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Vegetation coverage reflects the degree of environmental degradation. Timely

and effective monitoring of vegetation conditions is the basis for promoting

vegetation protection and improving the ecological environment of mining

areas. Exploring vegetation coverage extraction methods and selecting the

optimal vegetation index in mining areas can provide scientific reference for

estimating vegetation coverage based on vegetation index in mining areas.

Uncrewed aerial vehicles (UAVs) are widely used because of their fast real-time

performance, high spatial resolution, and easy accessibility. In this study, the

performances of nine visible vegetation indices and two threshold segmentation

methods for extracting vegetation coverage in a post-gold mining area in the

Qinling Mountains were comprehensively compared using visible spectrum UAV

images. Of the nine indices, the excess green index (EXG) and visible-band

difference vegetation index (VDVI) were the most effective in discriminating

between vegetation and non-vegetation by visual interpretation. In addition, the

accuracy of the bimodal histogram threshold method in extracting vegetation

coverage was higher than that of Otsu’s threshold method. The bimodal

histogram threshold method combined with EXG yielded optimal extraction

results. Based on optimal methods, the total percentages of fractional vegetation

coverage in 2019, 2020, and 2021 were 31.47%, 34.08%, and 42.77%,

respectively, indicating that the vegetation in the mining area improved. These

results provide valuable guidance for extracting vegetation information and

evaluating vegetation restoration in mining areas.

KEYWORDS

remote sensing, uncrewed aerial vehicle, vegetation coverage, eco-monitoring, post-
mining area
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1 Introduction

Vegetation restoration and reconstruction are key components of

ecological restoration in mining areas and are effective ways to

improve the quality of the local ecological environment (Li et al.,

2019). Therefore, obtaining vegetation information quickly and

accurately in mining areas to evaluate the status of local ecological

restoration is an urgent issue. As an important indicator of vegetation

status, fractional vegetation coverage (FVC) is defined as the

percentage ratio of the vertical projection area of vegetation

(including leaves, stems, and branches) on the ground in a

statistical area (Jia et al., 2015). FVC is not only the main indicator

of regional environmental status and quality assessment but also an

important part of terrestrial ecosystem research. Thus, accurate and

rapid extraction of vegetation coverage requires timely monitoring of

vegetation change, which is crucial for protecting biodiversity and

promoting economic development.

Currently, remote sensing observations and land surface

measurements are primarily used to monitor FVC (Lu et al.,

2020). As a low-cost and highly efficient monitoring technology,

remote sensing can provide objective and accurate environmental

monitoring for large-scale mining areas. With the rapid

development of satellite remote sensing technologies, many

vegetation products, such as those derived from NOAA/AVHRR

(Boyd et al., 2002), TM/Landsat (Voorde et al., 2008; Leng et al.,

2019), and Terra & Aqua/MODIS (Song et al., 2017), have

facilitated large-scale monitoring of vegetation coverage.

However, for small-scale areas, such as mining areas with

complex topography and heterogeneous habitats, monitoring

FVC using satellite remote sensing technologies is challenging

because of their relatively coarse spatial resolution and long

revisit period. Furthermore, although in situ measurements have

high accuracy, they are usually time consuming and labor intensive,

rendering them unsuitable for real-time and long-term monitoring.

Notably, uncrewed aerial vehicles (UAVs) have the advantages of

strong real-time performance, high spatial resolution, and easy

access; thus, they have attracted wide attention as a novel and

improved method to extract vegetation coverage with high

efficiency and precision on small spatial scales in agriculture,

forestry, surveying, mapping, and other related fields (Watanabe

et al., 2017; Schofield et al., 2019; Ana et al., 2021; Guo et al., 2021;

Park et al., 2022; Mishra et al., 2023).

Compared with multispectral, hyperspectral, and other sensors,

visible light sensors are better options for extracting vegetation

coverage via UAV technology owing to their outstanding

advantages, such as low cost and are less affected by weather and

light (Coy et al., 2016; Jay et al., 2019; Ren et al., 2021). The

vegetation index can effectively reflect vegetation vitality and

information and is a commonly used method for extracting

vegetation coverage (Woebbecke et al., 1995; Hague et al., 2006;

Rasmussen et al., 2016; Kim et al., 2018; Geng et al., 2022). Various

vegetation indices have been developed based on the spectral

characteristics of green vegetation in the visible light band, such

as the green leaf index (Shane et al., 2021), green-red vegetation

index (Zhang et al., 2019), and difference-enhanced vegetation
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index (Zhou et al., 2021). An increasing number of studies have

shown that vegetation coverage can be extracted using a vegetation

index derived from UAV-visible images. Therefore, the limited

wavelength information of UAV visible-light images must be used

to construct a universally applicable and highly accurate vegetation

index and effectively extract green vegetation information. Another

key aspect of vegetation coverage extraction by vegetation indices is

the determination of a suitable threshold, which can be based on

threshold segmentation methods (Akash et al., 2019). However, few

studies have used this method to determine the thresholds in

mining areas, and the effectiveness of vegetation indices in

mountainous mining areas has not yet been evaluated.

