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Genomic screening of fecal DNA provides insight into diet, parasite infection

dynamics, and other aspects of the ecology and pathogens of wild populations.

Here, we amplify and sequence the V4/V5 regions of the eukaryotic 18S

ribosomal RNA gene from fecal DNA of wild capuchin monkeys (Cebus

imitator). We collected 94 fecal samples from 26 individuals, each sampled 1-4

times across a 19-month period and examined the eukaryotic diversity in 63 of

these samples which had sufficient numbers and quality of reads during

downstream analyses. We found a total of 234 distinct amplicon sequence

variants (ASVs) classified as Eukaryotes in our samples. Of these, 66 were

assigned to the phylum Nematoda. 64 ASVs are from taxa that possibly

parasitize monkeys or their food items: 33 were assigned to lungworms

(Superfamily Metastrongyloidae; genus Angiostrongylus), two to the genus

Strongyloides, and one to the genus Austrostrongylus. The remaining 28 ASVs

were assigned to nematodes that likely parasitize plants and/or invertebrates that

the monkeys consume. Taken together with past dietary and coprological study

of the same primate population, our results suggest that invertebrate

consumption and parasitic infection, especially by lungworms, is common and

widespread among this population of wild monkeys. We also discuss limitations

of our approach, including the amplification of off-target ASVs, and make

suggestions for future research. Overall, 18S screening shows promise for

identifying various components of the capuchin gastrointestinal eukaryotic

ecosystem, including parasitic helminths, and its utility will increase with the

improvement of genetic databases.

KEYWORDS

genetic parasitology, primate parasitology, deep amplicon sequencing, metabarcoding,
parasite communities, platyrrhines, diet analyses, seasonality
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1 Introduction

Genomic screening of fecal DNA provides a non-invasive method

for studying the dietary and disease ecology of wild animals (Bradley

et al., 2007; Henry, 2012; Srivathsan et al., 2016). Molecular

approaches, such as amplifying diagnostic genetic markers or

metagenomic screening, can reveal taxonomic relationships that

complement and enhance data obtained from traditional,

coproscopic methods used in parasitology (Ross et al., 2010;

Callejón et al., 2013; Perera et al., 2013; Tanaka et al., 2014;

Srivathsan et al., 2016; Mann et al., 2020; Sharma et al., 2022).

Genetic markers used to identify eukaryotic contents from vertebrate

feces include hypervariable regions within mitochondrial genes, such

as the cytochrome oxidase I (COI), as well as regions within

ribosomal RNA (rRNA) genes such as the internal transcribed

spacer 2 (ITS-2), and 18S (Aivelo and Medlar, 2018; Sharma et al.,

2022). To achieve finer levels of taxonomic resolution in parasites, or

to study the genetic population structure of those parasites, COI and

ITS-2 are effective genetic markers to target (Criscione et al., 2007;

Criscione et al., 2010; Blasco-Costa et al., 2016; Pafčo et al., 2018;

Papaiakovou et al., 2022); however, documenting higher level (e.g.

order, family, genus) taxonomy using the 18S rRNA gene, which is

largely conserved across eukaryotes, is useful for broad scale surveys,

and for first-pass identification of taxa of particular interest or

importance (Blasco-Costa et al., 2016; Avramenko et al., 2017;

Aivelo and Medlar, 2018; Stensvold, 2019; Mann et al., 2020).

