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Human-induced climate and land-use change impact species’ habitats and survival 
ability. A growing body of research uses species distribution models (SDMs) to 
predict potential changes in species ranges under global change. We constructed 
SDMs for 411 Chinese endemic vertebrates using Maximum Entropy (MaxEnt) 
modeling and four shared socioeconomic pathways (SSPs) spanning to 2100. 
We compared four different approaches: (1) using only climatic and geographic 
factors, (2) adding anthropogenic factors (land-use types and human population 
densities), but only using current data to project into the future, (3) incorporating 
future estimates of the anthropogenic variables, and (4) processing species 
occurrence data extracted from IUCN range maps to remove unsuitable areas 
and reflect each species’ area of habitat (AOH). The results showed that the 
performance of the models (as measured by the Boyce index) improved with 
the inclusion of anthropogenic data. Additionally, the predicted future suitable 
area was most restricted and diminished compared to the current area, when 
using the fourth approach. Overall, the results are consistent with other studies 
showing that species distributions will shift to higher elevations and latitudes under 
global change, especially under higher emission scenarios. Species threatened 
currently, as listed by the IUCN, will have their range decrease more than others. 
Additionally, higher emission scenarios forecast more threatened species in the 
future. Our findings show that approaches to optimizing SDM modeling can 
improve accuracy, predicting more direct global change consequences, which 
need to be  anticipated. We  also show that global change poses a significant 
threat to endemic species even in regions with extensive protected land at higher 
latitudes and elevations, such as China.
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1. Introduction

Global biodiversity is threatened by a multitude of anthropogenic 
factors, including growing human populations, intensified land-use 
practices, and climate change (Devictor et al., 2008; Bellard et al., 
2012; Williams et  al., 2021). Improved biodiversity conservation 
measures are critical in the face of deteriorating ecological conditions 
(Araújo et al., 2019; Nielsen et al., 2021). In turn, to effectively design 
such measures, it is essential to accurately predict how species will 
shift their geographical distributions under global change (Bennett 
et al., 2017; Hanson et al., 2020; Hu et al., 2020).

Species distribution models (SDMs) are recognized as a powerful 
approach for predicting species’ geographical distribution patterns 
(Elith and Leathwick, 2009; Guisan et al., 2017; Zurell et al., 2020). 
SDMs are statistical modeling tools that quantify the relationships 
between species distributions and a collection of environmental and 
anthropogenic variables. Climate is frequently regarded as the primary 
driver of species distributions (Pearson and Dawson, 2003). 
Consequently, previous SDM studies aiming at predicting species 
distributions under global change have relied heavily on climatic 
variables (e.g., Devictor et al., 2008; Bellard et al., 2012).

A variety of other factors, however, also regulate species 
distributions, and it has been noted that climate-only models may 
yield imprecise predictions (Thuiller et al., 2004; Martin et al., 2013). 
Further, it has been recommended that anthropogenic factors, in 
particular, should also be incorporated into SDMs (Jetz et al., 2007; 
Nori et al., 2018). Moreover, even in cases in which such variables are 
included, the conceptual and technical challenges associated with 
predicting their future conditions, such as future land-use patterns, 
have forced many studies to base their modeling on static data that 
reflect only current patterns (Verburg et al., 2011). Yet, updated future 
estimates of anthropogenic factors are now increasingly becoming 
available, and hence their dynamic nature should be explored in SDMs 
(Stanton et al., 2012; Martin et al., 2013; Milanesi et al., 2020).

Another aspect of SDMs that has been recently discussed is related 
to species distribution data (Merow et al., 2013). There are mainly two 
types of distribution data in SDM studies: occurrence records obtained 
from public records and databases, such as the Global Biodiversity 
Information Facility (GBIF), and occurrences extracted from the 
species IUCN ranges (Fourcade, 2016). Species occurrences derived 
primarily from museum records and public databases have been 
shown to suffer from sampling biases (Hughes et al., 2021). Therefore, 
species range polygons have been often used as additional distribution 
data to avoid biased estimations of species realized niches, particularly 
in studies involving large numbers of species (Fourcade, 2016; Thuiller 
et al., 2019). However, it has been pointed out that range polygons, 
such as those available by the IUCN, tend to considerably overestimate 
the occurrence of species as commission errors (Ocampo-Peñuela 
et al., 2016; Brooks et al., 2019; Jung et al., 2020). These methods can 
overestimate the species’ available suitable habitat, also known as the 
Area of Habitat (AOH), by including elevations or habitats that the 
species are known not to inhabit (Supplementary Figure 2) (Brooks 
et al., 2019; Jung et al., 2020). Consequently, more studies are needed 
to explore whether range polygons that account for AOH can improve 
the accuracy of SDM predictions.

