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Ants have remarkably diverse diets and extraordinary species richness, making

them an excellent model system to study the evolution of taste. In this entirely

eusocial clade, food choice and the mechanisms that regulate feeding have both

individual and social dimensions. How taste receptors and sensory processing

drive food preferences to generate dietary breadth in ants is poorly understood.

It is additionally unclear how elements of colony organization such as division of

labor and social food flow impact the mechanistic basis and evolution of taste.

Previous work on dipteran, lepidopteran, and hymenopteran gustatory systems,

while foundational, provide limited insights into ant dietary specialization. Here

we synthesize and analyze research on ant gustation to identify mechanisms,

sociobiological correlates, and phylogenetic patterns. We discuss the current

state of genomic analyses of taste and future research. We propose that strikingly

polymorphic species of Pheidole, Cephalotes, Camponotus, and leafcutter ants

(Atta and Acromyrmex) offer compelling social systems to explore adaptive

variation in gustation because of their pronounced division of labor in which

morphologically, behaviorally, and neurally differentiated workers vary in feeding

behavior. Research on ant gustation within and among species will advance

our understanding of sensory systems and provide insight into the impact

of taste on the evolution of species diversity and how social organization

influences gustation.

KEYWORDS

diet, foraging ecology, Formicidae, genomics, gustatory receptors, sensory shift, taste
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Introduction

Sensory systems are interfaces between an animal and its environment, enabling adaptive
response to variation in environmental stimuli. Because fitness depends on identifying and
extracting nutrient and energy resources for metabolism, chemoreception is an important
target of selection required for dietary optimization and fitness. Chemoreception includes
olfaction (smell: detect volatile chemicals) and gustation (taste: detect soluble chemicals).
Gustation coevolves with diet and nutritional ecology as the mechanistic basis of food
preference and a driver of species diversification (Li and Zhang, 2013; Baldwin et al., 2014;
Tu et al., 2018; Vizueta et al., 2019; Toda et al., 2021; Frank et al., 2022).
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The exceptional dietary diversity of ants makes them excellent
models to integrate foraging ecology, taste, nutrition, and
sociobiology in phylogenetic context. An estimated 20 quadrillion
ants inhabit the Earth (Schultheiss et al., 2022); there are 14,000
identified species in 16 extant subfamilies within the eusocial family
Formicidae (Bolton, 2023). Feeding in ants has both individual
and colony-level components that involve colony nutrition and
growth, caste evolution, and division of labor. Ant foraging
ecology has shaped community and ecosystem structure as well
as biodiversity (Davidson et al., 2004; Parker and Kronauer,
2021). The evolutionary and ecological importance of ants can
be attributed to their sociality and roles as scavengers, predators,
herbivores, granivores, and plant mutualists. Gustation is a core
determinant of ant feeding ecology.

Despite the importance of taste in ant foraging ecology,
gustation is poorly understood. Indeed, in Hölldobler and Wilson’s
(1990) seminal tome The Ants, the terms diet, feeding, food, and
taste are not indexed. Open questions include: How does gustation
vary intra- and interspecifically? How did molecular mechanisms of
gustation evolve with changes in diet? How has sociality impacted
taste? How has taste influenced species diversity? Here we address
these questions and present a prospectus for future research.

Ant gustation

Diet preferences

In the well-studied fruit fly Drosophila melanogaster, sugars,
amino acids (AAs), and water are attractive, whereas deterrent
(“bitter”) compounds are aversive. Salts and acids are attractive at
low concentrations but aversive at high concentrations (Ahn et al.,
2017; Jaeger et al., 2018). D. melanogaster can also detect water,
polyamines, lipopolysaccharides, ammonia, calcium, and H2O2
(Chen and Dahanukar, 2020). Honey bees (Apis mellifera) notably
lack a bitter receptor or typical behavioral and electrophysiological
responses to bitter chemicals, which instead inhibit sugar receptors
(de Brito Sanchez et al., 2005, 2014).

Among ants, there are generalist and specialist predators,
omnivorous scavengers, and consumers of extrafloral nectar, fungi,
fruits, seeds, and honeydew. Army ants are voracious mass-raiding
predators that rely on chemical senses (Kronauer, 2020; McKenzie
et al., 2021). Specialist predators hunt spider eggs, springtails,
centipedes, or termites (Azorsa et al., 2022). Nectarivores tend
gardens to obtain extrafloral nectar (Mayer et al., 2014) or consume
honeydew excretions of hemipteran mutualists (Cicconardi et al.,
2020). Fungus-growing ants mulch their fungal garden with freshly
cut leaves (Hölldobler and Wilson, 2010). This remarkably wide
dietary variation is likely reflected in gustatory profiles.

