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Water use efficiency [WUE = gross primary production (GPP)/evapotranspiration

(ET)] is an important indicator of the degree of coupling between carbon and

water cycles in ecosystems. However, the response of the carbon and water

cycles to climate change and human activities,as well as the underlying driving

mechanisms in the West Liao River Plain (WLRP), a typical farming–pasturing

ecotone in northern China, remain unclear. This study examined the temporal

and spatial variation characteristics of WUE in theWLRP from 2000 to 2020 using

linear regression and the coefficient of variation (CV) method based on MODIS

GPP and ET datasets. The relationships between WUE, meteorological factors,

and human activities as well as the mechanism driving WUE changes were

revealed through correlation analyses, residual analysis, and the grey

correlation model. The interannual change of WUE from 2000 to 2020

showed a fluctuating but weakly upward trend. The intra-annual change in

WUE followed an M-type bimodal trend, with two peaks from May to June and

August to September. Areas with increased WUE accounted for 50.82% of the

study area, and 11.11% of these showed a significant increasing trend. WUE was

mainly positively correlated with temperature and solar radiation and negatively

correlated with precipitation and VPD and presented obvious regional

differences. Solar radiation had the most significant impact on WUE. WUE

change is not entirely driven by climate change, and human activities have also

played an important role. In areas where WUE increased, The average

contribution rate of climate change was 72.4%, and that of human activities

was 27.6%. This study reveals the temporal and spatial dynamics of WUE in the

WLRP and highlights the influence of human activities on WUE changes.

KEYWORDS

water use efficiency (WUE), climate change, human activities, residual analysis, grey
correlation model, West Liao River Plain (WLRP)
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1 Introduction

Water use efficiency (WUE) is defined as the amount of biomass

produced per unit of water used by a plant. This concept was

introduced 100 years ago by Briggs and Shantz (1913), who

demonstrated the relationship between plant productivity and

water use. As a key measurement of the coupled carbon and

water cycle function of terrestrial ecosystems, WUE not only

reflects the interrelationship between these two factors but also

explains the response of terrestrial ecosystems to climate change

(Gang et al., 2016; Hatfield and Dold, 2019).

WUE can be estimated in different ways, depending on the

temporal and spatial scales or the scientific question of interest

(Bhattacharya, 2019). Based on its definition, agricultural scientists

usually determine WUE as the relationship between either biomass

or crop yield and either transpiration or the total water provided to

the crop, which includes the amount of water provided by

precipitation and irrigation (Gadanakis et al., 2015; Bhattacharya,

2019). In ecology, when WUE is calculated on a regional scale, the

mass of CO2 assimilation may be measured as the gross primary

productivity (GPP), net primary productivity (NPP), or net

ecosystem carbon production (NEP), and the water use may be

measured as evapotranspiration (ET) or annual rainfall (Tian et al.,

2020). Among these, one common way of calculating WUE is to use

the ratio of GPP to ET. This method is typically used to analyze the

carbon and water coupling characteristics of ecosystems and their

responses to environmental changes over long timescales, such as

months or years (Jassal et al., 2009; Zhen et al., 2017; Ai et al., 2020).

In addition to being regulated by the vegetation system, WUE is

closely related to external environmental conditions. Temperature,

precipitation, humidity, solar radiation, and CO2 concentration are

key climatic factors affecting vegetation WUE (Hatfield and Dold,

2019). In the context of global climate change, the warming rate is

remarkable, precipitation on land has increased, the carbon dioxide

concentration is at its highest level in the past two million years, and

extreme climate events are occurring frequently (IPCC, 2021).

Therefore, temporal and spatial variations in ecosystem WUE

under climate change and the response of WUE to climate

change have attracted considerable attention (Niu et al., 2011;

Klein et al., 2013; Hao et al., 2019; Jia et al., 2023).