The Qinling Mountains are an important ecological security

barrier in China and provide many ecosystem services, such as

climate regulation, water yield, carbon sequestration, and

biodiversity preservation (Fu et al., 2022). Rich gold mineral

resources in the Qinling Mountains provide a good foundation for

mining activities; however, long-term mining has resulted in serious

vegetation destruction (Li et al., 2022), which has plagued sustainable

local development (Huo et al., 2022). Therefore, a rapid and accurate

method for acquisition of mine vegetation cover is required. Currently,

research on vegetation coverage extraction based on visible vegetation

index focuses mostly on cities, forests, grasslands, and farmlands with

well-growing plants (Geng et al., 2022). However, an optimal

vegetation index for extracting vegetation coverage suitable for

Qinling gold mining areas with sparse vegetation and complex

terrain has not yet been determined. Furthermore, previous studies

focused on extractionmethods for the current vegetation situation and

lacked long-term monitoring. Therefore, an abandoned gold mining

area in the Qinling Mountains was selected as the research area, and

high spatial resolution visible spectrum images obtained by a UAV

were used as the data source. The objectives of this study were to

(1) compare the performances of nine visible light vegetation indices

(RGRI, BGRI, EXG, EXGR, NGRDI, NGBDI, RGBVI, VDVI, and

VEG) and two threshold segmentation methods (bimodal histogram

method and Otsu’s threshold method) in the extraction of vegetation

coverage information; (2) select the optimal combination of the

vegetation index and threshold segmentation method with high

extraction accuracy and wide applicability; and (3) analyze the

interannual variation of FVC in the study area using results obtained

by the optimal combination. This study provides scientific guidance for

rapidly and accurately extracting vegetation coverage and offers

technical support for evaluating vegetation restoration inmining areas.
2 Materials and methods

2.1 Study area

The study area is located in the southeastern part of Shangluo

City, Shaanxi Province, China (Figure 1). It is between 108°34′20′′–
111°1′25′′ E and 33°2′30′′–34°24′40′′ N. The study area is located

in the Qinling Mountains and has a warm, temperate climate. The

mean annual temperature is 12.2°C, the mean annual precipitation

is 804.8 mm, and the mean annual sunshine duration is 1947.4 h.
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The soil type is yellow cinnamon. It is high in the northwest and low

in the southeast. A gold production company in the research area

began operations in 1999 and ceased production after a dam failure

in 2006. Even after several years, bare slag still poses a serious threat

to human health, and this research area has been listed as a key area

for heavy metal prevention and control (Chen et al., 2022).
2.2 UAV image acquisition and processing

Field and UAV aerial surveys were conducted in August 2019,

2020, and 2021 to monitor the vegetation coverage at the research

site in the post-mining area. The UAV flight test was conducted

using a DJI Phantom 4 Pro on clear and cloudless days, and RGB-

visible images were acquired. The flight parameters are listed in

Table 1. The automatic cruise mode was used for route planning

during the flight. The flight area and route were designed prior to

conducting the experiment. The flight was 0.68 km2. Orthoimages

of the study area are shown in Figure 1B.
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2.3 Calculation of visible light
vegetation index

The basic principle behind the construction of a vegetation

index is that vegetation absorbs and reflects light of different

wavelengths. The corresponding vegetation index can be obtained

by combining different bands of remote sensing images to enhance

vegetation (Guilherme et al., 2018). The visible vegetation index is

mainly constructed based on the red, green, and blue bands of the

image because healthy green vegetation has a strong reflection in the

green band and weak reflections in the red and blue bands. The nine

commonly used visible light vegetation indices are listed in Table 2.
2.4 Vegetation information extraction
based on threshold

The vegetation index threshold method is effective for

discriminating between vegetation and non-vegetation
TABLE 1 Flight setting of the UAV and image parameters.

Flight setting Parameter Acquired image content Parameter

Flight speed 14.1 m/s Number of original images 300+

Photo interval 2 s Picture resolution 72 dpi

Number of routes 13 Graphic form JPEG

Number of waypoints 26 Shutter speed 1/1600

Course overlap rate 80% ISO 800

Side overlap rate 60%

Flight altitude 140 m
BA

FIGURE 1

(A) Geographical location and (B) UAV image with a spatial resolution of 0.0436 m of the study area.
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information in an image. Three steps are required to extract the

vegetation coverage using the visible light vegetation index. The first

step is to calculate the vegetation index, the second is to set an

appropriate threshold, and the final is to separate the vegetation and

non-vegetation parts. The accuracy of vegetation coverage

extraction largely depends on threshold selection (Wang et al.,

2015). Two commonly used methods, the bimodal histogram

threshold method and Otsu’s threshold method, were applied to

determine the threshold for each vegetation index.