China is a megadiverse country, so adequately protecting its 
biodiversity is crucial (China Catalogue of Life, 2020). However, 
China is also the most populous country and has witnessed 

tremendous anthropogenic changes in recent centuries (He et al., 
2013). Moreover, China is expected to face significant land-use 
changes in the near future due to increased urbanization (Zhao et al., 
2006; Dong et al., 2019) and other social and environmental factors, 
including climatic change (Shukla et al., 2018; Spinoni et al., 2019). 
Earlier studies on predicting the effects of global change on Chinese 
endemic vertebrates have focused mainly on climatic variables without 
necessarily considering anthropogenic impacts (Li et al., 2013; Hu 
et  al., 2020; Wu, 2020). That said, a recent article did consider 
anthropogenic influences in an SDM model, but focused only on a 
single plant species (Tang and Zhao, 2022).

In this study, we  compared four different approaches for 
predicting the potential effects of global anthropogenic land use and 
climate change on Chinese endemic vertebrate species. The first 
approach included climatic and geographic variables only, such as 
temperature, precipitation, aspect, and slope. The second approach 
included also anthropogenic variables, specifically current human 
population densities and land-use patterns, but the data was static (i.e., 
used only current patterns). The third approach included future 
human population densities and future land-use patterns and thus is 
dynamic. These three approaches (1, 2, 3) were applied to occurrence 
data from multiple sources, including occurrences extracted from the 
IUCN species ranges, by randomly selecting points within the 
distribution of each species. We also investigated a fourth approach, 
similar to the third, but in which unsuitable habitats and elevations 
were removed in order to maintain each species’ AOH (Forero-
Medina et al., 2011; Brooks et al., 2019). We hypothesized that: (a) the 
inclusion of anthropogenic variables and the approach of eliminating 
unsuitable habitats within the IUCN range (i.e., maintaining only the 
AOH) would improve model performance, (b) the inclusion of 
dynamic anthropogenic variables would predict smaller suitable areas 
in the current situation, and more profound range loss in the future, 
as many species are not able to tolerate human-modified and human-
dominated land-types.

2. Methods

2.1. Species occurrence data

China is home to 641 endemic terrestrial vertebrate species, 
including 272 amphibians, 77 birds, 150 mammals, and 142 reptiles 
(China Animal Scientific Database, 20201; IUCN, 2022). Aquatic 
species have vastly different environmental preferences, constraints, 
and movement patterns, so they were excluded from this study 
(Sundblad et  al., 2009; Zhang et  al., 2020). To determine the 
distributions of the rest of the Chinese endemic vertebrate species 
(n = 411), we compiled a dataset of the geographic coordinates of the 
species occurrences obtained from the Global Biodiversity 
Information Facility (GBIF: www.gbif.org), the IUCN range maps 
(www.iucnredlist.org), and the Chinese Bird Report (www.
birdreport.cn).

To predict species distributions using the first three approaches 
(approaches 1–3), we  first extracted occurrence records from the 

1 http://zoology.especies.cn/
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IUCN range maps (Van Wilgen et al., 2009; Fourcade, 2016; Sales 
et al., 2017) by randomly selecting records within each species’ range, 
with the number of points being proportional to the species’ range 
size. This was necessary to avoid overfill and possibly exaggerate the 
species’ niches due to extensive point data (Sales et  al., 2019). 
Specifically, for species that occupied less than 100 grid cells (each of 
2.5 arc-minutes square, roughly equal to 5 km2 at the equator), 
we selected all occurrence points within the IUCN polygon range; for 
species with 101 to 500 cells, we randomly selected 50% of the points; 
similarly, between 501 and 1,000 cells, we randomly selected 25% of 
the points, and for more than 1,001 cells, we selected 12.5% (Sales 
et al., 2019; see their Supplementary material). Then, we consolidated 
the data from the different databases and randomly selected one 
occurrence record per 2.5 arc-minute cell. We  filter the data by 
retaining only the occurrence points within China, including a buffer 
of 10 degrees, considering that the species we studied are Chinese 
endemic species (Elith et al., 2011; Thompson et al., 2017; Tang et al., 
2018). We did not filter in other ways to avoid reducing the dataset 
further. Lastly, we excluded species with fewer than ten occurrence 
records to reduce statistical errors associated with small sample sizes 
(Hernandez et al., 2006; Liang et al., 2018). For birds, we only used the 
China Bird Report, because it provided detailed information. See 
Supplementary Figure 1 for a description of the number of occurrence 
records for the species in different taxa.