The West Liao River Plain (WLRP), located between the eastern

plain of Inner Mongolia and the southwestern part of Northeast

China, is one of the important birthplaces of agricultural civilization

in northern China. As this region is located in the monsoon fringe

area, the transition zone between arid, semi-arid, and semi-humid

regions, and at the edge of the Horqin Sandy Land, plant growth is

particularly sensitive to climate change, environmental transition,

and human activities. Currently, studies on the vegetation ecology

and related climatic factors in this region focus mostly on the

vegetation community and coverage, NPP, crop yields, biomass,

and NEP (Huang et al., 2013; Feng et al., 2014; Gao et al., 2017;

Zhao, 2017; Yan et al., 2018; Aruna, 2020; Gao W. D. et al., 2022;

Zhu et al., 2022). Few studies have examined WUE and its response

to meteorological factors and human activities.
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Through an analysis of the spatiotemporal change trend of

WUE and the relationship between WUE, climate change, and

human activities from 2000 to 2020, this study identified the driving

mechanism of WUE change in the WLRP. This study has

considerable significance for promoting the protection of

ecosystems, utilizing and managing water resources, and

achieving sustainable development of agriculture in the region.
2 Materials and methods

2.1 Study area

The WLRP is located in a farming–pasturing ecotone in

Northeast China (42°21’–45°20’ N, 119°01’–123°43’ E), which is

within a semiarid region including the Horqin Sandy Land, where

the ecological environment is extremely fragile. It covers an area of

57,600 km2 (Gao M. M. et al., 2022), has an altitude range of

6–748 m, and slopes gradually from southwest to northeast

(Figure 1A). The main geomorphic units are river impact plains

and eolian dunes. The land-use types are mainly grassland and

cropland, which account for more than 89% of the total area

(Figure 1B). The grassland pastoral area is distributed in the north,

agricultural areas are distributed in the center and at the southern

edge, and sandy land is mainly distributed in the southwest. The

average annual precipitation in this area is 385 mm, which occurs

mainly in the form of rainstorms from June to September. The

average annual temperature of the WLRP is 6.9°C.

The WLRP includes the Xiliao and Xinkai Rivers, which have

run dry since 1999. Exploitation of groundwater since the 1960s has

reduced groundwater levels in the surrounding sandy land and

aggravated desertification. However, in recent years, the ecological

environment has improved as a result of comprehensive actions to

control desertification.
2.2 Data sources and processing

2.2.1 Modis data
GPP data and ET data were obtained from MOD17A2 and

MOD16A2 during the time period from 2000 to 2020

(https://earthdata.nasa.gov/). The spatial resolution of GPP (Zhao

et al., 2005; Fu et al., 2017) and ET (Mu et al., 2011; Stavroula and

Konstantinos, 2021) is 500 m, and the temporal resolution is 8 days.

MODIS Reprojection Tool (MRT) software was used to process the

GPP and ET datasets, including mosaic, projection, and

format conversion.

WUE was expressed as the ratio of the GPP to ET of vegetation

based on previous research (Hu et al., 2008; Zhu et al., 2014; Adams

et al., 2016; An, 2022). It was formulated as follows:

WUE =
GPP
ET

(1)
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where WUE is the water use efficiency (gC·mm−1·m−2), GPP is

the gross primary productivity of the terrestrial ecosystem

(g C·m−2), and ET is the evapotranspiration of the ecosystem (mm).

2.2.2 Meteorological data
Precipitation, temperature, solar radiation, and vapor pressure

deficit (VPD) data were used in this study. Monthly precipitation

and temperature data of 11 meteorological observation stations in

the WLRP and surrounding areas were obtained from

China Meteoro log ica l Data Shar ing Serv ice Sys tem

(http://cdc.cma.gov.cn). Monthly solar radiation data with a

spatial resolution of 0.1° × 0.1° were obtained from European

Centre for Medium-Range Weather Forecasts (ERA5) Reanalysis

Datasets (https://cds.climate.copernicus.eu/). All these monthly

data were processed to annual data using kriging interpolation

with a resolution of 500 m.

The vapor pressure deficit (VPD) indicates the dryness of air,

which is often used to study the impact of climate change on WUE

(Riha and Melkonian, 2023). This factor was calculated using the

mean monthly maximum temperature, minimum temperature, and

relative humidity and the following formula (Li et al., 2014). The

above data used in Eqs. 3 and 4 were also obtained from China

Meteorological Data Sharing Service System. The monthly VPDs

were calculated first, and then, the average annual VPD was

calculated using the monthly VPD.