2.4.1 Bimodal histogram method
A bimodal histogram is an image with two obvious peaks in a

gray histogram (Zhou et al., 2021). These two wave peaks

correspond to the internal and external target points. The wave

trough between the two wave peaks corresponded to the target

point near the edge of the object. Typically, the value at the wave

trough is selected as the threshold. The calculation process of the

bimodal histogram used in this study is as follows. (1) Calculate the

average gray value (avg) and standard deviation of the pixels.

(2) Considering the average pixel value as the dividing point, find

the positions of the maximum values of the left (small peak) and

right (large peak) parts. (3) If the two peak positions are close

(within the standard deviation range), then one of the two peaks of

the histogram is very low; hence, another low peak position must be

found; otherwise, proceed to step (7). (4) Determine the position of

the pixel gray median point (midpoint). (5) If midpoints>avg, then

the small peak is on the left side of the large peak (lower gray level);

otherwise, the small peak is on the right side of the large peak

(higher gray level), and the position of the dividing point should be

adjusted accordingly. (6) Re-find the positions of the large and small

peaks. (7) The wave trough of the two peak positions is considered

the required threshold (Liang, 2002).
2.4.2 Otsu’s threshold method
Otsu’s threshold method, also known as the maximum

between-cluster variance method, is a global threshold selection

method (Otsu, 2007). This method divides an image into

background and target images based on a threshold. When the

optimal threshold is considered, the variance between the
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background and target and the difference between the two parts

of the image are the largest; that is, the optimal threshold is

determined based on the maximum between-cluster variance. The

calculation process of Otsu’s method is as follows. (1) Identify the

highest gray level in the image. (2) Take each gray level as a

threshold. (3) Calculate the number of pixels and the average

value of the two categories segmented by the threshold.

(4) Calculate the variance between the two clusters. (5) Determine

the threshold of the maximum variance (Xu et al., 2022).
2.5 Extraction accuracy evaluation

Accuracy, Precision, and Recall were calculated as follows to

evaluate the classification accuracy (Shukla and Jain, 2020):

Accuracy =
TP + TN

TP + TN + FP + FN
=
TP + TN
P + N

Presicion =
TP

TP + FP

Recall =
TP

TP + FN

where TP, which stands for “true positive,” is the object that is correctly

classified as vegetation among all the extracted objects; TN, which

stands for “true negative,” is the object that is correctly classified as non-

vegetation among all the extracted objects; FP, which stands for “false

positive,” is the object that is misclassified as vegetation among all

extracted objects; and FN,which stands for “false negative,” is the object

that is misclassified as non-vegetation among all the extracted objects.
2.6 Data analysis

The UAV images were converted into orthoimages using DJI

Terra v.3.3 software developed by DJI (Shenzhen, China).

Supervised classification, calculation of vegetation indices,

threshold segmentation, and extraction of vegetation coverage

were performed using ENVI 5.3 software.
TABLE 2 Nine commonly used visible light vegetation indices considered in this study and the calculation formulas based on the visible spectrum.

Visible vegetation index Full name Calculation formula Reference

RGRI Red–green ratio index R/G (Verrelst et al., 2008)

BGRI Blue–green ratio index B/G (Romina et al., 2010)

EXG Excess green index 2g−r−b (Kim et al., 2018)

EXGR Excess green minus red index EXG−1.4r−g (Sun et al., 2014)

NGRDI Normalized green–red difference index (G−R)/(G+R) (Gitelson et al., 2002)

NGBDI Normalized green–blue difference index (G−B)/(G+B) (Hunt et al., 2005)

RGBVI Red–green–blue vegetation index (G2−B×R)/(G2+B×R) (Juliane et al., 2015)

VDVI Visible-band difference vegetation index (2G−R−B)/(2G+R+B) (Wang et al., 2015)

VEG Vegetative index g/r0.67b0.33 (Geng et al., 2022)
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3 Results

3.1 Calculation results of vegetation index

3.1.1 Visual interpretation and
supervision classification

The performance of the visible vegetation indices in extracting

vegetation was evaluated by comparison with the results of the

maximum likelihood classification method (Figure 2). Fifty regions

of interest (ROIs) with non-vegetation and fifty ROIs with

vegetation were uniformly selected to verify the classification

accuracy. The overall accuracies of the typical and validation

quadrats were 99.99% and 99.39%, respectively.

3.1.2 Vegetation index calculation results
The vegetation indices derived from the gray image of a typical

quadrat are shown in Figure 3. Most visible light vegetation indices

can be used to effectively distinguish vegetation from non-

vegetation information; however, the extraction effects are

different. Some vegetation indices, such as EXG, EXGR, RGBVI,

VEG, and VDVI, can clearly discriminate between vegetation and

non-vegetation areas; however, BGRI, RGRI, NGBDI, and NGRDI

cannot clearly distinguish between the two and resulted in some

misclassifications, indicating poor extraction performance.