To obtain each species’ AOH by eliminating unsuitable habitats 
and elevations within their range polygons (Approach 4), we used (a) 
the recent global map of terrestrial habitat types produced by Jung 
et al. (2020), showing the distribution of 112 IUCN habitat classes 
(level 2) in a 100 m resolution (Jung et al., 2020), and (b) an elevation 
map provided by the United  States Geological Survey2 at 2.5 
arc-minutes resolution. After removing the unsuitable habitat and 
elevations (See Supplementary Figure  2), random points were 
generated within the AOH and consolidated with the other sources of 
occurrence points data as described above. We  finally kept 175 
amphibians, 71 birds, 94 mammals, and 71 reptiles in our subsequent 
analyses (see details in Supplementary Figure 3).

2.2. Types of predictors

For climatic factors, we obtained 19 bioclimatic variables at 2.5 
arc-minute resolution from WorldClim version 2.1 (www.worldclim.
org), which represent annual mean and extreme values of temperature 
and precipitation. We averaged values between 2000 and 2020 for the 
current period and obtained mean values across four 20-year periods 
(2021–2040, 2041–2060, 2061–2080, 2081–2100) for the future 
(Hijmans et al., 2005). We obtained the future projections of global 
change under distinct shared socioeconomic pathways (SSPs), 
specifically using SSP1, the most optimistic scenario, and SSP5, the 
scenario without any emission controls, as extremes (Hijmans et al., 
2005; O’Neill et  al., 2014). We  also included two intermediate 
scenarios: SSP2 and SSP3 (Thuiller et al., 2019).

Regarding the geographic factors, we retrieved slope and aspect 
from the United  States Geological Survey (www.usgs.gov) at 2.5 

2 http://www.earthenv.org/topography

arc-minute resolution (www.earthenv.org/topography). Since water is 
an essential resource for terrestrial species (Kearney and Porter, 2009), 
we also quantified the distance to the closest surface water (De Solan 
et al., 2019). This water distance was obtained through Euclidean-
distance estimation, using source data of coastlines and waterways, 
including rivers, streams, and lakes, provided by OpenStreetMap Data 
Extracts3 (Sangermano et al., 2015; Coxen et al., 2017). We assumed 
that the geographic data (including slope, aspect, and distance to the 
closest water source) remain unchanged in the future.

Regarding the anthropogenic factors, human population densities 
per grid cell were obtained from Gao and Pesaresi (2021). This dataset 
provides averaged human population densities across decades from 
2000 to 2100 at 0.5 arc-minute resolution. To be consistent with the 
rest of the datasets used in our analyses, we  calculated the mean 
human population densities step size every 20 years as one period 
(Gao and Pesaresi, 2021). Regarding the dynamic anthropogenic data 
for Approaches 3 and 4, we obtained the global gridded land-use 
forecasted data from Chen et  al. (2020). The dataset additionally 
considers variations within the broad land cover types, integrating 
data on climatic zones, leaf types, and vegetation types to obtain a total 
of 32 land-use types consistent with the climatic projections (Lawrence 
et al., 2016; Hurtt et al., 2020). We used the land-use data from Chen 
et  al. (2020)’s harmonized GCAM (the Global Change Analysis 
Model).4 First, we calculated the average proportion for each land-use 
type across 2000–2020. Then, we assigned to each pixel the land-use 
type with the greatest extent (the bilinear interpolation method, 
Kramer-Schadt et al., 2013; Liu et al., 2020). For Approaches 3 and 4, 
we performed a similar procedure for the four 20-year future periods 
and for the selected group of SSPs.

All variables were resampled to a resolution of 2.5 arc-minutes 
and projected onto the same coordinate reference system (WGS84) 
using the R package “raster” (Hijmans et  al., 2021; R-Core-Team, 
2022). We resampled categorical variables via the nearest neighbor 
method, and continuous variables via the bilinear method.