Behavioral studies are foundational to understanding gustation,
but research that comprehensively compares sugar preferences
is limited to 30 species from four subfamilies. Comparisons are
constrained by methodological inconsistencies (Ricks and Vinson,
1970; Shetty, 1982; Vander Meer et al., 1995; Cornelius et al.,
1996; Cannon, 1998; Völkl et al., 1999; Tinti and Nofre, 2001;
Barbani, 2002; Boevé and Wäckers, 2003; Blüthgen and Fiedler,
2004b; Detrain et al., 2010; Horta-Vega et al., 2010; Detrain and
Prieur, 2014; Zhou et al., 2015a,b; Madsen et al., 2017; Madsen and

Offenberg, 2020; Jaleel et al., 2021; Renyard et al., 2021). Studies
suggest that ants discriminate among sugars and that preference for
sucrose, a major component of nectar and honeydew (González-
Teuber and Heil, 2009; Shaaban et al., 2020), is conserved. Sucrose
attraction increases with concentration (Horta-Vega et al., 2010;
Detrain and Prieur, 2014). Species, body size, and sucking pump
activity affect sucrose uptake, which is regulated by serotonin
(Davidson et al., 2004; Falibene et al., 2009; Josens et al., 2018,
2021). Melezitose (produced exclusively by hemipterans), glucose,
fructose, raffinose, and maltose appear to be preferred to other
sugars. In comparison, honey bees prefer sucrose, glucose, fructose,
maltose, melezitose, and trehalose to other sugars (Von Frisch,
1934). While attractive sugars vary among ant species, preferences
also sometimes differ with concentration or methodology (Horta-
Vega et al., 2010).

There is limited research on taste in respect to other nutrients.
Many ants prefer sugar to AAs and select a combination of
sugar and AAs over sugar alone (Lanza, 1991; Blüthgen and
Fiedler, 2004b). There is variability in AA preferences among
species, as in lepidopterans (Lanza and Krauss, 1984; Blüthgen
and Fiedler, 2004b; Agnihotri et al., 2016), but most studies have
not comprehensively tested AA preference. Granivores prefer seeds
with higher concentrations of AAs and fatty acids (Reifenrath
et al., 2012). Leafcutter ants adjust plant substrates for their
fungus based on protein-carbohydrate ratio, likely requiring sugar
and AA detection (Shik et al., 2021). Electrolyte studies are
limited, but Solenopsis richteri workers prefer zinc, magnesium,
and ammonium, whereas sodium preference varies (Vinson, 1970).
Ants exhibit a geographical gradient in sodium consumption
correlating with distance from the ocean, and higher sodium
consumption in non-predatory than predatory species (Kaspari
et al., 2008, 2020). Bitter taste in ants has not been comprehensively
evaluated, although quinine is aversive to Lasius niger (Wenig
et al., 2021), high concentrations of caffeine in sucrose reduced
feeding in Oecophylla smaragdina (Madsen and Offenberg, 2019),
and alkaloids reduced feeding in Ectatomma ruidum (Bolton et al.,
2017). Leafcutter ants avoid leaves with anti-fungal terpenoids
(Howard et al., 1989), but anti-fungal tannins do not affect cutting
(Crumière et al., 2022). Bitter chemical detection may be especially
important for evaluating foods with high levels of toxins.

Cellular mechanisms

The cellular mechanisms underlying ant taste are unstudied.
In insects, soluble chemicals are detected through activation
of taste receptors on the dendrites of sensory neurons within
gustatory sensilla, small hairs with a single lymph-filled pore
(Clyne et al., 2000; Dunipace et al., 2001; Chen and Dahanukar,
2020). Putative gustatory sensilla have been identified on the
antennae, mouthparts, and foreleg tarsi (Barsagade et al., 2013,
2017; Jaleel et al., 2021; Masram and Barsagade, 2021), mirroring
the distribution in honey bees (Bestea et al., 2021). Gustatory
receptor neurons in insects project primarily to the subesophageal
zone of the brain in a pattern categorized by taste modality and
sensilla location (Wang et al., 2004). Gustatory receptors (GRs)—
a large family containing most arthropod taste receptors—detect
sugars, AAs, and deterrent compounds. Some ionotropic receptors
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(IRs), a family that also functions in olfaction, detect organic
acids, fatty acids, AAs, and salts (Benton et al., 2009; Croset
et al., 2010; Ganguly et al., 2017; Rimal et al., 2019; Brown et al.,
2021). Certain pickpocket channels (PPKs), insect orthologs of
the degenerin/epithelial sodium channel (DEG/ENaC) superfamily,
and transient receptor potential (TRP) channels are also taste
receptors in invertebrates (Chen et al., 2010; Kang et al., 2010).
More work is needed to determine broad preference patterns and
cellular mechanisms and relate these to dietary variation in ants.