Furthermore, to analyze the pixel value ranges of vegetation and
Frontiers in Ecology and Evolution 05
non-vegetation in the gray image of each band and vegetation

index, 75 representative ROIs were randomly selected to count the

pixel eigenvalues of each visible band and vegetation index

(Table 3). The results indicated that the reflectance in the green

band of the vegetation was significantly higher than that of the non-

vegetation. In the BGRI, RGRI, and NGRDI gray images, the pixel

values of vegetation and non-vegetation overlapped over a large

range; therefore, vegetation and non-vegetation areas overlapped.

In addition, the calculation formulas for RGRI, NGBDI, and

NGRDI only used blue + green or red + green bands, indicating

that the red, green, and blue bands should be combined when

calculating the visible light vegetation index.
3.1.3 Threshold segmentation and vegetation
index selection

The bimodal histogram threshold and Otsu’s threshold

methods were employed to determine the threshold of each

visible light vegetation index grey image. The vegetation and non-

vegetation areas were discriminated based on the thresholds, and

the extraction accuracy was verified by comparison with the

supervised classification results. The threshold segmentation

results are shown in Figures 4, 5. By jointly viewing the

orthoimages and supervised classification results (Figure 2A1,

A2), we found that the extraction results of the bimodal

histogram threshold method had fewer misclassifications, and the
B2

A1 B1

A2

FIGURE 2

Original images of (A1) typical and (B1) validation quadrats and classification results of the (A2) typical and (B2) verification quadrats.
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segmentation effect was obviously better than that of Otsu’s

threshold method. In the segmentation results of the bimodal

histogram threshold method, RGRI, EXGR, NGRDI, and VEG

misclassified vegetation as non-vegetation, whereas BGRI

and EXG misclassified non-vegetation as non-vegetation,

indicating relatively poor extraction accuracy. The quantitative

accuracy must be evaluated to accurately evaluate the effects of

the segmentation results. The Accuracy, Precision and Recall of

the threshold segmentation results were calculated based on the

maximum likelihood classification results (Table 4). Overall, the

classification accuracy of the bimodal histogram method was higher

than that of Otsu’s threshold method. Among the visible light

vegetation indices, EXG, based on the bimodal histogram method,

had the highest classification accuracy, with the Accuracy was

98.264%, Precision was 99. 811% and 97.572% in vegetation and

non-vegetation, and Recall was 99.913% and 94.847% in vegetation

and non-vegetation.
3.2 Suitability performance test

The reliability and applicability of EXG, VDVI, and RGBVI for

extracting vegetation coverage were verified based on the supervised

classification results of the verification quadrat. The vegetation

extracted based on EXG, VDVI, RGBVI, and the bimodal
Frontiers in Ecology and Evolution 06
histogram threshold method (the thresholds were 0.047603,

0.041258, and 0.075669, respectively) are shown in Figure 6. The

results of vegetation coverage extraction were compared with those

of the maximum likelihood classification (Table 5). EXG combined

with the bimodal histogrammethod still had the highest accuracy in

extracting vegetation coverage, followed by VDVI and RGBVI,

suggesting that EXG had the highest precision in extracting

vegetation information and could be used to estimate vegetation

coverage in mining areas.
3.3 Vegetation coverage assessment

According to the above results, EXG combined with the

bimodal histogram threshold method was used to estimate

vegetation coverage in 2019, 2020, and 2021 (the thresholds were

0.07848, 0.122353, and 0.125108, respectively). The extraction

results were statistically classified as follows: vegetation coverage

of 0–0.05 was considered a zero-coverage area, 0.05–0.2 was a low

vegetation coverage area, 0.2–0.4 was a low–moderate vegetation

coverage area, 0.4–0.6 was a moderate vegetation coverage area,

0.6–0.8 was a moderate–high vegetation coverage area, and 0.8–1

was a high vegetation coverage area (Zhao et al., 2022). Figure 7

shows that EXG can clearly discriminate between vegetation and

non-vegetation areas. From 2019 to 2021, the non-vegetation area
FIGURE 3

Calculation results of nine vegetation indices for the typical quadrat.
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FIGURE 4

Segmentation results of the bimodal histogram threshold method.
TABLE 3 Differences in pixel values of visible bands and vegetation indices of the typical quadrat.