Prior to SDM modeling, it is important to assess and reduce 
co-linearity between predictors to avoid overfitting and other 
statistical issues (Synes and Osborne, 2011; Dormann et al., 2013; 
Cruz-Cárdenas et al., 2014). We assessed collinearity among predictors 
by calculating the pairwise Pearson’s correlation coefficient (r), and by 
keeping only variables with |r| < 0.7 (Supplementary Figures 4A,B, 
Supplementary Table 1). If pairs of variables were highly correlated 
(|r| > 0.7), we only retained one of the variables, selecting those that 
have often been used in previous studies due to their ecological and 
biological importance (Supplementary Table 2; Fourcade et al., 2018; 
Smith and Santos, 2020). Through this process, we  selected ten 
variables for Approach 1 and 12 variables for Approaches 2–4.

2.3. Species distribution modeling

As a first step to the modeling, we established a buffer around each 
species’ range, reflecting their dispersal potential. This was necessary 
to avoid overly optimistic results of unlimited dispersal models 

3 https://download.geofabrik.de/

4 https://data.pnnl.gov/group/nodes/dataset/13192
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(Guisan and Thuiller, 2005). We defined buffer regions differentially 
and according to the different taxa’s dispersion abilities, with the 
maximum dispersion distance for amphibians, birds, mammals, and 
reptiles set as 2,000 km, 4,000 km, 3,000 km, and 2,000 km, respectively, 
following earlier studies (Thuiller et  al., 2019; Dupont-doar and 
Alagador, 2021).

We then developed SDMs using the maximum entropy (MaxEnt) 
method. We used the “ENMeval” package in R to run the models 
(Muscarella et al., 2014; Kass et al., 2021). The Maxent algorithm has 
been used widely and is considered to have high predictive 
performance with varying sample sizes (Elith et al., 2006; Hernandez 
et al., 2006). We randomly selected 10,000 points within the taxon-
specific buffer region as background data. For each species and each 
approach, we ran multiple models using different combinations of 
feature classes (specifically, linear, linear-quadratic, hinge, and linear-
quadratic-hinge), which govern the complexity of the model, and 
regularization multipliers (ranging from 0.5 to 4.0 in steps of 0.5), 
which vary the precision of the model constraints (Phillips et al., 2006; 
Merow et al., 2013; Radosavljevic and Anderson, 2013).

Following previous recommendations (Roberts et al., 2017; Sales 
et al., 2019), we used a spatial block cross-validation approach (three 
blocks for model training and the remaining block for model testing) 
to select the optimal model for each species in each of the four 
approaches (Muscarella et al., 2014; Valavi et al., 2019). Specifically, 
we first chose the model with the minimum average 10% omission 
rate (Muscarella et al., 2014; Thompson et al., 2017; Mendes et al., 
2020). If multiple models had the same omission rate, we chose the 
model with the highest AUC value (Zhang et al., 2021). We evaluated 
predictive model performance via the continuous Boyce index, which 
is a presence-only and threshold-independent evaluator (Hirzel et al., 
2006). The Boyce index varies between −1 and 1; positive values 
indicate that the presence data are consistent with predictions. A zero 
value means that the model is essentially the same as a random model. 
Negative values indicate counter-predictions (Hirzel et  al., 2006). 
Therefore, we  removed models with a Boyce index ≤0 from 
subsequent analyses (i.e., four species in total; Supplementary Table 3).

2.4. Statistical comparisons among the four 
approaches

We constructed general linear mixed models (GLMMs) to 
compare the SDM results among the four approaches using the 
package “glmmTMB” (Bolker, 2019). GLMMs were constructed 
from subsets of all fixed effect variables, and for simplicity, 
we focused on the best model with the lowest Akaike Information 
Criteria (AIC), as indicated by the package “MuMIn” (Hothorn, 
2010). To compare levels of categories, we used Tukey HSD multiple 
comparisons as implemented through the “ghlt” function of the 
“multcomp” package. To produce partial residual graphs that 
visualize the effect of one variable when the others are held constant, 
we used the package “visreg” (Breheny and Burchett, 2017). To test 
model assumptions, residual analyses were conducted using the 
“DHARMa” package.