VPD = es − ea (2)

es =
e0(Tmax) + e0(Tmin)

2
(3)
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ea = es
lmean

100
(4)

where es is saturated vapor pressure (kPa), ea is the actual vapor

pressure (kPa),lmean is the mean relative humidity (%), and e0

(Tmax) and e0(Tmin) are the saturated vapor pressure at the mean

monthly maximum temperature and minimum temperature,

respectively, which can be calculated by Tetens’ empirical formula

(Allen et al., 1998) as follows:

e0(T) = 0:6108 exp
17:27T

T + 237:3

� �
(5)

where T is the temperature (°C), and e0(T) is the saturated vapor

pressure at the temperature T (kPa). The spatial distribution of the

multi-year mean precipitation (A), temperature (B), solar radiation

(C), VPD (D) from 2000 to 2020 in the WLRP were shown in

Supplementary Figure 1.
2.2.3 Human activities data
Land use data were obtained from Landsat-derived annual land

cover product of China (CLCD) developed by Yang and Huang

(2021), with a spatial resolution of 30 m. The land cover was

classified into eight types: cropland, forest, grassland, wetland,

shrubland, water, bareland, and impervious surface (Figure 1B).

Population density datasets were obtained from Worldpop hub

(https://hub.worldpop.org/) with a 1 km resolution from 2000 to

2020. Global NPP-VIIRS-Like Nighttime Light data (NTL) were

obtained from National Earth System Science Data Center with 500

resolution from 2000 to 2020.
B

A

FIGURE 1

Location of the West Liao River Plain (WLRP). Meteorological station distribution and elevation (A) and land use in 2020 (B).
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2.3 Methods

2.3.1 Linear regression
The mean annual WUE trends from 2000 to 2020 were analyzed

using linear regression analysis, which was calculated using the

following formula (Mafi-Gholami et al., 2019; Yan et al., 2022):

slope =

no
n

i=1
iWUEi −o

n

i=1
io
n

i=1
WUEi

no
n

i=1
i2 − (o

n

i=1
i)2

(6)

where n is the number of samples, i is the serial year number (i =

1,2,3……, 21), WUEi is the WUE value in year i, and slope

represents the change trend. If slope > 0, WUE has an increasing

trend; if slope = 0, WUE does not change; if slope< 0, WUE has a

decreasing trend.

The F-test was used to analyze the significance of the results. By

combining the slope value and the F test, the results were divided

into five grades: extremely significant decrease area (slope< 0, p<

0.01), significant decrease area (slope< 0, 0.01< p< 0.05), stable area

(p > 0.05), significant increase area (slope > 0, 0.01< p< 0.05), and

extremely significant increase area (slope > 0, p< 0.01).

The calculation formula for the F-test was based on the study of

Chen et al. (2017).

2.3.2 Coefficient of variation
The coefficient of variation (CV), a statistic describing the

degree of dispersion of random variables, was used to analyze the

dispersion of WUE (Tucker et al., 1991; Milich and Weiss, 2000).

The formula was

CVWUE =
sWUE

WUE
(7)

where CVWUE is the coefficient of variation of WUE, sWUE is the

standard deviation of WUE, and WUE is the mean annual WUE.

When the CV is larger, the change of WUE is more unstable; when

CV is smaller, it is more stable.

2.3.3 Correlation analysis
The correlation between WUE and the meteorological factors

was analyzed. The correlation coefficient was calculated as follows:

rxy =
o
n

i=1
(xi − x)(yi − y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o
n

i=1
(xi − x)2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(yi − y)2

s (8)

where rxy is the correlation coefficient of factor x and y, xi and yj
are the values of factor x and y in year i, �x   and  �y are the mean

values of xi and yj, respectively. The value range of rxy is [−1,1]. If

rxy>0, the correlation between x and y is positive. The greater the

absolute value of rxy, the stronger the correlation between x and y.

The t-test was used to test the significance of the correlation

coefficient. The calculation formula for t-test refers to the paper

Miao et al. (2023).
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2.3.4 Residual analysis
The sampling multiple linear regression residual analysis

method was used to analyze the effects and contributions of

human activities and climate change on WUE (Evans and

Geerken, 2004). The predicted and residual WUE was calculated

using the following formula:

WUEpre = a� PRE + b� TEM + c� VPD + d � RAD + e (9)

WUEres = WUEobs −WUEpre (10)

where a, b, c, d, and e are regression coefficients, PRE is the

annual precipitation, TEM is the average annual temperature, VPD

is the average annual vapor pressure deficit, RAD is the annual solar

radiation. WUEres, WUEobs, and WUEpre are the residual, observed,

and predicted values of WUE, respectively. The value of WUEres
reflects the influence of human activities on WUE, while the value

of WUEpre reflects the influence of climate change on WUE.

The contribution of climate change and human activities to the

changes in WUE can be analyzed by grading the residual results.