Indicators

Vegetation Non-vegetation
ANOVA
P valueMin Max Mean Standard

deviation Min Max Mean Standard
deviation

Red band 30.00 194.00 96.57 23.89 68.00 254.00 177.23 43.07 0.054

Green band 66.00 211.00 132.26 20.03 78.00 249.00 176.73 38.20 0.033

Blue band 27.00 163.00 84.02 17.51 86.00 249.00 174.07 29.24 0.048

BGRI 0.32 0.85 0.63 0.08 0.85 1.20 1.00 0.07 0.007

RGRI 0.43 0.96 0.73 0.10 0.86 1.13 1.00 0.04 0.031

EXG 0.07 0.70 0.28 0.10 −0.03 0.05 0.00 0.01 0.001

EXGR −0.76 −0.22 −0.57 0.09 −0.86 −0.73 −0.80 0.02 0.012

NGRDI 0.02 0.40 0.16 0.07 −0.06 0.08 0.00 0.02 0.151

NGBDI 0.08 0.51 0.23 0.06 −0.09 0.08 0.00 0.04 0.023

RGBVI 0.11 0.75 0.37 0.11 −0.05 0.07 0.00 0.02 0.017

VDVI 0.05 0.45 0.19 0.06 −0.03 0.03 0.00 0.01 0.001

VEG 1.10 2.51 1.47 0.20 0.95 1.06 1.01 0.01 0.002
F
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FIGURE 5

Segmentation results of Otsu’s threshold method.
TABLE 4 Accuracy evaluation of the typical quadrat.

Segmentation Accuracy (%)
Precision (%) Recall (%)

Vegetation Non-vegetation Vegetation Non-vegetation

BGRI
Otsu’s 92.741 99.330 89.790 99.667 81.332

Bimodal histogram 96.275 96.233 96.294 98.278 0.920

EXG
Otsu’s 81.656 100.000 73.441 99.999 62.772

Bimodal histogram 98.264 99.811 97.572 99.913 94.847

EXGR
Otsu’s 75.787 99.998 64.956 99.998 56.086

Bimodal histogram 82.903 99.999 75.315 99.998 66.471

MGRVI
Otsu’s 75.024 99.996 64.967 99.997 56.106

Bimodal histogram 82.524 99.811 74.389 99.886 63.573

NGBDI
Otsu’s 91.216 99.627 87.449 99.809 78.045

Bimodal histogram 96.421 95.192 96.979 97.828 93.384

NGRDI
Otsu’s 75.184 99.997 64.006 99.998 55.439

Bimodal histogram 80.634 99.924 71.996 99.953 61.507

(Continued)
F
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TABLE 4 Continued

Segmentation Accuracy (%)
Precision (%) Recall (%)

Vegetation Non-vegetation Vegetation Non-vegetation

RGBVI
Otsu’s 84.722 99.999 77.880 99.999 66.936

Bimodal histogram 97.824 99.795 96.941 99.905 93.595

RGRI
Otsu’s 76.536 99.993 66.031 99.995 56.864

Bimodal histogram 81.725 99.866 73.602 99.918 62.882

VDVI
Otsu’s 83.005 99.999 75.395 99.999 64.539

Bimodal histogram 97.993 99.895 97.141 99.952 93.994

VEG
Otsu’s 77.195 99.997 66.982 99.996 57.560

Bimodal histogram 91.142 99.999 87.175 99.999 77.737
FIGURE 6

Verification results of the verification quadrat.
TABLE 5 Accuracy evaluation of the verification quadrat.

Segmentation Accuracy (%)
Precision (%) Recall (%)

Vegetation Non-vegetation Vegetation Vegetation

EXG 95.073 99.967 91.114 99.989 77.046

RGBVI 91.421 99.999 88.861 99.999 72.816

VDVI 93.107 99.928 91.072 99.976 76.957
B C DA

FIGURE 7

Estimated results of vegetation coverage based on EXG combined with the bimodal histogram threshold method in (A) 2019, (B) 2020, and (C) 2021.
(D) Inter-annual variation of vegetation coverage from 2019 to 2021.
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decreased, and the proportion of moderate–high and high

vegetation coverage areas increased significantly. The average

FVC values in 2019, 2020, and 2021 were 31.47%, 34.08%, and

42.77%, respectively, indicating that the FVC in the mining area

increased. The results suggest that the effect of vegetation

restoration was remarkable, and the quality of the ecological

environment improved. However, most areas in the post-mining

area had low, low–moderate, and moderate vegetation coverage,

and vegetation restoration requires further strengthening.
4 Discussion

4.1 Extraction accuracy of
vegetation coverage

The accuracy of vegetation coverage extraction was related to

both the vegetation index and threshold segmentation method. In

this study, EXG exhibited the highest extraction accuracy, followed

by VDVI and RGBVI, which is consistent with the results of Wang

et al. (2015) and Chen and Deng (2019). The calculation formulas

for EXG, VDVI, and RGNVI show the reflectance characteristics of

vegetation in the visible bands, which effectively increase the

sensitivity of vegetation to green bands and make full use of the

information in the red, green, and blue bands. Currently, the

bimodal histogram threshold and Otsu’s threshold methods are

widely used for threshold segmentation. In this study, the results of

the threshold methods for vegetation coverage extraction suggested

that the accuracy of the bimodal histogram method was

significantly better than that of Otsu’s threshold method

(Figure 5), reaffirming the results of Zhao et al. (2019). Using the

bimodal histogram method, the accuracies of RGRI, EXGR, and
Frontiers in Ecology and Evolution 10
NGRDI were relatively low, which may be related to the histogram

characteristics. As shown in the histogram of each vegetation index

(Figure 8), EXG, VDVI, and RGBVI showed similar changes and

obvious bimodal characteristics, whereas the histograms of RGRI,

EXGR, and NGRDI had no obvious bimodal characteristics.