Taste evolution

Evolutionary history and genomics

Genomic analysis is needed to elucidate the mechanistic basis
and evolution of taste in ants. GRs with gustatory functions likely
evolved in the arthropod ancestor from a reduced number of GR-
like genes which predated the ancestor of eukaryotes (Robertson,
2019; Benton et al., 2020; Vizueta et al., 2020). The GR family
subsequently evolved across arthropods under a dynamic gene
birth-and-death model influenced by episodic bursts of gene
duplication yielding lineage-specific expansions (Robertson, 2019).
Ionotropic receptors (IRs) and pickpocket channels (PPKs) also
have ancient origins, but when they were historically co-opted for
gustation remains unknown (Croset et al., 2010; Vizueta et al., 2020;
Latorre-Estivalis et al., 2021). Drosophila have 60 GR, 66 IR, and 31
PPK genes (Croset et al., 2010; Joseph and Carlson, 2015; Latorre-
Estivalis et al., 2021), but many have non-gustatory or unknown
functions. The honey bee genome contains only 11 GRs, four of
which have known functions, as well as yet-uncharacterized IRs and
PPKs (Robertson and Wanner, 2006; Bestea et al., 2021).

Ancestral hymenopterans were once thought to have few
chemosensory genes (Zhou et al., 2015c; McKenzie et al., 2016), but
recent research suggests a parasitoid hymenopteran genome with
many odorant receptor (OR) genes (Oeyen et al., 2020; Obiero et al.,
2021). The early branching Symphyta (sawflies) similarly have more
chemosensory genes than previously thought, including 30 GRs.
Gene losses may explain lower numbers in some extant species like
honey bees (Oeyen et al., 2020). Compared to ORs, hymenopterans
other than ants have few GRs (10 to ∼40), excepting lineage-specific
expansions in two wasps (Oeyen et al., 2020).

Based on 24 sequenced genomes with annotated GRs, GR
number appears variable, ranging from 17 to 219 (Table 1),
although these estimations may be inaccurate due to difficulty
producing high-quality gene annotations for GRs. There are
minimally 13 GR subfamilies in ants, inferred from GR phylogenies
of four species (Zhou et al., 2012); their functions are largely
unknown. Phylogenetic comparisons with other insects reveal
candidate sugar, fructose, and AA receptors in Linepithema
humile, Harpegnathos saltator, and Solenopsis invicta (Bestea et al.,
2021; Obiero et al., 2021). IR numbers are less variable (18–
32 genes) and comparable to most other hymenopterans (Zhou
et al., 2012; Obiero et al., 2021; Table 1). Phylogenetic analyzes
have also revealed 13 ant subfamilies of “divergent IRs” (Zhou
et al., 2012), as well as orthologs of taste implicated IR76b
and IR23a from Drosophila (Obiero et al., 2021). PPKs (6–8)
from four subfamilies have been identified in two ant species

(Latorre-Estivalis et al., 2021), and TRP channels (13–27) from
six subfamilies have been identified in seven ant species (Peng
et al., 2015), but their functions in gustation are unknown
(Table 1). Recent research has elucidated the evolutionary origins
of hymenopteran chemosensory receptors, but much remains
unknown about their current identities and functions in ants.