To better understand the ecology and parasites of wild capuchin

monkeys from a genetic perspective, and to contribute to growing

eukaryotic genetic databases, we amplified and sequenced the V4/

V5 regions of the 18S ribosomal RNA gene derived from the fecal

DNA of a population of wild, Costa Rican capuchins (Cebus

imitator; Rowe and Myers, 2016). White-faced capuchins are well

suited for parasitological study because their omnivorous diet and

behavior expose them to a wide variety of parasites. This population

is of particular interest as the monkeys are individually identifiable

and the habitat is highly seasonal (Melin et al., 2008; Melin et al.,

2014). In particular, capuchins drink from small pools of

groundwater in the dry season, which are shared by group

members and other species (ex. tapirs, deer, peccaries) of the

tropical forest community. The potential for acquiring parasitic

infections in these situations is high because some gastrointestinal

parasites, such as Strongyloides sp., deposit infective stages in the

surrounding soil and sediment (Viney, 2017). Aggregation around

sparse and stagnant water sources also facilitates the horizontal

transfer of parasites between hosts through an accumulation of fecal

matter (Titcomb et al., 2021). However, during the wet season,

when both water and food resources are abundant, hosts can spread

out and access fresh resources, potentially reducing the chances of

parasite transmission between hosts (Griffin and Nunn, 2012). Our

aim is to assess the broad-level identity, richness, and genetic

variability of eukaryotes in our study population across distinct

ecological seasons, with a focus on nematode parasites,
Frontiers in Ecology and Evolution 02
complementing previous studies which examined seasonality in

parasite composition in capuchins at this field site.
2 Materials and methods

2.1 Study site, species, and
sample collection

This study was conducted using fecal samples collected from

wild white-faced capuchin monkeys living in Sector Santa Rosa,

Área de Conservación Guanacaste, in northwestern Costa Rica

(10.82049 lat.; 85.62813 long.). This tropical dry forest biome

experiences distinct dry (November – mid-May) and wet (mid-

June – October) seasons (Figure 1), which impacts the resources,

diet, and behavior of the resident primates (Campos and Fedigan,

2009; Melin et al., 2014; Orkin et al., 2018). We collected 94 fecal

samples from 26 wild, habituated monkeys during both the wet and

dry seasons during a 19-month period between January 2014 and

July 2015. Freshly voided fecal samples were collected and stored in

15ml sterile tubes containing 8 ml of 96% ethanol. Sampled

monkeys differed in age and sex and were distributed across five

social groups: GN (N=8) LV (N=5), AD (N=5), RM (N=5), and

EX (N=3).

Monkey feces were collected in Costa Rica under permission

from CONEGABIO, approval no. R-025-2014-OT-CONEGABIO

and exported under Área de Conservación Guanacaste permit no.

DSVS-029-2014-ACG-PI-060-2014. Feces were imported to the

University of Calgary with permission from the Public Health

Agency of Canada (PHAC), permit no. P-15-6481. Our research

protocols were approved by the Animal Care Committee of the

University of Calgary, approval no. AC15-0161.
2.2 18S amplification and sequencing

We extracted fecal DNA using the NucleoSpin Tissue kit

(Macherey-Nagel) following manufacturer recommendations and

stored the DNA extracts at -80°C. To amplify the 18S region of

eukaryotic rRNA, we used previously published primers: 563F (5’-

GCCAGCAVCYGCGGTAAY-3’) and 1132R (5’-CCGTCAA

TTHCTTYAART-3’), which have been shown in in-silico

experiments to amplify and discriminate between a broad range

of eukaryotic rRNA, with paired-end reads as short as 150 bp, while

minimizing prokaryotic amplification (Hadziavdic et al., 2014;

Hugerth et al., 2014). While we did not include a mammal-

blocking primer during our PCR steps, we would suggest future

studies consider using one, as host DNA amplification occurred in

this study (Mann et al., 2020). After successfully identifying and

sequencing amplicons of the expected size and taxa in our primer

validation (Supplementary Tables 1, 2), we proceeded with PCR on

94 fecal DNA extracts. 80 out of the 94 samples produced amplicons
frontiersin.org
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around the expected size of ~550 bp and were carried forward for

further analyses.

We constructed 18S libraries following the two-step protocol

used by Avramenko et al. (2015). In brief, we amplified the targeted

region using a mixture that contained the primer sequences above,

attached to adaptors with a variable number of Ns in between the

primer and adaptor sequence. In the initial PCR (PCR1) the

variable Ns introduced heterogeneity into the mixture and

the adaptors were used to attach unique barcodes in preparation

for PCR2, which was carried out to attach sample-specific barcodes

(Supplementary Table 3). We purified PCR products after each PCR

following the AMPure XP protocol, using a 1X homemade solid

phase reversible immobilization (SPRI) mixture with carboxyl

coated magnetic beads (Sera Mag Magnetic Speed-beads; Life

Technologies) (DeAngelis et al., 1995; Rohland and Reich, 2012).