Therefore, the accuracy of vegetation coverage extraction

varied greatly.
4.2 Characteristics of UAV visible
vegetation indices

Satellite remote sensing images have advantages, such as large

image areas and multiple bands (Xu et al., 2020; Guo and Guo,

2021). However, owing to the relatively coarse spatial resolution, the

interpretation accuracy is relatively limited, and the temporal

resolution often cannot meet the real-time requirements of

vegetation monitoring on a small spatial scale, such as in mining

areas. With the popularization of UAV technology, UAV images

have compensated for the deficiencies in satellite remote sensing

images in terms of spatial and temporal resolution. UAVs provide a

new data source for the acquisition of vegetation coverage

information in mining areas and offer new approaches for

monitoring vegetation growth and recovery in mining areas (Sun

et al., 2021). The results of this study indicate that vegetation

coverage data can be accurately extracted from UAV images. As

an unsupervised classification method, the visible light vegetation

index can be used to extract vegetation coverage quickly and

accurately without manual visual discrimination of vegetation

areas or non-vegetation areas. Two major advantages are

commonly associated with using visible spectrum images for

extracting vegetation coverage. One is that RGB images are low
FIGURE 8

Statistical histogram of the nine vegetation indices considered in this study.
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cost, convenient to process, and less affected by weather and light.

The other is that RGB images have a relatively high spatial and

temporal resolution, which is more suitable for local studies. For

example, Marcial-Pablo et al. (2019) indicated that the accuracy of

visible vegetation indices is higher than that of visible NIR

vegetation indices for early crop cover. Furukawa et al. (2021)

reported that RGB images provide reliable information for

vegetation monitoring. For the mining areas, the land-use type

was relatively single, and vegetation coverage could be quickly

obtained via UAV images. Moreover, the UAV-visible images

were acquired in summer, when vegetation growth was the best.

For most vegetation, summer is the most vigorous period for plant

growth, during which the vegetation exhibits the strongest reflected

spectral features. Thus, vegetation coverage can be accurately

estimated using the vegetation index.
4.3 Variation characteristics of
vegetation coverage

According to previous investigation and research results, the

soil arsenic contamination in the gold mining area is serious (the

average soil arsenic content was 93.96 mg/kg) (Chen et al., 2022).

Vegetation types are scarce (mostly herbaceous plants), and

vegetation coverage is low. The results of the vegetation coverage

change from 2019 to 2021 indicated that most natural vegetation

restoration sites had low to low–moderate vegetation coverage. This

was mainly because soil As contamination limited the normal

growth and development of plants in the early stages of

vegetation restoration (Yang et al., 2020), and community

succession was relatively slow. Increased vegetation coverage

improves the quality of regional ecological environments. With

the progress of ecological restoration, the soil arsenic content has

decreased, and plants have developed their own unique

physiological and ecological characteristics after a period of

adaptation. The number of pixels with zero vegetation and low

and low-moderate vegetation coverage decreased, those with

moderate–high and high vegetation coverage increased, and the

overall vegetation coverage increased.
5 Conclusions

In this study, a disused gold mining area in the Qinling

Mountains was selected as the research area, and UAVs were

deployed to obtain image data with high spatial resolution in the

visible light. The performance of different visible light vegetation

indices combined with two threshold segmentation methods for

extracting vegetation coverage was evaluated. The main conclusions

are as follows. (1) Except for RGRI, NGRDI, and NGBDI, the other

visible light vegetation indices effectively discriminated between

vegetation and non-vegetation in the study area. (2) EXG, VDVI,

and RGBVI combined with the bimodal histogram threshold method

had higher extraction accuracy in distinguishing between vegetation

and non-vegetation areas. (3) EXG and the bimodal histogram
Frontiers in Ecology and Evolution 11
threshold method had the highest accuracy for vegetation

identification, which was the closest to the results of the monitored

and actual situations. (4) The spatiotemporal analysis of vegetation

coverage in 2019, 2020, and 2021 showed that most mining areas had

low, low–moderate, and moderate vegetation coverage, whereas the

overall vegetation coverage was low. The average FVC for the three

years were 31.47%, 34.08%, and 42.77%, respectively, indicating an

increasing trend. Future studies should continue monitoring

vegetation coverage changes to provide technical support for land

reclamation and ecological restoration in mining areas.
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Romina, S., Marıá, C., Santiago, A. T., Elizabeth, K., Ana, S. B., Constanza, R., et al.
(2010). Cryptochrome as a sensor of the blue/green ratio of natural radiation in
arabidopsis. Plant Physiol. 154 (1), 401–409. doi: 10.1104/pp.110.160820