All GLMMs incorporated as random factors the identity of the 
species and its evolutionary history (or a proxy thereof, the family of 
the species). Our first model measured performance (Boyce’s index). 
The model was specified as follows:

 Boyce index Approach Taxa | Family Species~ /+ + ( )1

The residual analysis showed that an arcsine transformation on 
Boyce Index produced the fewer deviations from assumptions. 
Because Boyce Index is used only on evaluations of the SDM built by 
current distributions, Approaches 2 and 3 were the same for these 
models (i.e., there were three results, Approaches 1, 2 & 3, and 4).

We next compared the approaches in (a) the area of suitable 
habitat (hereafter “ASH”) that was predicted in the future, (b) the 
percentage of currently suitable habitat that was predicted to become 
unsuitable (loss in range index, LRI), and (c) the proportional change 
in the size of the range (change in range index, CRI). The indices were 
calculated as follows:

 
LRI LR

CR
= ×100%

Where LR is the lost range, the currently suitable habitat that is no 
longer suitable in future scenarios, and CR is the current total 
suitable area.

 
CRI FR CR

CR
=

−
×100%

Where FR is the total suitable area in the future.
The GLMM models for ASH, LRI, and CRI were similar to those 

described for the Boyce index, but also integrated as predictors the 
Period (range of years) and SSP for which the estimation was made. In 
addition, we considered possible interactions between Approach, SSP, 
and Period. However, because interactions were discovered to complicate 
the models while having an insubstantial influence on the results, 
we excluded them from the final models, which were specified as follows:

 

CRI LRI or ASH Approach SSP Period Taxa

| Family Species

, , ~

/

+ + +
+( )1

Selected suitable transformations were sqrt (CRI + 1.5), sqrt (LRI), 
and log (ASH +1).

2.5. Estimating the future distributions of 
Chinese endemic vertebrates using 
Approach 4

Following our findings that using anthropogenic variables 
improves model performance and that Approach 4, in particular, has 
the most adverse effects on Chinese endemic vertebrates, we used 
Approach 4 to create predicted species distribution maps for the 
current time period and for 2080–2100 for SSP1 and SSP5. We also 
calculated the importance of each predictor based on their 
permutation importance value, which is only dependent on the final 
model and not affected by the process (Smith and Santos, 2020). In 
addition, we developed a map of the changes in species distribution 
from now until 2080–2100, as well as shifts in the centers of species 
distributions and elevations.
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Lastly, we also analyzed the effect of the current level of threat to 
species, as determined by IUCN. The three IUCN categories, CR, EN, 
and VU, were combined into a “Threatened” category following 
standard convention and because of their small number of species 
(IUCN, 2022), and were compared to LC and NT species; Data 
Deficient (DD) species were excluded from the analysis. Models to 
quantitatively assess this factor were specified using glmmTMB 
as follows:

 

CRI LRI or ASH IUCN Level Threatened, LC, NT

Taxa | Family Sp

, ~

/

( )
+ + 1 eecies( )

As a further conservation-related analysis, we investigated the 
number of species that would appear to face increased extinction 
threat by 2080–2100. Following previous studies, we defined species 
to be threatened by extinction if their future distribution is predicted 
to be less than 20% of their current distribution (i.e., CRI < −0.8), or 
if 80% of the currently suitable area becomes unsuitable in the future 
(i.e., LRI > 0.8; Mayani-Parás et  al., 2019; Wu et  al., 2020). When 
looking at these patterns, we also determined whether species current 
level of threats (IUCN categories, following the categories described 
above) influenced the estimates of their future extinction threats.

3. Results

3.1. Comparisons among the four 
approaches

With regards to the SDM performance, all the models showed 
relatively high Boyce index scores (Approach 1: 0.920 ± 0.103; 
Approaches 2&3: 0.931 ± 0.110; Approach 4: 0.933 ± 0.093; 
mean ± standard deviation). Nevertheless, the approach used 

influenced model performance (ANOVA, χ2
2 = 14.98, p = 0.00056), 

with the Tukey HSD comparisons showing that Approach 1 had, on 
average, significantly lower Boyce index values than those of other 
approaches (Figure 1; comparison with Approaches 2 [&3], p = 0.0024; 
comparison with Approach 4, p = 0.0022). The elimination of 
unsuitable habitats and elevation (Approach 4) made no significant 
difference to performance (comparison between Approaches 2 [&3] 
and 4, p = 0.999). The best model was the full model, which included 
approach and taxa as fixed effects. Differences between the taxa are 
described in Supplementary Figure 5A.