Following a second purification, we measured our DNA libraries’

concentration using a Qubit dsDNA HS assay (Life Technologies)

and a D1000 TapeStation assay (Agilent). We then added 40 ng of

DNA from each sample to a pooled library that was sequenced on

an Illumina Miseq using a 2x250 paired end v2 kit (Miseq Reagent

Kits v2, MS-103-2003) with 20% phiX spike in.
2.3 Identification of eukaryotic taxa

We checked the quality of the short reads with fastqc v0.11.9c

(Andrews, 2010). Illumina Nextera adaptors were trimmed, and

primer sequences were removed using Cutadapt v4.1 (Martin,
Frontiers in Ecology and Evolution 03
2011). We identified amplicon sequence variants (ASVs) with

DADA2 v1.14.1(Callahan et al., 2016) and made several

modifications to the standard bioinformatic pipeline to

accommodate non-overlapping reads. Specifically, we used the

justConcatenate=TRUE option in the mergePairs step, following

Hu et al. (2016), which concatenates each pair of forward and

reverse-complemented reads with a 10 bp spacer sequence (all Ns)

introduced between them. Subsequent alignment and taxonomic

identification steps ignore the spacer and locally align the two

regions with the introduction of gaps where necessary. To minimize

the introduction of false diversity from primer sequences that were

not completely removed, we trimmed the forward reads to a length

of 227 bp and the reverse reads to 125 bp, with a maximum

expected error of two. Subsequently, we merged paired end reads

with the 10 bp spacer between forward and reverse reads, removed

chimeras, and identified unique ASVs. Combined sequence reads

were 362 bases long. We assigned taxonomy to the read pairs using

the Protist Ribosomal Reference database (PR2) for 18S (version

4.14.0) (Guillou et al., 2013; Hu et al., 2016).

We constructed a eukaryotic phylogenetic neighbor joining tree

that was optimized using a GTR model in phangorn 2.10.0 (Schliep,

2011). Downstream analyses were conducted in R using phyloseq

1.42.0 (Callahan et al., 2016). In total, we generated 1,651,332 reads

from which we identified 1,809 ASVs, 234 of which remained after

removing ASVs assigned to bacteria (1,567,428 raw reads),

mitochondria (3,647 raw reads), plasmids (223 raw reads),

unidentifiable kingdoms (86 raw reads), Mammalia (6,579 raw

reads), and samples with fewer than 2000 raw reads. Of the 80
FIGURE 1

(A) Wild white-faced capuchin monkeys inhabit the highly seasonal forests of Guanacaste Province in northwestern Costa Rica. (B, C) In the dry
season, the forest is largely defoliated and monkeys drink from stan ding pools of water. (D) In the wet season, monkeys lick water from leaves and
drink from holes and crevices of densely foliated trees. Photo credits: AD Melin.
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samples we sequenced, 70 samples generated sufficient numbers

and quality of reads. 63 of the 70 samples, representing 25

individuals, had adequate amounts of metadata available to be

included in downstream analyses (Supplementary Table 4).

Eukaryotic alpha diversity was characterized with the Chao1

index for each sample collected in the more intensively sampled

year, 2014, which included 56 samples from 25 individuals. For

individuals that were sampled multiple times within a single 2014

season (wet or dry), we calculated the mean Chao1 value across

replicate samples. The limitations of our dataset (zero-inflated non-

normal distribution, small sample sizes, and non-uniform sampling

across seasons) hindered our ability to meet the statistical

requirements for linear mixed effects models, so we tested

seasonal alpha diversity for significance using non-parametric

Wilcoxon tests.

