/su11133627
https://doi.org/10.11821/dlxb202005006
https://doi.org/10.1016/j.chemosphere.2021.129967
https://doi.org/10.1016/j.ecolind.2018.01.066
https://doi.org/10.5846/STXB201907101451
https://doi.org/10.1002/ldr.3580
https://doi.org/10.1007/s13351-020-9211-x
https://doi.org/10.13826/j.cnki.cn65-1103/x.2014.03.008
https://doi.org/10.1016/j.agrformet.2018.02.015
https://doi.org/10.1016/j.agrformet.2018.02.015
https://doi.org/10.1007/s40333-023-0090-8
https://doi.org/10.3390/rs14205183
https://doi.org/10.1007/s13143-015-0066-5
https://doi.org/10.1016/j.ecolind.2022.108952
https://doi.org/10.1038/386698a0
https://doi.org/10.1111/gcb.12795
https://doi.org/10.3390/su142315707
https://doi.org/10.3390/rs13020187
https://doi.org/10.1016/j.scitotenv.2021.149643
https://doi.org/10.1016/j.scitotenv.2021.149643
https://doi.org/10.1016/j.jhydrol.2019.04.043
https://doi.org/10.1155/2021/8857589
https://doi.org/10.1039/B913797A
https://doi.org/10.1016/j.ecoinf.2019.100979
https://doi.org/10.3390/rs8090776
https://doi.org/10.1016/j.scitotenv.2022.154111
https://doi.org/10.1016/0034-4257(87)90040-X
https://doi.org/10.1007/s00484-001-0109-8
https://doi.org/10.1007/s00484-001-0109-8
https://doi.org/10.3390/rs8040269
https://doi.org/10.3390/rs8040269
https://doi.org/10.3724/SP.J.1248.2013.230
https://doi.org/10.3724/SP.J.1248.2013.230
https://doi.org/10.1007/BF02878385
https://doi.org/10.5846/stxb201805061010
https://doi.org/10.1007/s11769-021-1244-2
https://doi.org/10.1016/j.scitotenv.2022.161037
https://doi.org/10.1080/17538947.2022.2147229
https://doi.org/10.1016/j.rse.2016.01.002
https://doi.org/10.1007/s11442-011-0869-y
https://doi.org/10.1016/j.gecco.2019.e00723
https://doi.org/10.1007/s00704-017-2107-8
https://doi.org/10.1007/s00704-017-2107-8
https://doi.org/10.3389/fevo.2022.922739
https://doi.org/10.3417/2011037

	Dynamic change, driving mechanism and spatiotemporal prediction of the normalized vegetation index: a case study from Yunnan Province, China
	1. Introduction
	2. Materials and methods
	2.1. Study area
	2.2. Data
	2.2.1. Normalized difference vegetation index data
	2.2.2. Other data
	2.3. Methods
	2.3.1. Average analyses of the normalized difference NDVI
	2.3.2. Spatial trend analysis methods
	2.3.3. Partial correlation analysis
	2.3.4. Prediction model
	2.3.4.1. Fourier function model
	2.3.4.2. CA-Markov model
	2.4. Data preprocessing steps

	3. Results
	3.1. Characteristics of NDVI time dimensional changes
	3.2. Characteristics of NDVI spatial distribution variation
	3.3. Correlation analysis of the NDVI and climate factors
	3.3.1. Impact of air temperature, precipitation, and relative humidity on the NDVI time dimension
	3.3.2. Effects of air temperature, precipitation, and relative humidity on the spatial dimension of the NDVI
	3.3.3. Partial correlation analysis between the NDVI and climatic factors
	3.4. Characteristics of NDVI time dimensional changes
	3.5. Normalized vegetation index spatial and temporal simulation projections for 2020–2030
	3.5.1. Impact of air temperature, precipitation, and relative humidity on the NDVI time dimension
	3.5.2. Modeled prediction of NDVI spatial distribution in 2020–2030

	4. Discussion
	4.1. Spatial and temporal distribution of the normalized difference vegetation index
	4.2. Effects of temperature, precipitation, relative humidity, and social factors on the normalized difference vegetation index
	4.3. Normalized vegetation index spatial and temporal simulation prediction

	5. Summary and conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note

	 References