The approaches also differed in their predictions as to the 
distributions of the endemic vertebrates. The approaches that 
incorporated anthropogenic factors, and eliminated unsuitable 
habitats and elevation, generally predicted more adverse outcomes for 
Chinese endemic vertebrates. Specifically, assessing ASH, the overall 
effect of approach was significant (ANOVA, χ2

2 = 1270.37, p < 0.0001), 
with the area of suitable habitat largest for Approach 1, intermediate 
for Approaches 2 and 3, and smallest for Approach 4 (Figure 2A). For 
LRI, the overall effect of approach was significant (ANOVA, 
χ2

2 = 1414.19, p < 0.0001), with Approach 2 having the smallest range 
decrease, Approach 1 slightly larger, Approach 3 being intermediate, 
and Approach 4 having the highest values (Figure 2C). For CRI, the 
overall effect of the approach was significant (ANOVA, χ2

2 = 21.54, 
p < 0.0001), with Approach 4 having lower change of range values than 
the other approaches (Figure 2B). In all these models, taxa was only 
significant for ASH (see Supplementary Figure 5B for its effect). SSP 
was an important explanatory variable for CRI and LRI, and the time 
period influenced all three models. In general, higher emission SSPs 
produced more adverse effects than lower emission SPPs, and later 
periods (i.e., 2081–2100) also produced more extreme effects 
(Supplementary Table 4).

3.2. Future species’ distributions using 
Approach 4

3.2.1. Variable importance
As to variable importance, there was a large difference between 

the 12 explanatory variables in their permutation importance. When 
looking at mean permutation importance in three classes (climatic, 
geographic, and anthropogenic), climatic variables were the most 
influential (Figure 3). The slope was the most important geographic 
variable, and land use was the most important anthropogenic variable. 
Results for different taxa are shown in Supplementary Figure 6.

3.2.2. Maps of diversity and descriptions of 
change over time

A map of the current distributions of the endemic species 
(Figure  4) shows several major endemic centers for birds and 
mammals: a large diversity hotspot in mountainous areas around the 
Sichuan Basin in the north and west of Sichuan, extending into 
northern Yunnan and eastern Xizang, eastern Qinghai, southern 
Gansu, southern Shaanxi, northern Guizhou, and Chongqing, as well 
as another diversity hotspot on the islands of Hainan and Taiwan. In 
contrast, diversity hotspots for amphibians and reptiles are more 
diffuse and throughout southern and eastern China.

In the maps that depict changes in species richness for birds and 
mammals, there are declines in the current hotspots by 2080–2100, 

FIGURE 1

Comparison of models’ predictive performance, as measured by 
Boyce index, among the different approaches, with Approach 1, 
which had no anthropogenic data, performing on average worse 
than other approaches. This is a partial residual graph, with other 
variables held constant as the approach changes; each point 
represents a different species. Blue is the predicted mean, and the 
gray area represents the 95% confidence interval. Columns with the 
same letter are not significantly different.
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especially for SSP5 (Figures 4, 5). New hotspots emerge for birds and 
mammals in south to southeast Xizang (Tibet) and southern Qinghai, and 
even amphibians show movements into this area. Reptiles and mammals 
show diversity increases across broad swaths of northern China; 
amphibians show hotspots on the movement map as north as Xinjiang.

The general direction of movement can be  analyzed by 
investigating how the centers of the range for the species change over 
time (Supplementary Figure  7). Generally, movement tends to 
be toward the north and to the west (i.e., higher elevations). More 
extreme climate scenarios show substantial shifts. For example, under 

FIGURE 2

Predictions of the future distributions of Chinese endemic vertebrates varied by approach. Response variables included: (A) Area of suitable habitat 
(ASH), (B) Loss in Range Index (LRI), and (C) Change in Range Index (CRI). In general, models that incorporated anthropogenic factors (Approaches 2, 3, 
and 4), and eliminated unsuitable areas from range maps (Approach 4), had more adverse outcomes for Chinese endemic vertebrates.

FIGURE 3

A boxplot of the permutation importance for the 12 explanatory variables in the best models. The variables are classified into three different classes: 
climatic, geographic, and anthropogenic.
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SSP5, some species move as much as 15 degrees (around 1,665 km), 
whereas under SSP1, the movement of all species is almost always less 
than 5 degrees (around 555 km). At the same time, the animals are 
moving in terms of elevation (Supplementary Figure 8). In particular, 
birds and mammals develop under the SSP5 scenario a secondary 
peak of diversity approximately between 3,500–4,500 m a.s.l.