To measure the relative abundance of the different taxa and

construct TCS parsimony networks, we rarefied our remaining

dataset of 56 samples to only include samples with exactly 500

reads to control for stochasticity in sequencing depth. After

rarefaction, 24 samples from 16 individuals remained. To identify

18S sequences originating from potentially parasitic nematodes, we

manually identified ASVs that were assigned to nematode genera

likely to infect mammals based on literature review. To explore the

genetic diversity of putatively parasitic nematodes within and

between species, we used the rarified dataset of 24 samples to

build TCS parsimony haplotype networks using R (RStudio Version

1.2.5001) and the packages ape v5.6-2 (Paradis and Schliep, 2019),

pegas v1.2 (Paradis, 2010), adegenet v2.1.10 (Jombart, 2008), and

Bios2cor v2.2.1 (Taddese et al., 2021). We set TCS node size to

correspond to the prevalence of that ASV across all 24 samples and

we represented ASV prevalence in samples by season across both

sampling years within each ASV node.
3 Results

3.1 Prevalence, richness, and taxonomy
of eukaryotes

Of the 234 eukaryotic ASVs that passed quality control, we found

ASVs from 18 classes, 22 orders, and 25 families (Supplementary

Table 5). ASVs assigned to the same genus and/or species differed, on

average, by 10.9%, or 33 bases (range 1 – 123 bp; 0.3 – 41.5%

dissimilarity). We group all putative parasitic worms, including an

ASV mapping to an acanthocephalan, into the paraphyletic group

“helminths’’ (Supplementary Table 6). In addition, we also found a

large number (1511) of ASVs that were assigned to Bacteria, which

likely reflects a lack of specificity in our primer design, and which we

did not analyze further. Within the rarefied dataset, eukaryotic

relative abundance was dominated by members of the Ascomycota

fungi, including Penicillium sp., yeasts, molds, and Candida sp.

(Maharachchikumbura et al., 2021; Figure 2A). Lesser contributions

from members of the Apicomplexa, such as Adelina sp. may

represent coccidian parasites of insects (Lange and Wittenstein,
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2001) while ASVs mapping to Metamonada largely fall in the

genus Hypotrichomonas, and are known to infect a variety of hosts,

from insects to mammals (Céza et al., 2015; Supplementary Table 5).

Within Metazoa we found ASVs assigned to taxa that capuchins

likely consume such as Arthropoda (e.g., insects and arachnids) and

Archaeplastida (e.g., Embryophyceae and Chlorellales; Figure 2A).

Furthermore, we found the presence of putatively parasitic

roundworms (class: Nematoda) in 54 out of 70 samples.

We examined the richness of each ASV across our population in

2014. Chao1 alpha diversity was significantly higher in the wet than

dry season in both the non-dietary eukaryotic (W = 72.5, p=0.002,

95% CI = (-5.000, -1.000)) and helminth-only (W= 96, p = 0.013,

95% CI = (-2.500 - -0.500)) datasets (Figure 2B).
3.2 Diversity of abundant
parasitic helminths

We found 64 ASVs that were assigned to five species of parasitic

worms present in existing databases (Figure 3). 33 ASVs - including
A

B

FIGURE 2

(A) Relative abundance of eukaryotic classes from filtered 18S
samples rarefied to 500 reads. Most samples are dominated by
reads from members of the Nematoda and Ascomycota. Samples
are split between those collected in the wet and dry seasons. While
all monkeys were initially sampled in both wet and dry seasons, not
all samples survived filtration and rarefaction steps, limiting our
ability to exhaustively include samples from the same monkeys in
both seasons. (B) Violin plots of the Chao 1 diversity of 56 fecal
samples collected from 25 wild capuchin monkeys (Cebus imitator)
in the dry season and wet season of 2014 in the tropical dry forest
of Área de Conservacion Guanacaste, Costa Rica. Taxa classified as
helminths are plotted on the right and non-dietary eukaryotes on
the left. Alpha diversity is significantly higher, with low effect sizes, in
the wet season samples.
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the four most prevalent - were assigned to Angiostrongylus vasorum,

a clade V lungworm species. Two ASVs were assigned to

Strongyloides cebus, a clade IV nematode species. Single ASVs

were assigned to Austrostrongylus victoriensis, and Onicola sp. We

also identified ASVs originating from taxa that are likely to have

been incidentally ingested by capuchins via food items (fruit and

insects), including ASVs that were assigned to Myctolaimus sp. (a

parasite of beetles), Parasitodiplogaster sp., Schistonchus aureus

(both parasites of fig wasps) (infraorder Tylenchomorpha), and

the Schistonchus genus more generally (Giblin-Davis et al., 2006).

To explore general seasonal patterns in the genetic diversity of

ASVs which mapped to putative parasitic taxa, which we grouped

into “helminths”, we generated parsimony networks (TCS) using

the rarified dataset of 24 samples (Figure 4). ASVs assigned to six

helminth taxa were included in our TCS networks: Angiostrongylus

vasorum, Austrostrongylus victoriensis, Parasitodiplogaster sp.,

Schistonchus aureus, Schistonchus sp., and Strongyloides cebus.

