
Frontiers in Ecology and Evolution 01 frontiersin.org

Should more individuals 
be sampled when measuring 
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When measuring plant functional traits across geomorphologies, 5–10 healthy 
individuals of a plant species are commonly sampled. However, whether more 
individuals should be  sampled in habitat-heterogeneous karst vegetation 
remains unknown. In this study, two dominant tree species (Clausena dunniana 
and Platycarya strobilacea) in karst evergreen and broadleaved mixed forests in 
Southwestern China were selected. On the basis of a large quantity of individuals 
of the two species grown in different peak clumps and slope positions, variations 
of 10 morphological traits in the two species were statistically analyzed. The 
suggested sampling number of individuals, which could mostly represent the 
common trait characteristics, was further explored. All traits showed significant 
differences between the two species (p < 0.05). The traits of P. strobilacea displayed 
larger intraspecific variations than those of C. dunniana, except for twig dry matter 
content. The bark thickness (BT), leaf area (LA), and specific leaf area (SLA) of C. 
dunniana and the BT, SLA, LA, leaf tissue density, and bark tissue density of P. 
strobilacea presented large intraspecific variations. Most traits exhibited significant 
differences between peak clumps and/or among slope positions (p < 0.05). 
Random sampling analysis indicated that the suggested sampling numbers of 
individuals for the 10 traits are 6–23 in C. dunniana and 9–29 in P. strobilacea. 
The common accepted sample size in normal geomorphologies is not sufficiently 
large in most cases. Larger sample sizes are recommended for traits, such as SLA, 
BT, and LA, with larger intraspecific variations. Therefore, under sufficient labor, 
material, and time, more individuals should be sampled when measuring plant 
functional traits in habitat-heterogeneous karst vegetation.
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1. Introduction

Plant functional traits (PFTs) are the morphological and physiological characters highly 
connected with the survival, growth, reproduction, and death dynamics of plants (Violle et al., 
2007). PFTs, especially the morphological traits such as leaf area (LA), bark thickness (BT), and 
wood density, are easy to measure and could reveal the relationships between plants and 
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environments; For example, plants grow in harsh environments 
display small leaves, thick barks, and hard woods (Wright et al., 2004; 
Liu et al., 2022; Kambach et al., 2023). The study of PFTs offers an 
alternative approach to comprehend community species coexistence 
and predict the effects of global environmental changes on plant 
distribution (Thuiller et al., 2004; Kraft et al., 2008; Cui et al., 2020). 
Currently, the morphological traits of leaves, barks, and twigs 
(especially leaves) of various vegetation types in diverse 
geomorphologies worldwide have been considerably explored (Wright 
et al., 2010; Auger and Shipley, 2013; Myers-Smith et al., 2019; Jin 
et al., 2023; Liu et al., 2023).

When measuring PFTs in the field across geomorphologies, 5–10 
healthy individuals of a species are commonly selected, and leaf, bark, 
twig, and root samples are further collected from the selected 
individuals (Cornelissen et al., 2003; Pérez-Harguindeguy et al., 2013). 
However, PFTs vary among species (interspecific variation) and 
individuals within a species (intraspecific variation). Interspecific trait 
variations are determined by species identity (genetic factors), and 
intraspecific trait variations are more influenced by environmental 
factors (Weiher and Keddy, 1995; Westoby et al., 2002; Bolnick et al., 
2011). Plant scientists generally agree that PFTs show large 
interspecific variations among species (Cornelissen et al., 2003; Wright 
et al., 2004). In the last decade, a growing body of studies suggested 
that intraspecific trait variations could not be ignored (Albert et al., 
2010; Auger and Shipley, 2013; Niu et al., 2020). Climate, soil, altitude, 
aspect, illumination, and many other environmental factors all cause 
intraspecific trait variations (Hultine and Marshall, 2000; McDonald 
et al., 2003; Peppe et al., 2011). Plants of a certain species growing in 
diverse environments may present large intraspecific trait variations 
(Liu et al., 2023). A global meta-analysis indicated that intraspecific 
trait variations occupy an average of 32% of the total trait variations 
(Siefert et al., 2015). Intraspecific trait variations may even be larger 
than interspecific trait variations in some studies (Lecerf and Chauvet, 
2008; Messier et al., 2010). Thus, the traits of different species and 
those of individuals within a species growing in different environments 
vary inevitably. The trait characteristics (especially for traits with large 
interspecific and intraspecific variations) may be accompanied by 
much uncertainty on the basis of a unified sample individual number 
without regard to species identity and environmental conditions.