Schofield, G., Esteban, N., Katselidis, K. A., and Graeme, C. H. (2019). Drones for
research on sea turtles and other marine vertebrates – a review. Biol. Conserv. 238,
108214. doi: 10.1016/j.biocon.2019.108214

Shane, G., Kevin, L., John, J., and Kenny, S. (2021). Use of an unmanned aerial
vehicle (UAV) to document vegetation coverage rate in managed grasslands following a
historic river flood. J. Anim. Sci. 99 (2), 9–10. doi: 10.1093/jas/skab096.015

Shukla, A., and Jain, K. (2020). Automatic extraction of urban land information from
unmanned aerial vehicle (UAV) data. Earth Sci. Inform 13, 1225–1236. doi: 10.1007/
s12145-020-00498-x

Song, W. J., Mu, X. H., Ruan, G. Y., Gao, Z., Li, L. Y., and Yan, G. Y. (2017).
Estimating fractional vegetation cover and the vegetation index of bare soil and highly
dense vegetation with a physically based method. Int. J. Appl. Earth Obs. 58, 168–176.
doi: 10.1016/j.jag.2017.01.015

Sun, Z. Y., Wang, X. N., Wang, Z. H., Yang, L., Xie, Y. C., and Huang, Y. H. (2021).
UAVs as remote sensing platforms in plant ecology: review of applications and
challenges. J. Plant Ecol. 14 (6), 1003–1023. doi: 10.1093/jpe/rtab089

Sun, G. X., Wang, X. C., Yan, T. T., Li, X., Chen, M., Shi, Y. Y., et al. (2014). Inversion
method of flora growth parameters based on machine vision. Trans. Chin. Soc. Agric.
Eng. 30 (20), 187–195.

Verrelst, J., Schaepman, M. E., Koetz, B., and Kneubühlerb, M. (2008). Angular
sensitivity analysis of vegetation indices derived from CHRIS/PROBA data. Remote
Sens. Environ. 112 (5), 2341–2353. doi: 10.1016/j.rse.2007.11.001
frontiersin.org

https://doi.org/10.3390/rs11232757
https://doi.org/10.3390/rs11232757
https://doi.org/10.3390/rs13112139
https://doi.org/10.1016/S0143-6228(02)00048-6
https://doi.org/10.6041/j.issn.1000-1298.2019.05.027
https://doi.org/10.3390/toxics10070385
https://doi.org/10.3390/rs8070474
https://doi.org/10.3389/fevo.2022.982590
https://doi.org/10.3390/drones5030097
https://doi.org/10.3390/drones5030097
https://doi.org/10.1016/j.ecolind.2022.108780
https://doi.org/10.1016/S0034-4257(01)00289-9
https://doi.org/10.1080/01431161.2018.1448484
https://doi.org/10.3389/feart.2021.706998
https://doi.org/10.1016/j.jag.2020.102239
https://doi.org/10.1007/s11119-005-6787-1
https://doi.org/10.1007/s11119-005-6787-1
https://doi.org/10.1007/s11119-005-2324-5
https://doi.org/10.1007/s11119-005-2324-5
https://doi.org/10.3390/ijerph192214962
https://doi.org/10.1016/j.rse.2018.09.011
https://doi.org/10.1109/TGRS.2015.2409563
https://doi.org/10.1016/j.jag.2015.02.012
https://doi.org/10.3390/rs10040563
https://doi.org/10.11829/j.issn.1001-0629.2019-0013 
https://doi.org/10.1016/j.catena.2019.104142
https://doi.org/10.1016/J.Scitotenv.2021.150626
https://doi.org/10.1111/jfr3.12593
https://doi.org/10.1080/01431161.2018.1528017
https://doi.org/10.1155/2023/3544724
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.3390/drones6030071
https://doi.org/10.1016/j.eja.2015.11.026
https://doi.org/10.3390/f12010022
https://doi.org/10.1104/pp.110.160820
https://doi.org/10.1016/j.biocon.2019.108214
https://doi.org/10.1093/jas/skab096.015
https://doi.org/10.1007/s12145-020-00498-x
https://doi.org/10.1007/s12145-020-00498-x
https://doi.org/10.1016/j.jag.2017.01.015
https://doi.org/10.1093/jpe/rtab089
https://doi.org/10.1016/j.rse.2007.11.001
https://doi.org/10.3389/fevo.2023.1171358
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Chen et al. 10.3389/fevo.2023.1171358
Voorde, T. V., Vlaeminck, J., and Canters, F. (2008). Comparing different
approaches for mapping urban vegetation cover from landsat ETM+ data: a case
study on Brussels. Sensors 8, 3880–3902. doi: 10.3390/s8063880

Wang, X. Q., Wang, M. M., Wang, S. Q., and Wu, D. P. (2015). Extraction of
vegetation information from visible unmanned aerial vehicle images. Trans. Chin. Soc.
Agric. Eng. 31 (05), 152–159.