The 19 ASVs mapping to Angiostrongylus vasorum and the 13

ASVs mapping to Schistonchus aureus were the most diverse and

each formed their own cluster. ASVs mapping to Angiostrongylus

vasorum and Schistonchus aureus were found in samples collected

during both the wet and dry seasons. ASV 020, which mapped to

Strongyloides cebus, was also detected in samples collected during

both seasons, while ASV 067, which mapped to Austrostrongylus
Frontiers in Ecology and Evolution 05
victoriensis, and ASV 082, which mapped to Parasitodiplogaster sp.

were only identified in wet season samples.
4 Discussion

We used 18S metabarcoding to study eukaryotic diversity and

prevalence of different taxa in a population of wild capuchin monkeys

inhabiting a seasonal dry tropical forest. We identified 234 ASVs

assigned to the Domain Eukaryota, including 66 ASVs assigned to

nematodes, and 1 ASV assigned to an acanthocephalan parasite.
4.1 Prevalence, richness, and taxonomy
of eukaryotes

Despite the limitations of 18S deep amplicon sequencing, we

identified a wide range of eukaryotes in our samples that appear

biologically meaningful to the ecology of capuchin monkeys and

contribute to our understanding of communities present in the

tropical dry forest. Many of the sequences were assigned to

invertebrates that are capuchin prey items, such as arachnids (2

ASVs) and insects (18 ASVs) (Melin et al., 2008; Melin et al., 2010;
FIGURE 3

18S amplicon maximum likelihood tree of eukaryotic species identified in Cebus imitator samples. ASVs have been agglomerated to the species
level, and ASVs that could not be confidently assigned to the level of genus or below are not included. Each point indicates the presence of a given
species in a sample at least once and is color coded by sampling season. Putatively parasitic or commensal worms are labeled in red text. The
widespread presence of nematode taxa likely results from our primer design. Plants and arthropods are presumed to be of dietary origin.
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Supplementary Table 6). Typically, 50%, and up to 80% of the

capuchin diet consists of invertebrate prey (Melin et al., 2010;

Mosdossy et al., 2015; Mallott et al., 2018) and capuchins eat an

impressive variety of species (Fragaszy et al., 2004; Bergstrom et al.,

2019). As the 18S databases improve, tracking the fecal DNA of

invertebrate predators may be a promising way to study

invertebrate biodiversity, natural food webs, and ecosystem

natural history (Alberdi et al., 2018; Srivathsan et al., 2019; Bueno

de Mesquita et al., 2021).
4.2 Diversity of abundant
parasitic helminths

Given the potential fitness impacts and broader effects on

ecosystem dynamics and conservation (Marcogliese, 2005),

understanding the dynamics of helminth infection in wild

animals is an enduring goal (Eley et al., 1989; Obanda et al.,

2019). The rarified dataset revealed ASVs which mapped to 6

parasitic helminths that either infect capuchins or their prey

items (Figure 4). The most prevalent parasitic ASVs mapped to

the lungworm Angiostrongylus vasorum and were found in 17 of the

24 samples collected in both the wet and dry seasons. One ASV

(ASV 020), mapping to the capuchin threadworm Strongyloides

cebus, was found in 6 of the 24 samples and was also collected in

both seasons from multiple individuals. These taxonomic

assignments are the closest genetic matches to our ASVs, though

several of our ASVs may represent one or more parasite species not

represented in the PR2 database and so, our results should be

treated conservatively.
Frontiers in Ecology and Evolution 06
When we compare our results to a coprological study of the

same population, we gain additional context for our findings. Parr

et al. (2013a) found lungworms, Filariopsis barretoi, to be very

common in the Santa Rosa population. The genus Filariopsis is not

represented in the PR2 database but belongs to the same

superfamily (Metastrongyloidea; Rego and Schaeffer, 1988) as

Angiostrongylus. Given the high prevalence of this lungworm in

this population, one or more of the 34 ASVs assigned to

Angiostrongylus vasorum (a canid lungworm) in this study may

belong to Filariopsis barretoi. Other lungworms in this genus such

as, Angiostrongylus cantonesi and A. dujardini, infect platyrrhine

monkeys, i.e., tamarins and marmosets (Solórzano-Garcıá and de

León, 2018). However, despite the PR2 database carrying sequences

for A. cantonesi and A. dujardini, our ASVs were still assigned to

lungworms that infect canids, suggesting that the lungworm from

our samples may be genetically distinct from those that have been

reported to infect other primates.