3.2.3. Analysis of threatened species
The future distributions of species were also influenced by their 

current threat status, as categorized by the IUCN. Species that are 
considered threatened by the IUCN face more severe loss of suitable 
habitat in the future (especially the 2080–2100 period). Specifically, 
the area of distribution under both the most optimistic SSP1 (ANOVA, 
χ2

2 = 20.81, p < 0.0001) and the most critical SSP5 (ANOVA, χ2
2 = 12.71, 

p = 0.0023) scenarios is significantly influenced by the IUCN status 
(Figure 6). Threatened species have the smallest ASH and highest LCI 
of all the compared categories. CRI, however, did not show this pattern 
(being highest for threatened species in SSP1 and not influenced by 
the IUCN category in SSP5).

There are also more species that appear threatened by extinction 
in the future by more extreme emission scenarios. The number of 
species facing extinction crises (as measured by less than 20% of the 

suitable area remaining, or an 80% or more decline of the total range) 
in the SSP1, SSP2, SSP3, and SSP5 future scenarios was estimated to 
be  14, 22, 26 and 51, respectively (Supplementary Table  5). For 
currently threatened species, in particular (CR, EN, and VU), this 
translated in the SSP1, SSP2, SSP3, and SSP5 scenarios into 5.10, 10.53, 
12.81, and 17.59%, respectively, of species (Supplementary Table 5).

4. Discussion

Our results demonstrate that in addition to climatic variables, 
anthropogenic land-use change and human population densities 
should also be accounted for when predicting species’ range shifts 
under global change. Anthropogenic factors have significant 
influences on species’ survival and ecology and contain a wealth of 
information that can significantly improve the performance of SDMs. 
We also found that dynamic anthropogenic factors (i.e., those with 
estimates into the future) show more dramatic differences in the 
distribution of species than static ones when projected into the future, 
with more currently suitable areas becoming unsuitable and narrower 
distributions predicted. In addition, Approach 4, in which unsuitable 
areas within the species ranges were removed to reflect the AOH, 

FIGURE 4

Maps of the current (left), future SSP1 (middle), and SSP5 (right) ranges for each of the four taxa summed across species. The color legend represents 
the number of species predicted to be present.
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shows the most potentially adverse results under global change. In 
terms of China’s endemic vertebrate species, global change may be less 
harmful to their conservation status than in other countries, because 
protected areas are larger in the west at higher elevations, providing 
potential habitat for species to move into. However, it appears that 
currently threatened species will fare worse, and higher emission 
scenarios will force more species into extinction in the future, 
particularly those that are already endangered. This emphasizes the 
need for China and other countries to immediately reduce greenhouse 
gas emissions to avoid the worst-case scenarios.

There is an emerging trend to combine static or dynamic 
anthropogenic factors with climatic factors to construct SDMs 
(Stanton et al., 2012; Newbold, 2018; Milanesi et al., 2020). Our 
result suggested that adding anthropogenic variables significantly 
improved the performance of the modeling procedure. Consistent 
with previous findings, adding anthropogenic variables containing 

little redundant information with climatic variables. Land use, in 
particular, appears to improve modeling outcomes (Martin et al., 
2013; Marshall et al., 2018; Della Rocca and Milanesi, 2020). Some 
earlier studies, for example, Martin et  al. (2013), did not find 
significant differences between using static and dynamic land-use 
variables. In contrast, in our study, we  used a high resolution 
(2.5 min) and biodiversity-relevant land type classification and 
found that the dynamic approach showed the potential for more 
adverse effects (Trisurat et al., 2014; Seaborn et al., 2021; Tang and 
Zhao, 2022). Overall, land use in China is expected to substantially 
change between now and 2100, with an expansion of farmland and 
urban areas, as well as wood harvesting, and in particular, a 
substantial reduction in temperate and mixed forests (Lai et al., 
2016; Dong et  al., 2019). Hence it makes sense that dynamic 
land-use data could contribute to more adverse estimates for 
Chinese endemic vertebrates.