Karst is a fantastically particular geomorphology formed from the 
solution of carbonate rocks (such as limestone and dolomite) by 
underground and surface water. This geomorphology is sporadically 
distributed over the world, with an area of 22 million km2, occupying 
approximately 14.8% of the global land area (Jiang et  al., 2014). 
Southwestern China, Southern America, and the Mediterranean coast 
of Europe are the three major areas with widespread distribution of 
karst geomorphology (Sweeting, 1972). Due to long-range geologic 
functions of weathering, denudation, and leaching, the karst 
geomorphology in Southwestern China is well known for its high 
habitat heterogeneity. Karst mountain areas have various landforms, 
such as dissolved gully, stone bud, peak clump, peak forest, isolated 
peak, doline funnel, and solution depression (Song, 2000). Rock 
exposure, soil depth and nutrients, light intensity, and water conditions 
relatively differ among mountains and slope positions within a 
mountain (Pan, 2003; Peng et al., 2019; Liu et al., 2021). Researchers 
have studied the PFT characteristics and PFT-based adaptation 
strategies of karst plants and plant communities in this region and 
found that PFTs, such as morphological traits and ecological 

stoichiometry, in karst plants presented large interspecific and 
intraspecific variations due to highly heterogeneous environments/
habitats (Jiang et al., 2016; Geekiyanage et al., 2018; Yang et al., 2020; 
Liu et al., 2022).

However, most PFT studies conducted in karst geomorphology in 
Southwestern China sampled a similar small individual number of 
plants (for example, five plant individuals were sampled) in normal 
geomorphologies (Pang et al., 2019; Yu et al., 2021; Shui et al., 2022). 
The results from such sampling method may not indicate the entire 
trait characteristics in plants, and plant communities grow in 
considerably heterogeneous environments/habitats. For example, 
plants grow in stone gullies, on stone surfaces and soil surfaces in a 
karst forest presented significantly different leaf trait values (Zhou 
et al., 2022). Thus, researchers may raise a question of whether more 
individuals should be  sampled when measuring PFTs in habitat-
heterogeneous karst regions.

In this study, two dominant tree species (an evergreen species and 
a deciduous species) in habitat-heterogeneous primary forests in peak 
clump depression karst geomorphology in Southwestern China were 
used as samples. The morphological traits of leaf, bark, and twig in a 
large quantity of individuals of the two tree species were measured. 
Trait differences between peak clumps and among slope positions 
within a mountain were analyzed. This study aimed to answer whether 
more individuals should be sampled when measuring PFTs of tree 
species in habitat-heterogeneous karst forests. It could provide 
theoretical support for the sampling quantity of PFT measurements 
in karst regions in future studies.

2. Materials and methods

2.1. Study area

Peak clump depression karst geomorphology is one of the eight 
karst geomorphological types in Southern China and mainly 
distributed in Southern Guizhou Province and Northern Guangxi 
Autonomous Region. Libo County, located in Southern Guizhou, is 
one of the representative areas of the region, especially its Maolan 
National Nature Reserve (107°52′–108°05′ E, 25°09′–25°21′ N) with 
an area of 21,285 km2 (Figure  1). This terrain is located in 
mid-subtropical China and has a humid monsoon climate. According 
to records from the Libo meteorological station (107°53′ E, 25°25′ N, 
429 m), the mean annual temperature is 18.3°C, with temperatures of 
8.5°C and 26.5°C in January and July, respectively. The mean annual 
precipitation is 1,269 mm, of which 86% falls between April and 
October. The mean annual sunshine duration is 1,273 h, with a low 
sunshine percentage of 26%. The altitude of the reserve is between 430 
and 1,078 m above sea level, with a relative height of most hills at 
100–200 m. Limestone and dolomite (especially the former) are 
distributed everywhere in the reserve. Black limestone soil is shallow 
and discontinuous. The continuous evergreen and deciduous 
broadleaved mixed forests in this reserve are the most widely 
distributed, best protected, and most original karst forest in the world. 
The forests here are known as the gene bank of biological resources 
with the best preserved biodiversity in the subtropical karst 
geomorphology. Primary evergreen and deciduous broadleaved mixed 
forests are distributed in the peak clumps, and rice fields are the key 
land use in the depressions.
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2.2. Vegetation survey and plant functional 
trait measurements