The criteria for determining the drivers of WUE changes

(Supplementary Table 1) were defined by referring to previous

studies (Gao W. D. et al., 2022; Yu et al., 2022).

2.3.5 Grey correlation model
To quantify the impact of climate change and human activity on

WUE in the study area, the grey correlation model was introduced

to calculate the correlation degree of each evaluation index (Liu

et al., 2017). The higher the correlation degree, the higher the

influence of this index on WUE.
3 Results

3.1 Spatial distribution of the multi-year
mean WUE

The spatial distribution of WUE differed significantly across the

WLRP (Figure 2). The multi-year mean WUE of the WLRP ranged

from 0.458 to 2.027 gC·mm−1·m−2. The areas with the highest WUE

were predominantly located in the southern and central regions of

the study area. The areas with the lowest WUE were mainly in the

western Horqin Sandy Land. The average WUE values of different

vegetation types were ranked as follows: forest (1.38 gC·mm−1·m−2),

cropland (1.34 gC·mm−1·m−2), grassland (1.31 gC·mm−1·m−2),

wetland (1.23 gC·mm−1·m−2), shrubland (1.22 gC·mm−1·m−2) and

bareland (1.04 gC·mm−1·m−2), respectively.
3.2 Temporal change of WUE

3.2.1 Interannual change of WUE
Figure 3 shows the interannual variations of WUE from 2000 to

2020, revealing the temporal changes of WUE in the WLRP. The

interannual change of WUE showed a fluctuating but weakly upward
frontiersin.org
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trend, with the highest and lowest values being observed in 2019 and

2010, respectively. The interannual change trend was divided into two

stages. The first stage, from 2000 to 2010, showed a downward trend

with a rate of decrease of 0.00449 gC·mm−1·m−2·a−1. The second stage,

from 2010 to 2020, showed an upward trend with a rate of increase of

0.00766 gC·mm−1·m−2·a−1.

3.2.2 Intra-annual change of WUE
Figure 4 shows the monthly WUE change from 2000 to 2020,

revealing the intra-annual change of WUE in the WLRP. The intra-

annual change of WUE showed an M-type bimodal mode, with two

peaks occurring from May to June and August to September,

respectively. The average seasonal WUE decreased in the

following order: summer (2.00 gC·mm−1·m−2) > spring (1.64
Frontiers in Ecology and Evolution 05
gC·mm−1·m−2) > autumn (1.23 gC·mm−1·m−2) > winter

(0.01 gC·mm−1·m−2).
3.3 The spatial distributions of trend
in WUE

Figure 5 shows the slope of the annual WUE for each pixel from

2000 to 2020, revealing the spatial change of WUE in the WLRP.

The change trend of WUE in the study area showed obvious spatial

differentiation, with slope values ranging from −0.05 to 0.05

gC·mm−1·m−2·a−1. The areas of increasing and decreasing trends

of WUE accounted for 50.82% and 49.18% of the total, respectively

(Figure 5A). However, the significance test of the WUE change

trend showed that more than half of the total area (77.13%) showed

no significant change. The extremely significant decrease and

significant decrease areas accounted for 6.57% and 5.20% of the

total, respectively, and were mainly distributed in the western

region. The extremely significant increase and significant increase

areas accounted for 5.85% and 5.26%, respectively, and were mainly

distributed in the southern and central regions (Figure 5B).

Figure 6 shows the proportions of different types of WUE

change trends for the different land-use types. Areas where WUE

showed no trend accounted for the largest proportion of the total

area in all land-use types: forest (84.39%), grassland (81.23%),

wetland (78.37%), shrubland (74.86%), cropland (74.24%), and

bareland (70.35%). The proportions of areas that showed

decreasing trends (including both extremely significant decrease

and significant decrease) were in the following order: bareland

(18.96%) > cropland (16.01%) > forest (11.13%) > shrubland

(8.69%) > grassland (6.75%) > wetland (3.85%). The proportions

of areas that showed an increasing trend (extremely significant

increase and significant increase) were in the following order:
FIGURE 3

Interannual variations of WUE from 2000 to 2020 in the WLRP.
FIGURE 2

Spatial distribution of the multi-year mean water use efficiency (WUE) from 2000 to 2020 in the WLRP.
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wetland (17.77%) > shrubland (16.45%) > grassland (12.80%) >

bareland (10.69%) > cropland (9.75%) > forest (4.48%).