Phylogenetic patterns

Hummingbird umami receptors were co-opted to detect
sugars (Baldwin et al., 2014; Toda et al., 2021), vertebrate bitter
receptor numbers correlate with the degree of herbivory (Li and
Zhang, 2013) and many carnivores lost sugar receptors through
pseudogenization (Li et al., 2005; Zhao et al., 2010; Jiang et al.,
2012). Dietary change in arthropods is also reflected in receptor
evolution, with fewer GRs present in parasites than in generalists
(Robertson, 2019). Within the Lepidoptera, divergent evolution
resulted in GR expansion, including for lineage-specific receptors
that detect bitter compounds (Wanner and Robertson, 2008;
Engsontia et al., 2014). Lepidopterans with narrow diets are more
sensitive to bitter compounds than species with broader diets
(Zhang et al., 2013), suggesting that their dietary specialization
is correlated with specific GR expansion (Agnihotri et al., 2016).
In contrast, low GR numbers and lack of bitter taste in honey
bees are also thought to result from diet specialization (Robertson
and Wanner, 2006). Given the similarities and differences in
gustatory coding and organization across phyla (Yarmolinsky et al.,
2009), interspecific comparisons may reveal broad patterns in the
evolution and mechanisms of gustation in ants.

Figure 1 illustrates subfamily variation in ant diets and their
hypothesized origins, indicating a predator ancestor. The greatest
dietary diversity is found in formicoid ants, which include the
species-rich formicines and myrmicines. Correlations between diet
diversity and speciation are yet unknown and may be confounded
by other ecological factors and life history traits. Subfamily-
specific patterns in mouthpart anatomy differ with diet (Paul
and Roces, 2019) and receptors may similarly vary. Because
ants can discriminate among sugars and have species-specific
preferences, they may, like other insects, have multiple GRs tuned
to different sugars (Chen and Dahanukar, 2020; Bestea et al.,
2021). Receptors share a common insect ancestor, with evolution
influenced by episodic bursts of gene duplication yielding lineage-
specific expansions (Kent and Robertson, 2009). Variability in
AA preferences suggests that AA receptors are similarly lineage-
specific, as in other insects (Agnihotri et al., 2016).

Omnivorous generalists may require more receptors to evaluate
diverse foods. Many invasive ant species are generalist scavengers
that “overeat” imbalanced foods to acquire limiting nutrients (Csata
et al., 2020; Shik and Dussutour, 2020). The ability to detect
diverse foods by gene duplication or combinatorial pattern may
partially underpin the success of these species as invasives. The
high number of GRs in the invasive generalists L. humile (117),
Monomorium pharaonis (159), and S. invicta (219) supports this
hypothesis (Table 1). In contrast, primarily predatory ants may
have comparatively few GRs and detect a narrower range of foods.
These species do not appear to have the opportunity to sample their
food before capture. Trap-jaw ants (e.g., Odontomachus sp.) use
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TABLE 1 Reported GR number, IR number, TRP channel number, and diet information of species with annotated genomes.

Subfamily Species Diet GRs IRs TRPs References

Ponerinae Harpegnathos saltator 17 23 14 1, 4, 7

Dorylinae
Eciton burchellii 20 23 9

Ooceraea biroi 27 26 6

Dolichoderinae Linepithema humile* 117 32 14 2, 4, 7

Formicinae Campanotus floridanus 63 31 22 1, 4, 7

Myrmicinae

Acromyrmex charruanus SP 60 12

A. echinatior 116 / 62 13 7, 8, 11

A. heyeri 61 12

A. insinuator SP 61 12

Atta cephalotes 25/89/62 18 13 5, 7, 8, 11

A. colombica 62 12

Cardiocondyla obscurior ? 34 8

Harpagoxenus sublaevis SP 52 10

Leptothorax acervorum 127 10

Monomorium pharaonis* 159 8

Pogonomyrmex barbatus 73 24 13 3, 4, 7

Pseudoatta argentina SP 27 12

Solenopsis invicta* 219 27 7, 8

Temnothorax americanus SP 41 10

T. longispinosus ? 91 10

T. nylanderi 128 10

T. ravouxi SP 49 10

T. rugatulus ? 106 10

T. unifasciatus ? 117 10

Due to difficulties producing high quality gene annotations for GRs, these receptors are likely not comprehensively analyzed and inferences are limited. Diet is coded in accordance with
Figure 1. SP Indicates social parasites. * Indicates invasive species. ? Indicates uncertainty in diet information. / Indicates multiple GR numbers from different studies. Blank cells indicate a
lack of published data for that species and receptor type. References: (1) Bonasio et al. (2010), (2) Smith C. D. et al. (2011), (3) Smith C. R. et al. (2011), (4) Zhou et al. (2012), (5) Koch et al.
(2013), (6) Oxley et al. (2014), (7) Peng et al. (2015), (8) Zhou et al. (2015c), (9) McKenzie et al. (2016), (10) Jongepier et al. (2021), (11) Schrader et al. (2021).