After a vegetation survey in the reserve was completed, six 
mountains in two opposite peak clumps (three mountains on each 
side peak clumps separated by a depression) at Poling site (107°56′ E, 
25°17′ N) representing the karst peak clump depression 
geomorphology, vegetation, and soil of the whole reserve were 
selected. In each mountain, three plots (each with an area of 
20 m × 30 m) at the upper, middle, and lower slopes (18 plots in total) 
were established (Figure 1). The species identity, diameter at breast 
height (DBH), and height of each woody plant with DBH ≥ 1 cm were 
recorded. Clausena dunniana, Platycarya strobilacea, Cyclobalanopsis 

glauca, Lindera communis, and Swida parviflora are the dominant tree 
species of the primary forests.

Habitats, such as slope, aspect, rock exposure rate, and soil depth 
and nutrient, are highly heterogeneous between peak clumps and 
among slope positions (Pan, 2003; Peng et al., 2019; Liu et al., 2021). 
Two typical dominant karst tree species, C. dunniana and P. strobilacea, 
distributed in all plots were selected as samples to explore the effects 
of highly heterogeneous habitats on PFTs and whether more 
individuals should be sampled when measuring PFTs of tree species 
in karst forests. Ten healthy individuals per species in each plot were 
randomly sampled (180 individuals of each tree species were sampled). 
Four branches in different positions of the sunlit side of the tree 
canopy in each sampled individual were cut using a long reach chain 

FIGURE 1

Location of Maolan National Nature Reserve, physiognomy of peak clump depression karst geomorphology and plot setting (left bottom), and interior 
view of karst forests (right bottom) in the distribution map of karst geomorphology (grey) in Guizhou Province, Southwestern China.
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saw. Twenty healthy mature leaves and three approximately 
20 cm-length terminal twigs were collected from the four branches by 
using a scissor. Three bark samples at the DBH position of each 
individual were collected by using a sickle.

Fresh and dry (dried at 85°C for 72 h in an oven) masses of leaf, 
bark, and twig (peeled) samples were weighed using an electronic 
balance. Leaf thicknesses (LTs) and BT were measured using an 
electronic Vernier caliper. LA was scanned using the WinFOLIA 
multipurpose leaf area meter (Regent Instruments, Canada). The 
volumes of bark and twig samples were determined using the drainage 
method, and those of leaf samples were calculated as the product of 
LA and LT. The values of specific leaf area (SLA), leaf dry matter 
content (LDMC), leaf tissue density (LTD), bark dry matter content 
(BDMC), bark tissue density (BTD), twig dry matter content (TDMC), 
and twig tissue density (TTD) were calculated using their 
corresponding equations (Cornelissen et al., 2003).

2.3. Data analysis

All statistical analyses were performed using SPSS version 20 and 
the R software version 3.5.1 (Xue, 2017; R Core Team, 2018). The 
coefficients of intraspecific variation (standard deviation divided by 
mean times 100%) were used to characterize the varying degrees of 
PFTs within a species. Independent sample t-test was conducted to 
determine trait differences between the two species and between peak 
clumps. One-way ANOVA was used to analyze trait differences among 
slope positions. Sampling without replacement (2,000 times of 
duplicate sampling under each sample size from two to the suggested 
sample individual number) was conducted for each trait (each trait of 
each species had 180 values from 180 individuals, 
Supplementary Table S1) by using the “Sample” package in the R 
software to determine the suggested individual numbers when 
measuring the PFTs of tree species in karst forests. Then, independent 

sample t-test was conducted to determine trait differences between 
object samples and total samples, and the corresponding p values were 
obtained (2,000 p values were obtained for each trait). When the 
number of p > 0.05 exceeded 1,900 of 2,000 times p values (95%), this 
sample size is the suggested sample individual number for the trait of 
this tree species (Gao et al., 2018).