Figure 7 shows the degree of dispersion of WUE. The CV of the

annual WUE ranged from 0.02 to 0.68. As there was low dispersion

of WUE in most of the study area, the WUE in most areas was likely

relatively stable. Areas with high CV values, exhibiting unstable

WUE changes, were mainly located in the west, south, and

northeast portions of the study area. The CV values of the

different vegetation types were in the following order: bareland

(0.120), shrubland (0.080), wetland (0.077), grassland (0.064),

cropland (0.051), and forest (0.050), respectively.
3.4 Correlation analysis between WUE and
meteorological factors

The correlations between meteorological factors andWUE were

examined to determine the causes of the WUE trends. To analyze

the impact of each meteorological factor on WUE, the coefficient of

correlation was calculated between WUE and each meteorological

factor. There were obvious regional differences in the correlation

between WUE and precipitation, temperature, solar radiation, and

VPD and their average correlation coefficients were −0.015, 0.124,
Frontiers in Ecology and Evolution 06
0.222, and −0.044, respectively (Figures 8A, C, E, G). Areas with

positive and negative correlations between WUE and precipitation

accounted for 46.20% and 53.80% of the WLRP. The areas with a

positive correlation in the western region were larger than those in

the eastern region. Areas with a positive correlation between WUE

and temperature accounted for 71.60% of the WLRP which were

mainly distributed in the northern and southern parts of the study

area, whereas areas with a negative correlation accounted for

28.40% of the WLRP which were mainly distributed in the

southwestern and central portions of the study area. Areas with a

positive correlation between WUE and solar radiation accounted

for 84.55% of the WLRP which were mainly distributed in the

southeastern parts of the study area, whereas areas with a negative

correlation accounted for 15.45% of the WLRP which were mainly

distributed in the central and western regions of the study area. The

areas with positive and negative correlations between WUE and

VPD accounted for 45.65% and 54.35%, respectively. The regions

with positive correlation were mainly distributed in the eastern and

northern regions, while that with negative correlation were mainly

distributed in the central and southwestern regions.

Overall, WUE in the WLRP was positively correlated with

temperature and solar radiation, while it was negatively correlated

with precipitation and VPD. However, the areas that passed the
BA

FIGURE 5

The spatial distributions of trend in WUE from 2000 to 2020 in the WLRP. Slope of annual WUE (A), and significant changes in WUE (B).
FIGURE 4

Monthly change of WUE from 2000 to 2020 in the WLRP.
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significance test (P<0.05) only accounted for 4.70%, 7.33%, 16.12%,

and 0.64% (Figures 8B, D, F, H), which indicated that the change in

WUE in the WLRP was not determined by a single indicator and

was influenced by multiple indicators. In addition to meteorological

factors, human activities need to be considered.
3.5 Trends of climate change on
WUE change

The value of the predicted WUE could reflect the influence of

climate change on WUE. The slope of the predicted WUE ranged
Frontiers in Ecology and Evolution 07
from -0.03 and 0.03 gC·mm−1·m−2·a−1, with a regional average of

0.0008 gC·mm−1·m−2·a−1 (Figure 9A). The proportion of areas

where meteorological factors have a positive impact on WUE was

60.27%, and these areas were mainly distributed in the western

regions, indicating that climate change had a positive impact on

WUE in this region. The proportion of areas where meteorological

factors have a negative impact on WUE was 39.73%, and these areas

were mainly distributed in the central and southern regions,

indicating that climate change had a negative impact on WUE in

this region. Among them, the regions with significant positive

(P<0.05) and significant negative effects (P<0.05) accounted for

22.82% and 11.76%, respectively (Figure 9B).
3.6 Trend of human activities on
WUE change

The value of residual WUE could reflect the influence of human

activities onWUE. The slope of the predictedWUE ranged from −0.02

and 0.02 gC·mm−1·m−2·a−1, with a regional average of

−0.0007gC·mm−1·m−2·a−1 (Figure 10A). The proportion of areas

where human activities have a positive impact on WUE was 38.07%,

and these areas were mainly distributed in the southeastern and

northwestern regions, indicating that human activities had a positive

impact on WUE in this region. The proportion of areas where human

activities have a negative impact on WUE was 61.93%, and these areas

were mainly distributed in the central and southern regions, indicating

that human activities had a negative impact on WUE in this region.