FIGURE 1

Ant phylogeny and dietary breadth. Phylogeny based on Romiguier et al. (2022). Diet descriptions from Jayasuriya and Traniello (1985), Lachaud
(1990), Cook and Davidson (2006), Heterick (2009), Lenhart et al. (2013), and Ward (2014). Species richness from Bolton (2023).
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“spring-loaded” mandibles that rapidly close on prey in response to
activation of mechanosensory hairs (Gronenberg et al., 1993) and
may instead rely on olfaction to detect prey repellency (Traniello,
1981; Manubay and Powell, 2020) or vision to identify prey (Azorsa
et al., 2022). This hypothesis is supported by the fewer GRs
in the generalist predators Eciton burchellii (20) and H. saltator
(17) (Table 1).

Dietary specialists may vary in receptor profiles. Dulotic
ants, which rely on workers of their host species obtained in
raids to forage and tend brood, have half as many GRs as
their hosts (Jongepier et al., 2021). Similar patterns are observed
across other social parasites (Schrader et al., 2021). Other species
have stronger attraction to macronutrients provided by their
plant or hemipteran mutualists (Völkl et al., 1999; Blüthgen and
Fiedler, 2004a; González-Teuber and Heil, 2009). Such patterns
may be underpinned by positive adaptive selection in receptors
that detect mutualist-provided chemicals, or relaxed selection on
the remaining genes (Wang et al., 2019). In contrast, fungus-
growing ants specialize on their fungal mutualist, but workers
adjust foraging based on the nutritional needs of their cultivar
(Shik et al., 2021), a complex adaptation likely requiring a
wide range of receptors. Annotated genomes also support this
hypothesis (Table 1). Further research is required to understand the
relationship between diet and GR expression.

Social dimensions of taste

Foraging ecology and dietary evolution in ants involves social
behavior, and colony nutritional state regulates worker response to
food (Traniello, 1977; Dussutour and Simpson, 2009; Greenwald
et al., 2018). Hunger is communicated through solicitations
between workers for regurgitated food, while satiation is regulated
by speed of food offloading by returning foragers (Csata and
Dussutour, 2019). Foragers deposit trail pheromone to share
food quality and location (Czaczkes et al., 2015) and social and
environmental cues regulate food acceptance or rejection during
foraging (Arenas and Roces, 2017, 2018; Csata and Dussutour,
2019). Trophallaxis, the sharing of stored liquids by regurgitation,
is a social mechanism that informs foraging decisions (Farina et al.,
2005; Csata and Dussutour, 2019) and may connect individual- and
colony-level nutrition by influencing taste preferences. Gustation
may thus transmit information that impacts foraging and nutrition
and play a key role in ant social organization.

Because some GRs and PPKs detect pheromones (Montell,
2009; Liu et al., 2020), the number and combinatorial pattern
of GRs and PPKs may also correlate with social complexity of
colony organization, including queen number, colony size, worker
polymorphism, foraging activity, and social communication
(Anderson and McShea, 2001; Zhou et al., 2012). Colony size
may also correlate with diet, as many large colonies are generalist
omnivores or leafcutter ants, whereas many species that form small
colonies are predatory (Dornhaus et al., 2012; Romiguier et al.,
2022).

Worker size variation and colony demography may also
affect the evolution of taste. The genera Pheidole, Cephalotes,
Camponotus, Atta and Acromyrmex are characterized by
morphologically distinct (polymorphic) worker subcastes with

task specialization. The diversification of tasks by polymorphic
workers may have favored the evolution of gustatory phenotypes
that vary between subcastes. Foragers, for example, may require
expression of more taste receptors than non-foraging defense-
specialized soldiers, which may rely on other sensory modalities
(Arganda et al., 2020). This hypothesis is preliminarily supported
by differences in sensilla size and number among polymorphic
workers (Renthal et al., 2003; Masram and Barsagade, 2021),
although there are only two GRs differentially expressed between
major and minor workers of Camponotus floridanus (Zhou et al.,
2012). Subcastes of Camponotus mus differ in sucrose feeding
threshold, which may promote specialization on different nectar
resources (Josens et al., 2018). C. floridanus major and minor
workers also differ in olfactory sensitivity (Ferguson et al., 2023).
Leafcutter ants have worker subcastes that perform leaf-cutting,
fungus care, brood care, and defense (Muratore et al., 2022).
Remarkable morphological, neural, and behavioral differentiation
among subcastes (Arganda et al., 2020; Muratore et al., 2022)
suggest that gustatory polyphenisms may support taste-based tasks
in leaf selection and fungal condition assessment. Through roles in
regulating colony nutrition and informing division of labor, taste
likely plays an important role in ant social behavior.