Watanabe, K., Guo, W., Arai, K., Takanashi, H., Kajiya-Kanegae, H., Kobayashi, M.,
et al. (2017). High-throughput phenotyping of sorghum plant height using an
unmanned aerial vehicle and its application to genomic prediction modeling. Front.
Plant Sci. 8. doi: 10.3389/fpls.2017.00421

Woebbecke, D., Meyer, G., Bargen, K., and Mortensen, D. (1995). Color indices for
weed identification under various soil, residue, and lighting conditions. T ASABE 38,
259–269. doi: 10.13031/2013.27838

Xu, X., Liu, L., Han, P., Gong, X., and Zhang, Q. (2022). Accuracy of vegetation
indices in assessing different grades of grassland desertification from UAV. Int. J. Env.
Res. Pub. He. 19 (24), 16793. doi: 10.3390/ijerph192416793

Xu, K. X., Su, Y. J., Liu, J., Hu, T. Y., Jin, S. C., Ma, Q., et al. (2020). Estimation
of degraded grassland aboveground biomass using machine learning methods
Frontiers in Ecology and Evolution 13
from terrestrial laser scanning data. Ecol. Indic. 108 (C), 105747. doi: 10.1016/
j.ecolind.2019.105747

Yang,G.Y.,Zhong,H., Liu,X., Liu,C.E., Li, S.Y.,Hou, L., et al. (2020).Arsenicdistribution,
accumulation and tolerance mechanisms of typha angustifolia in different phenological
growth stages. B Environ. Contam. Tox. 104 (3), 358–365. doi: 10.1007/s00128-020-02796-y

Zhang, X. L., Zhang, F., Qi, Y. X., Deng, L. F., Wang, X. L., and Yang, S. T. (2019).
New research methods for vegetation information extraction based on visible light
remote sensing images from an unmanned aerial vehicle (UAV). Int. J. Appl. Earth Obs.
78, 215–226. doi: 10.1016/j.jag.2019.01.001

Zhao, D., Wang, Z. W., Zhang, G. Z., Xu, Y. M., and Sun, L. J. (2022). Exploration of
influence factors on regional fractional vegetation cover based on a combination of factor
regression and interaction–take the three-river headwaters region as an example. China
Environ. Sci. 42 (8), 3903–3912. doi: 10.19674/j.cnki.issn1000-6923.20220329d011

Zhao, J., Yang, H. B., Lan, Y. B., Lu, L. Q., Jia, P., and Li, Z. M. (2019). Extraction
method of summer corn vegetation coverage based on visible light image of unmanned
aerial vehicle. Trans. Chin. Soc. Agric. Machinery 050 (005), 232–240.

Zhou, T., Hu, Z. Q., Han, J. Z., and Zhang, H. (2021). Green vegetation extraction
based on visible light image of UAV. China Environ. Sci. 41 (05), 2380–2390.
frontiersin.org

https://doi.org/10.3390/s8063880
https://doi.org/10.3389/fpls.2017.00421
https://doi.org/10.13031/2013.27838
https://doi.org/10.3390/ijerph192416793
https://doi.org/10.1016/j.ecolind.2019.105747
https://doi.org/10.1016/j.ecolind.2019.105747
https://doi.org/10.1007/s00128-020-02796-y
https://doi.org/10.1016/j.jag.2019.01.001
https://doi.org/10.19674/j.cnki.issn1000-6923.20220329d011
https://doi.org/10.3389/fevo.2023.1171358
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org

	Extraction and monitoring of vegetation coverage based on uncrewed aerial vehicle visible image in a post gold mining area
	1 Introduction
	2 Materials and methods
	2.1 Study area
	2.2 UAV image acquisition and processing
	2.3 Calculation of visible light vegetation index
	2.4 Vegetation information extraction based on threshold
	2.4.1 Bimodal histogram method
	2.4.2 Otsu’s threshold method

	2.5 Extraction accuracy evaluation
	2.6 Data analysis

	3 Results
	3.1 Calculation results of vegetation index
	3.1.1 Visual interpretation and supervision classification
	3.1.2 Vegetation index calculation results
	3.1.3 Threshold segmentation and vegetation index selection

	3.2 Suitability performance test
	3.3 Vegetation coverage assessment

	4 Discussion
	4.1 Extraction accuracy of vegetation coverage
	4.2 Characteristics of UAV visible vegetation indices
	4.3 Variation characteristics of vegetation coverage

	5 Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	References