The second most prevalent nematode found by Parr et al.

(2013a) was in the genus Strongyloides. We found two ASVs in

total that were assigned to Strongyloides cebus, one from our rarified

samples (ASV 020) and one ASV (ASV 219) from our larger sample

set (Supplementary Table 6). Strongyloides cebus was first described

in capuchin monkeys and is also reported to parasitize other

platyrrhine monkeys (Mati et al., 2013; Solórzano-Garcıá and de

León, 2018). In our rarified samples, Strongyloides cebus ASVs were

represented equally in samples collected in both the wet and dry

seasons. These findings are consistent with previous coprological

studies of this population (Parr et al., 2013b), which also identified

Strongyloides eggs and larvae in samples collected across seasons.

However, Parr et al. ‘s (2013b) found a higher prevalence of
FIGURE 4

Parsimony haplotype network of capuchin parasite 18S rRNA gene ASVs from 24 filtered 18S samples rarefied to 500 reads. ASV numbers are
located either within or next to haplotype nodes. The colors of the ASV numbers correspond to the helminth taxa that those ASVs mapped to. Node
size corresponds to haplotype frequency (range 1 - 17), with smaller nodes representing rarer haplotypes and larger nodes representing more
abundant haplotypes. Shading of the pie charts within ASV nodes corresponds to the number of samples in which that ASV was found in either the
wet (light gray) or the dry (dark gray) season. Light gray linkages (represented with dashed lines) between ASV nodes represent ‘alternative paths’, or
reticulations considering unsampled haplotypes, which may affect patterns of connectedness between the current ASVs.
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Strongyloides during the dry season, suggesting that Strongyloides

infections in this capuchin population may have a seasonal pattern.

This study’s small sample size (N=24) may obscure any seasonal

patterns of infection for this parasite, but future studies would

benefit from exploring seasonal patterns of parasitic infection in this

population using larger genetic datasets.

Finally, several of the putative helminth ASVs we discovered are

not likely to be capuchin monkey parasites and rather were assigned

to species that parasitize plants and/or invertebrates consumed by

the capuchins. ASVs assigned to the genera Schistonchus,

Parasitodiplogaster, and Myctolaimus are known to be parasites of

the fig plants, fig wasps, and longhorn beetles of Central and South

America, respectively (Decrappeo and Giblin-Davis, 2001; Giblin-

Davis et al., 2006; Kanzaki and Giblin-Davis, 2014). The presence of

these taxa are feasible dietary byproducts, as capuchin monkeys in

SSR heavily consume figs from several species of Ficus, including

the wasps living inside the fig as well as numerous invertebrates

(Parr et al., 2011; Valenta and Melin, 2012).
4.3 Seasonality and 18S diversity

While our sample sizes in this study are preclusive of detailed

seasonal analyses, we find evidence of greater Chao 1 diversity in

both eukaryotes generally, and helminths more specifically, in the

wet season than in the dry season. At our field site, a greater

diversity of Eukaryotes, including parasites, in the wet season would

be plausible, given the flush of invertebrates, fruits, water sources

and general biodiversity that often accompany the start of the rains

in seasonal tropical forests (Frankie et al., 2004; Orkin et al., 2019;

Melin et al., 2020). However, this is somewhat inconsistent with a

previous coprological study of parasites in the same population

(Parr et al., 2013b), which found 7 helminth morphotypes in both

the wet and dry seasons. The inconsistencies in the results of

parasitological studies at the Santa Rosa field site are not unique

as the primate parasitology literature is generally mixed on whether

environmental conditions and seasonality strongly influence

parasitic infections (e.g., Akinyi et al., 2019; de Winter et al.,

2020; Blersch et al., 2021; Bueno de Mesquita et al., 2021; Bethge

et al., 2022). However, conclusions are likely confounded by

differences in study design, sampling, analyses, host-parasite

relationships, and site-specific factors. While we refrain from

making strong conclusions regarding seasonality in the present

study, our results suggest the potential for fruitful discovery in

future in-depth study of parasite dynamics in the seasonal

dry forest.
4.4 Comments on the promise and
limitations of 18S screening

The 18S region of Eukaryotic DNA has elements that are well

conserved across eukaryotes, and we demonstrate the promise of

18S fecal screening to detect food items, monkey parasites, the

parasites of their prey and other eukaryotes. However, as reviewed

in Stensvold (2019), many factors, from primer selection to
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reference database selection, can affect the accuracy and efficacy