Discussion

Future research

To understand the evolution and mechanisms of gustation
in ants, we need to assess feeding behavior and preferences,
annotate taste receptors to study phylogenetic patterns and
their role in speciation, and investigate the role of taste
in sociality. Quantifying taste preference is foundational, but
research is methodologically inconsistent, phylogenetically narrow,
and primarily investigates responsiveness to sugars. Behavioral
assays should be complemented by dietary data for species in
their natural habitats and encompass basal clades (Leptanillinae,
Martialinae), predatory ants (poneroids), and dietary specialists
(granivores, fungus-growers, prey specialists) to reveal patterns of
taste evolution.

Transcriptomic data from sensory tissues, whole genome
sequencing, and high-quality gene annotations of chemoreceptors
across dietary-diverse species are also needed to study gustatory
gene evolution, receptor function, and the role of receptors
in dietary change and species diversification. The Global Ant
Genomics Alliance (GAGA) aims to sequence and compare diverse
taxa (Boomsma et al., 2017). Such datasets will provide the
basis for annotating ant GRs and studying their evolution and
relationship with diet and sociality. GRs are often located in tandem
duplication, which makes high-quality gene annotation difficult
using common analysis pipelines. GRs thus require specific analyses
or manual annotation to acquire high-quality datasets that capture
the complete gene family (McKenzie et al., 2016; McKenzie and
Kronauer, 2018) necessary to study the evolution of taste in ants.

Phylogenetic analysis of taste receptors could reveal conserved
genes, pointing to potential functions of ant receptors through
orthologs with known ligands in other species, although functional
studies will be required to define their physiological role.

Frontiers in Ecology and Evolution 05 frontiersin.org

https://doi.org/10.3389/fevo.2023.1175719
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-11-1175719 April 25, 2023 Time: 15:7 # 6

Smith et al. 10.3389/fevo.2023.1175719

Gene subfamilies that originated in ants can also be identified,
as well as patterns associated with evolutionary convergence (e.g.,
in honeydew specialization). Birth and death rate estimations
for gustatory gene families may additionally reveal evolutionary
patterns associated with dietary adaptation and speciation. The
impact of colony size and worker size frequency distributions on
diet in phylogenetic context require further research.

Polymorphic species provide models for elucidating the role of
gustation in division of labor. Preference, sensitivity, and receptor
expression differences between polymorphic workers may correlate
with task specialization. Given their strongly differentiated
subcastes and multiple taste-reliant tasks, polymorphic leafcutter
ants (Atta) can be models to study the coevolution of gustation and
division of labor. In Pheidole pallidula, differential expression of the
P. pallidula foraging gene (ppfor) regulates behavioral differences
between the defensive major and forager minor workers, with ppfor
activation increasing defensive behaviors in majors and lowering
foraging behaviors in majors and minors (Lucas and Sokolowski,
2009). Similarly, in C. floridanus, pharmacological reduction of
histone deacetylation increased foraging behavior of majors and
minors (Simola et al., 2016). Taste likely varies across subcastes and
these manipulations could provide inroads to explore the pathways
that regulate differences in taste.

Finally, ant gustation may adaptively evolve with dietary shifts
in rapidly changing environments. Pavement ants (Tetramorium
sp. E) colonizing urbanized landscapes have a dietary reliance on
processed human foods (Penick et al., 2015). The role of taste
receptors in such urban dietary adaptation is not known and may
provide opportunities to examine the evolution of gustation over
relatively short time scales.

Conclusion

Gustation has evolved to meet nutritional needs as the
mechanism underpinning food choice and dietary optimization.
Nutritional decisions require taste perception; evolutionary
changes in receptor alleles enable assessment of new food sources,
driving selection for adaptive chemoreception. The remarkable
dietary and species diversity of ants presents an outstanding
opportunity to explore the evolution and mechanisms of gustation
in eusocial species that make individual- and colony-level
decisions based on taste.

Gustation influences species diversity through its role in dietary
niche evolution. Dietary evolution in ants has broader significance

due to their striking ecological and evolutionary impact on the
broad range of organisms they consume or with which they
have dietary mutualisms, thus significantly affecting biodiversity.
Gustation is therefore critical to understanding the impact of ants
on ecosystem health.
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