3. Results

All traits showed significant differences between the two species 
(p < 0.05). C. dunniana presented significantly higher LT, LA, BDMC, 
BTD, TDMC, and TTD values and significantly lower SLA, LDMC, 
LTD, and BT values than P. strobilacea (p < 0.05). The coefficients of 
intraspecific trait variation of C. dunniana ranged from 6.32% to 
35.95%. The BT, LA, and SLA of C. dunniana showed large intraspecific 
variations, indicated by large coefficients of intraspecific variation 
(Figure 2). The coefficients of intraspecific trait variation of P. strobilacea 
ranged from 8.13% to 45.62%. The BT, SLA, LA, LTD, and BTD of 
P. strobilacea displayed large intraspecific variations, indicated by large 
coefficients of intraspecific variation (Figure 2). In general, the traits of 
P. strobilacea displayed larger intraspecific variations than those of 
C. dunniana, except for TDMC (Figure 2).

The LA and LTD of C. dunniana showed no differences between 
peak clumps and among slope positions (p > 0.05). The SLA, BT, and 
BTD of P. strobilacea also displayed no differences between peak 
clumps (p > 0.05). Other traits presented significant differences 
between peak clumps and/or among slope positions (p < 0.05) 
(Figure 3). The LTD, BT, BDMC, and TDMC of C. dunniana and the 
LDMC, LTD, BT, BDMC, and BTD of P. strobilacea increased with 
increasing slope position. The SLA of the two tree species decreased 
with increasing slope position (Figure 3).

Based on the results of sampling without replacement and 
independent sample t-test, the average LT values of object samples and 

FIGURE 2

Plant functional traits and their intraspecific variations in two tree species in karst forests in Guizhou Province, Southwestern China. The circles in the 
box plots indicate abnormal values. The percentages of data in the box plots are the coefficients of intraspecific trait variation. LT, leaf thickness; LA, 
leaf area; SLA, specific leaf area; LDMC, leaf dry matter content; LTD, leaf tissue density; BT, bark thickness, BDMC, bark dry matter content; BTD, bark 
tissue density; TDMC, twig dry matter content; TTD, twig tissue density.
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total samples showed no significant differences when the sample sizes 
for the LT of C. dunniana and P. strobilacea exceeded 18 and 14, 
respectively. That is, the suggested sample individual numbers for the 
LT of C. dunniana and P. strobilacea are 18 and 14, respectively 
(Figure 4). The corresponding suggested sample individual numbers 
for the LA, SLA, LDMC, LTD, BT, BDMC, BTD, TDMC, and TTD of 
C. dunniana were 12, 8, 10, 13, 23, 9, 6, 12, and 15, respectively 
(Figure 4), and those for P. strobilacea were 20, 29, 12, 13, 22, 23, 11, 
15, and 9, respectively. In general, more individuals of P. strobilacea 

should be sampled than C. dunniana, and more individuals should 
be sampled when measuring traits with larger intraspecific variations.

4. Discussion

The PFTs of various vegetation types worldwide across 
geomorphologies have been considerably measured with reference 
to the handbooks for standardized measurements of PFTs 

FIGURE 3

Plant functional trait differences between peak clumps and among slope positions in two tree species in karst forests in Guizhou Province, 
Southwestern China. Trait values with different capital letters between peak clumps in the same slope position are significantly different (independent 
sample t-test, p < 0.05). Trait values with different small letters among slope positions in a peak clump are significantly different (one-way ANOVA, 
p < 0.05). LT, leaf thickness; LA, leaf area; SLA, specific leaf area; LDMC, leaf dry matter content; LTD, leaf tissue density; BT, bark thickness, BDMC, bark 
dry matter content; BTD, bark tissue density; TDMC, twig dry matter content; TTD, twig tissue density.
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FIGURE 4