Among them, the regions with significant positive (P<0.05) and
FIGURE 7

Spatial distribution of the CV of annual WUE from 2000 to 2020 in
the WLRP.
FIGURE 6

Proportions of different types of WUE change in different land-use types from 2000 to 2020 in the WLRP.
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significant negative effects (P<0.05) accounted for 0.83% and 2.58%,

respectively (Figure 10B).
3.7 Comprehensive analysis of
WUE change

The contribution rate of climate change and human activities to

regional WUE from 2000 to 2020 in the WLRP could be obtained by
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determining the criteria for driving factors and calculating the

contribution rate (Supplementary Table 1). Overall, driven by both

human activities and climate change, the area where the WUE has

improved accounted for 50.82%, with an average contribution rate of

72.4% for climate change and 27.6% for human activities (Figures 11A,

B). The combined effect of human activities and climate change could

also have a negative impact on WUE. The area where WUE decreased

driven by both factors accounted for approximately 49.18% of the total

area of the region, with an average contribution of 39.9% for climate
B

C D

E F

G H

A

FIGURE 8

Spatial distributions of the correlation coefficients between WUE and (A) precipitation, (C) temperature, (E) solar radiation, and (G) VPD in the WLRP
from 2000 to 2020; Significant test of correlation between WUE and (B) precipitation, (D) temperature, (F) solar radiation, and (H) VPD in the WLRP
from 2000 to 2020.
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change and 60.1% for human activities (Figures 11C, D). Overall, the

main contribution of WUE improvement was climate change, while

the decrease in WUE was mainly due to human activities.

To further explore the driving factors affecting WUE, human

activity indicators such as population density (PD), the proportion of

impervious surface area (IS), and nighttime light (NTL) were selected

and were combined with meteorological factors such as precipitation

(PRE), temperature (TEM), vapor pressure deficit (VPD), and solar

radiation(RAD), the grey correlation model was used to identify the

main control factors on WUE changes (Table 1). The results showed

that for the seven evaluation factors in this study, the top three factors

in terms of correlation degree were RAD, PD, and VPD, in which RAD

had the highest correlation degree (0.939), indicating that WUE

changes were considerably affected by RAD. The impact of human

activities on WUE cannot be ignored, especially that of PD, which had

a correlation degree of 0.93.
4 Discussion

4.1 Spatial and temporal distribution
of WUE

From 2000–2020, the annual mean WUE of the WLRP ranged

from 0.458 to 2.027 gC·mm−1·m−2, and the regional average was
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1.31. This result is consistent with the result of Luo et al. (2022),

who reported an annual mean WUE in Inner Mongolia of

1.39 gC·mm−1·m−2, with a range of 0–3.03 gC·mm−1·m−2 and an

increasing trend. There were different trends of regional WUE

during 2001-2010 and 2010-2020 in WLRP, which is directly

related to the sharp decrease in WUE in 2010. In 2010, the

decrease in solar radiation led to a decrease in vegetation

photosynthesis and carbon sequestration capacity, resulting in

lower levels of GPP, while an increase in precipitation resulted

in higher levels of ET, resulting in a drastic decrease in WUE values.

In previous studies, although some regions also showed a

downward trend in WUE from 2000 to 2010 (Zhang et al., 2016),

most regions showed an overall upward trend in WUE during the

study period and did not show a significant segmented trend (Zhao

et al., 2019; Luo et al., 2022). This is related to the differences in

geographical location, meteorological conditions, and human

activity interference in the study area.

WUE reflects the trade-off between GPP and ET in an

ecosystem, that is, the relationship between organic carbon and

water consumption (Shao et al., 2020). There was no significant

change trend in most areas of the WLRP from 2000 to 2020. The

main reason for this result is that the change trends of GPP and ET

in the study area were consistent (Figures 12A, B), and the linear

correlation coefficient of these variables was as high as 0.94

(Figure 12C), indicating that the carbon-fixing ability in this area
BA

FIGURE 9

The spatial distributions of trend in predicted WUE from 2000 to 2020 in the WLRP. Slope of predicted WUE (A), and significance test in predicated
WUE (B).
BA

FIGURE 10

The spatial distributions of trend in residual WUE from 2000 to 2020 in the WLRP. Slope of residual WUE (A), and significance test in residual WUE (B).
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is directly proportional to water consumption and leads to the

insignificant change trend of WUE.