FIGURE 5

Change maps for the four different taxa and the two different future climate scenarios, SSP1 (left), and SSP5 (right). The arrows point from the current 
to the future distribution centers. The color legend shows the number of species that shifted in 2080–2100.
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As for occurrence data, a number of studies have used the species 
range polygons provided by the IUCN directly, but the shortcomings of 
the IUCN data have been pointed out for more than a decade (Van 
Wilgen et  al., 2009). Previous research has suggested that IUCN 
occurrence data should be used with some caution, and that range 

polygons can exaggerate the species AOH (Ocampo-Peñuela et al., 2016; 
Brooks et al., 2019; Jung et al., 2020). We found that refining IUCN data 
into AOH yielded more adverse effects under global change. Since 
policymakers should plan for the most potentially serious occurrences, 
this suggests that models using this method are useful.

FIGURE 6

The current threat status of the species was related to their future suitable habitat and how it might change from the current situation. Response 
variables for the future of Chinese endemic vertebrates in 2081–2100 period are (A) the area of suitable habitat (ASH) in SSP1 scenario and (B) ASH in 
SSP5 scenario, (C) the change in range index (CRI) in SSP1 scenario and (D) CRI in SSP5 scenario, and (E) the loss of range index (LRI) in SSP1 scenario 
and (F) LRI in SSP5 scenario. Columns with the same letter are not significantly different.
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With regard to the future of Chinese endemic species, 
we generally obtained consistent results with other studies, where 
the distribution of species shifts to higher altitudes or higher 
latitudes under global change (Angert et al., 2011; Hill et al., 2011; 
Luo et  al., 2021). Other studies of Chinese vertebrates, mostly 
amphibians and birds, have shown that threatened species and 
endemic species are more vulnerable to climate change (Wu, 2020; 
Luo et al., 2021). Our results show that species currently listed as 
threatened by the IUCN might have an increased risk of extinction 
in the future, which is similar to the results of Li et al. (2013), and 
requires immediate conservation planning (Li et al., 2013; Zhao 
et al., 2022). Generally, our results show that while some species’ 
distribution ranges will increase, a greater number will be severely 
endangered due to the shrinking of suitable areas and the loss of 
currently suitable habitats (Li et al., 2013; Wu, 2020). Furthermore, 
higher emission SSPs aggravate the situation. In response to the 
already rapidly worsening land degradation and climate change, a 
number of Chinese policies aim to develop a sustainable future, in 
particular through the protection and expansion of forests (Chen 
et  al., 2019; Agreement, 2022). Our findings highlight the 
importance of China and the rest of the world focusing on emission 
reductions (Fuldauer et al., 2022).

Our study focused on endemic species that are more sensitive to 
climate change. Future studies could be extended to species with wider 
ranges. Studies of marine animals (Bayramoglul et  al., 2004), 
invertebrates (Marshall et al., 2018; Liu et al., 2020), plants (Harrison 
et al., 2006), fungi and microorganisms should also be considered, 
though the availability of occurrence data for some of those taxa is 
limited. China is a megadiverse country spanning multiple climatic 
zones with complex land-use patterns and severe anthropogenic 
impacts; therefore, it is an important study area in global change 
research. However, studies from other regions, such as the tropics or 
boreal regions, are required to generalize results (Louca et al., 2015; 
Sreekar et  al., 2015; Della Rocca and Milanesi, 2020). From the 
technical perspective, we used a simple buffer to limit the maximum 
dispersal distance of species, but future studies could add complexities 
to this framework to better approximate reality (Barve et al., 2011; Lu 
et al., 2012; Thuiller et al., 2019). For example, many animals may 
be unable to disperse over marine areas, which may limit species 
migration to suitable distribution areas. Results for the biodiverse 
islands of Hainan and Taiwan could be  further refined by 
considerations of this kind.

In conclusion, our findings support the use of an enhanced 
SDM modeling pathway that incorporates anthropogenic variables 
and refines IUCN ranges into AOH. Our findings support the 
recommendation to incorporate dynamic anthropogenic variables, 
particularly land use, into SDMs (Stanton et al., 2012; Seaborn et al., 
2021). High-resolution dynamic anthropogenic variables are now 
available (De Chazal and Rounsevell, 2009; Chen et  al., 2020). 
We  also recommend optimizing the occurrence data for more 
accurate results that may fully capture potential adverse conditions 
when using IUCN data, given that high-resolution habitat-type 
maps and technological advances give us the possibility to estimate 
the AOH (Jung et  al., 2020). The case of Chinese endemic 
vertebrates demonstrates that climate change can be a threat even 
in seemingly advantageous situations, such as a large country with 
more protected areas in the areas where species will move (west 
and north).
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