of these amplicon sequencing techniques. Additionally, compared

to other diagnostic genetic markers, such as ITS-2 and COI, 18S

amplicon sequences often do not exhibit enough diversity to make

confident assignments below the genus level (Kounosu et al., 2019).

Furthermore, the classifications we present here are based on

taxonomic assignment that uses publicly available reference

databases. Due to the current incompleteness of these databases

many ASVs were assigned to the same few reference species, and we

cannot at present fully determine to what extent the ASVs are

meaningfully different or if they represent more than one species or

genus (Stensvold, 2019; Papaiakovou et al., 2022). As future studies

continue to add to these databases, they will become increasingly

powerful tools in genetic parasitology.

We also recovered a large number (1511) of ASVs that were

assigned to Bacteria, suggesting that, despite selecting primers

reported to minimize non-specific amplification, our primer

choice was not sufficiently selective to exclude all bacteria. Indeed,

recent in-silico studies have suggested that while the 563F/1132R

primer pair targets a diagnostically variable gene region in a broad

range of helminths, it may also target bacterial 16S genetic

sequences (Kounosu et al., 2019). Other 18S gene region primer

pairs, such as 616*F/1132R and 1183F/1631R, have yielded

promising results in recent experiments, and may be more

suitable for future studies, especially with the addition of PCR

blocking primers to minimize off-target amplification (Kounosu

et al., 2019; Mann et al., 2020).

Additionally, the amplicon-based method used in this study is

not well suited to examine infection intensity due to genetic

heterogeneity between and within individual worms, as well as

biases in PCR amplification and sequencing (Avramenko et al.,

2015; Viney, 2017; Pafčo et al., 2018). While parasite egg counts also

have limitations when used to infer infection intensity, such as

discordance between fecal egg counts and adult worm burdens in

hosts and temporal stochasticity in egg shedding among different

parasites, they offer a more biologically valid approach (Roberts,

2000; Romeo et al., 2014; Byrne et al., 2018). Ideally, researchers will

work to validate approaches that integrate molecular and

morphological methods (e.g., Avramenko et al., 2015) and

consistently refine our abilities to estimate true infection

intensity parameters.

Sequencing of fecal DNA has the potential to augment

information gained by coprological analyses of parasites. Many

parasites are morphologically indistinguishable in their egg and

larval state, making misidentifications a likely common occurrence

and making it difficult to identify parasites to the genus or species

level (Frias et al., 2018; Solórzano-Garcıá and de León, 2018). For

example, in coprological studies conducted in this host population,

researchers described a single “Strongyloidesmorphotype”, based on

egg morphology (Parr et al., 2013a), while our study was able to

assign two ASVs to the Strongyloides cebus and detect genetic

variability within those ASVs as well. The numerous ASVs found

in our samples which were assigned to specific parasitic genera

suggest that the genetic diversity of these parasites is higher than

previously thought. These findings will allow future studies to

investigate patterns of parasite genetic diversity in host
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populations, possibly resulting in new information on parasite

transmission between hosts, novel infections acquired from the

environment, temporal patterns of parasitic infections in host

populations, and more.

As natural habitats continue to be altered by human

development and climate change, changes in ecological

community structure and the relationships between parasites and

their hosts may be affected (Brooks and Hoberg, 2007). Developing

simple, multifaceted approaches for monitoring parasite diversity in

host populations is important for monitoring host health and

detecting patterns of parasitic infections throughout host

populations. 18S has proven its utility as a preliminary screening

technique and as a valuable genetic marker used to detect a wide

breadth of Eukaryotes in fecal samples. Future studies may build on

the ASV data generated by this study to further our understanding

the Eukaryotic diversity within host species, and within various

ecosystems more generally.
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