The average WUE values of the different vegetation types

ranked in the order of forest, cropland, grassland, wetland,

shrubland, and bareland, respectively, were in general agreement

with the results of previous studies (Feng et al., 2018; Chang et al.,

2021). Although the WUE values followed the same order rule, the

same land-use type showed different WUE values in different

regions, which is consistent with the conclusions of other

researchers (Liu et al., 2015; Muhammad et al., 2018). This is

probably attributable to physiological, zonal, and climatic

differences (Tang et al., 2014; Yao et al., 2014; Zhang et al., 2022).

Wang et al. (2020) also reported water and heat conditions and their

uneven distribution as the main reasons for zonal differences in
Frontiers in Ecology and Evolution 10
WUE, which are not solely determined by the physiological

characteristics of plants.

Forest vegetation can obtain deep soil water and nutrients

through developed roots to support plant growth (Chang et al.,

2021), and croplands often receive sufficient irrigation water for

plant growth(Zheng et al., 2019). Both forest and cropland have

relatively high vegetation coverage, which can reduce soil water

evaporation and increase the efficiency with which water is

converted into organic matter, which is produced more

abundantly by forests than cropland (Xia et al., 2015). Therefore,

the WUE values of cropland and forest were high, and those of

forest were the highest. The GPP values of bareland and shrubland,

with little vegetation, are low, and evapotranspiration depends

mainly on soil water evaporation. Therefore, bareland and

shrubland had the smallest values of WUE. The GPP of

shrubland may also be underestimated (Zhang et al., 2012; Zhang

et al., 2015; Chang et al., 2021). In grassland, the root system is

short, plants depend primarily on precipitation and shallow soil

water, and evaporation of soil water is high, making full use of the

available water difficult.

In areas with a significant downward trend in WUE, the

proportion of bareland, cropland, and forest land is relatively

large. This is because better hydrothermal conditions can lead to

an increase in ET, resulting in a significant decrease of WUE in

bareland. Cropland and forest in the area mainly depend irrigation,

resulting in a more stable interannual variation in GPP (Tian et al.,

2011). However, unreasonable irrigation may promote higher ET,

which may lead to a decreasing trend of WUE in cropland

and forest.
B

C D

A

FIGURE 11

Spatial distribution of positive (A, B) and negative (C, D) contributions of climate change and human activities to WUE in the WLRP from 2000 to 2020.
TABLE 1 The grey correlation result.

Evaluation factors Correlation degree Ranking

RAD 0.939 1

PD 0.93 2

VPD 0.884 3

TEM 0.858 4

IM 0.775 5

PRE 0.725 6

NLI 0.576 7
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4.2 Effects of climate change and human
activities on WUE change

In addition to being regulated by the internal vegetation of the

system, WUE is also affected by external environmental conditions.

Previous studies have shown that precipitation and temperature

have either promotional or inhibitory effects on WUE (Zhang et al.,

2012; Qiu et al., 2015; Xue et al., 2015; Sun et al., 2016; Wei et al.,

2016). Generally, a moderate increase in precipitation is favorable

for WUE, but excessive precipitation is unfavorable (Tian et al.,

2010; Qiu et al., 2015; Wei et al., 2016; Li et al., 2017). Qiu et al.

(2015) and Xue et al. (2015) found a nonlinear relationship between

WUE and precipitation and other researchers have reported similar

findings (Hu et al., 2010; Mu et al., 2014; Li et al., 2015). Yin et al.

(2022) and Shao et al. (2020) found that WUE was negatively

correlated with temperature. However, some studies also found that

there was a critical value for the impact of temperature on WUE:

temperatures that are too high or too low are unfavorable for

vegetation WUE (Xiao, 2001; Zhou et al., 2014; Qiu et al., 2015; Xue

et al., 2015; Wei et al., 2016). Solar radiation is one of the important

factors in plant photosynthesis and also has a significant impact on

plant WUE. Previous studies have found a high correlation between

solar radiation and WUE (Xu, 2008). In areas with solar radiation

below 242.2 W/m2, WUE showed an increasing trend with an

increase in solar radiation, and after exceeding the critical value,

WUE showed a decreasing trend (Xue et al., 2015). In addition,

most studies have found that the increase in VPD has a negative

impact on WUE (Wang et al., 2022; Zheng and Zhang, 2022; Li F.

et al., 2023).