Mean of random sampling, frequency, and significant test of plant functional traits in two tree species in karst forests in Guizhou Province, 
Southwestern China. The solid line indicates the mean trait value of random sampling. The dots indicate frequencies of p > 0.05. The grey blocks are the 
areas of significant differences between object samples and total samples, indicating that the sample size of the right position of the block is the 
suggested sampling number of individuals. LT, leaf thickness; LA, leaf area; SLA, specific leaf area; LDMC, leaf dry matter content; LTD, leaf tissue 
density; BT, bark thickness, BDMC, bark dry matter content; BTD, bark tissue density; TDMC, twig dry matter content; TTD, twig tissue density.

(Cornelissen et al., 2003; Pérez-Harguindeguy et al., 2013). However, 
the PFT characteristics of some vegetation in remote or certain 
topographical areas have not been fully determined yet, such as 
those of the karst vegetation in Southwestern China. Most of the 
existing studies adopted the same sampling method as conducted in 
normal geomorphology (Geekiyanage et al., 2018; Pang et al., 2019; 
Yu et al., 2021; Shui et al., 2022). With regard to the effects of highly 
heterogeneous habitats on PFTs in karst geomorphology, in the 
present study, whether more individual numbers should be sampled 
when measuring PFTs in karst vegetation was explored for the first 
time. This study could provide not only basic data to the TRY and 
the China plant trait databases but also methodology for future 
detailed PFT measurements (especially for intraspecific trait 
variation measurements) in vegetation types grow in highly 
heterogeneous environments/habitats worldwide other than in karst 
vegetation in Southwestern China (He et  al., 2019; Kattge 
et al., 2020).

Taxonomic status (genetic factors) and environmental conditions 
codetermine PFT characteristics (Weiher and Keddy, 1995; Westoby 
et al., 2002; Bolnick et al., 2011). In the present study, considerably 
different trait values between two karst tree species, and among 
individuals within a species but under different habitats were 
observed. Thus, the sampling quantities are supposed to be different 
when measuring PFTs in different species and within a species, but 
individuals grow in different environments/habitats. Besides, traits in 

different organs vary to some degree (Liu et al., 2022). The sampling 
quantities should also differ when measuring PFTs in different organs.

The common accepted practice considers that the number of 
individuals is often 5–10 when measuring PFTs across 
geomorphologies. In the present study, the suggested sampling 
quantities for 10 morphological traits in two tree species (C. dunniana 
and P. strobilacea) in karst forests in Southwestern China are 6–23 and 
9–29, respectively. The common accepted sample size across 
geomorphologies is not sufficiently large in most cases. Therefore, more 
individuals should be  sampled when measuring PFTs in habitat-
heterogeneous karst vegetation, and the traits in different organs and 
species should be  treated differently. C. dunniana is an evergreen 
species with long leaf life. It increases resource investments for survival. 
Large intraspecific variations in PFTs are not conducive for evergreen 
species to adapt to environments. P. strobilacea is a deciduous species 
with short leaf life. It increases resource investments for growth (Aerts, 
1995; Givnish, 2002). Thus, more individuals should be sampled when 
measuring PFTs in deciduous species than evergreen ones. Larger 
sample sizes are also recommended for traits with larger intraspecific 
variations (such as LA, SLA, and BT) than smaller intraspecific 
variations (such as LDMC, LTD, and BTD).

Other PFTs, such as root specific length, C:N:P stoichiometry, leaf 
net photosynthetic rate, and water use efficiency, of tree species, 
shrubs, and herbs in karst vegetation also displayed large interspecific 
and intraspecific variations (Zhong et al., 2018; Zhang et al., 2020, 
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2021; Jing et al., 2021; Liu et al., 2022; Dong et al., 2023). The same 
method is also recommended to explore the sample sizes of those 
PFTs. In conclusion, when measuring PFTs in habitat-heterogeneous 
karst vegetation, the sample size should not be limited to 5–10. More 
plant individuals should be sampled under sufficient labor, material, 
and time.
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