WUE was positively correlated with temperature and solar

radiation in most of the study area. The increase in temperature
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and solar radiation promoted photosynthesis, resulting in higher

production of dry matter and an increase in the GPP (Li et al.,

2002). Although the increase in temperature and solar radiation can

also lead to an increase in ET, previous studies have found that the

impact on GPP is more significant than that on ET (Wang et al.,

2020). WUE was negatively correlated with precipitation and vapor

pressure deficit in most of the study area.

In arid and semi-arid areas, available water is the most

important factor in controlling vegetation function, and its

reduction can increase the physiological stress and vulnerability

of plants. In arid areas, vegetation chooses more conservative water

use methods when the precipitation decreases and adapts to

drought stress by increasing WUE (Chen et al., 2003). The main

reason for the negative correlation between VPD and WUE was the

interannual variation of VPD, which has a limiting effect on the

terrestrial primary productivity (GPP) (He B. et al., 2022). This is

because an increase in VPD may cause stomatal closure to avoid

excessive water loss in plants due to high air evaporation demand.

However, this can also lead to a negative carbon balance, causing

plants to consume a large amount of carbohydrate reserves and

cause carbohydrate starvation (Yuan et al., 2019). This is consistent

with the conclusion of Li F. et al. (2023), who showed that an

increase in VPD leads to WUE stagnation.

In addition, the impact of human activities on WUE cannot be

ignored, and population density has the highest correlation with

WUE. The main reason was that in the past two decades, with the

increase in population and the implementation of a series of

ecological engineering practices, the area of cropland and forest in

the region has increased. Due to their high WUE, the overall WUE

has increased. Although the WUE values of forest and cropland were

high, this result does not mean that a large amount of land can be
B

C

A

FIGURE 12

Change trends of ET and GPP with precipitation (A), change trends of ET and GPP with temperature (B), and correlation between ET and GPP (C) on
an annual scale.
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reclaimed for artificial tree planting or expansion of cultivated land

area. The high WUE was largely attributable to the relatively

abundant water resource conditions caused by artificial irrigation,

and the local irrigation water is mainly sourced from groundwater;

thus, excessive exploitation of this water will lead to the deterioration

of the ecological environment.
4.3 Limitations and uncertainties

4.3.1 Data accuracy
This study analyzed the impact of meteorological factors on

WUE based on remote sensing data. The Kriging interpolation

method was used for the meteorological data. However, the volume

and accuracy of the data were limited, and the difference in

interpolation methods may have affected the results. Previous

studies have shown that ET and GPP data from MODIS play a

good performance (Turner et al., 2006; Velpuri et al., 2013), which

were widely used in WUE calculations (Huang et al., 2017; Li X. Y.

et al., 2023). But the use of remote sensing data, especially that from

the same sensor inevitably introduces some potential uncertainties

such as data self-correlated problem. Besides MODIS data, more

and more remote sensing data products were used in WUE

calculated such as GLASS data (Luo et al., 2023), Sentinel-2 data

(Elfarkh et al., 2023) and PML-V2 product (He S. Y. et al., 2022; Ji

et al., 2023). Different data sources may result in differences in

evaluation results due to differences in resolution and model.

Therefore, further analysis is needed to obtain more reliable

conclusions regarding the consistency and uncertainty generated

by different data sources, combining multi-source data.

4.3.2 Analytical methods
Only linear methods such as linear regression analysis and

residual analysis were used to analyze the relationship between

WUE and factors such as temperature, precipitation, VPD, and

solar radiation, without considering the nonlinear relationship

between meteorological factors and WUE. In addition, this paper

demonstrated the impact of human activities on WUE, but its

driving mechanism needs to be further analyzed. For example,

human activities affect biological characteristics such as Leaf area

index (LAI) and NDVI by modifying surface features such as

afforestation, urban expansion, cropland reclamation, or changing

irrigation methods, thereby affecting WUE.
5 Conclusions

This study explored the changes in WUE in the WLRP from

2001 to 2020 using linear regression and the CV method based on

the MODIS GPP and ET datasets. The relationships between WUE

and climate change and human activities and the driving

mechanism of WUE changes were revealed through correlation

analyses, residual analysis, and the grey correlation model. From
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2001 to 2020, most areas of the WLRP (77.13%) were in a stable

state without significant changes, whereas a small part of the WLRP

(22.87%) changed significantly. WUE change is not entirely driven

by climate change, and human activities have also played an

important role. In areas where WUE increased, the average

contribution rate of climate change was 72.4%, and that of

human activities was 27.6%.
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