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Introduction: Coastal estuarine wetlands provide important habitats for a variety 
of endemic flora and fauna but are particularly vulnerable to biological invasions. 
Regular monitoring of changes in these vulnerable wetlands has become 
increasingly important for effective management, especially considering threats 
from climate change effects and human disturbance. Historical analyzes of 
plant invasions may guide targeted management strategies to eradicate harmful 
species. Estimating the distribution of invasive species has never been more 
accessible with the improved availability of high-resolution data and innovations 
in remote sensing, estimating the distribution of invasive species has never been 
more accessible.

Methods: We  assessed the spread of non-native Phragmites australis subsp. 
australis in Suisun Marsh on the upper San Francisco Estuary, one of the largest 
brackish coastal wetlands in North America. Suisun Marsh consists of managed 
and tidal wetlands, and efforts have been made to control invasive P. australis on 
the managed wetlands to support habitat values for wildlife. We used remote-
sensing analyzes of publicly available, biennial color-infrared images taken by the 
National Agriculture Imagery Program (NAIP) to map the expansion of invasive 
P. australis across two decades. We generated random forest classifications of 
representative images to map the distribution of P. australis, then calculated a 
variety of metrics describing the rate and spatial extent of the P. australis spread. 
Additionally, we ran generalized linear models to examine factors related to the 
growth of P. australis.

Results: Our classifications yielded accuracies of over 90% and showed a 234% 
(1,084 ha) increase in P. australis between 2003 and 2018. The expansion rate of 
P. australis patches averaged 1.32 m/year (±0.53 SD) which is higher than most 
reported in the literature. We found that P. australis expansion in managed areas 
within levees was significantly correlated with invasion in tidal areas outside the 
levees on the same parcel and also related to its spread on adjacent parcels.

Discussion: Our findings suggest that despite individual landowner management 
efforts, P. australis has continued to expand substantially throughout Suisun Marsh. 
Future efforts to treat invasive P. australis may require emphasizing adaptive, 
collaborative management rather than individual management strategies to 
ensure the invasive species is eradicated on a large scale to preserve the valued 
ecosystem functions.
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1. Introduction

The spread of non-native, invasive species poses a major threat to 
plant diversity, ecosystem function, and habitat quality (Vitousek 
et al., 1997; Mack et al., 2000; Quirion et al., 2018; Tadros et al., 2020). 
An estimated 5,000 invasive plant species have been introduced into 
the United States (Pimentel et al., 2000; Tallamy, 2004) and managing 
the spread of these non-native plants costs millions of dollars annually 
(Pimentel et al., 2000). The non-native common reed (Phragmites 
australis subsp. australis; hereafter P. australis) is one such plant–it is 
a broadly distributed grass species now found throughout the wetlands 
of North America. While there are some native P. australis lineages in 
different parts of North America (Phragmites australis subsp. 
americanus), the Eurasian lineage of P. australis was first introduced 
in the early 19th century and has since expanded throughout the 
continent (Saltonstall, 2002; Meyerson et al., 2010a). The Eurasian 
lineage has aggressively expanded into native wetlands and altered 
vegetation communities (Saltonstall, 2002; Meyerson et al., 2010a,b; 
Kettenring and Mock, 2012). It is now widely considered to be invasive 
in most wetland ecosystems across North America and especially in 
tidal marshes, brackish wetlands, salt marshes, and freshwater coastal 
wetlands (Meyerson et al., 2010a,b; Kettenring et al., 2012).

Invasive P. australis has been shown to cause detrimental impacts 
to native plant biodiversity, the quality of wildlife and fish habitat, and 
sedimentation rates (Lambert et al., 2010; Dibble et al., 2013; Wails 
et al., 2021). While in its native European range, P. australis reedbeds 
support a variety of specialized bird species (Poulin et al., 2002; Battisti 
et al., 2020), there is little evidence to suggest that invasive P. australis 
provides habitat for these species in North America (Benoit and 
Askins, 1999; Robichaud and Rooney, 2017; Tozer and Mackenzie, 
2019). In addition, human development has exacerbated the spread of 
P. australis; its invasions are often associated with the soil denudation, 
nutrient enrichment, and hydrologic alteration caused by 
anthropogenic activities (Saltonstall, 2002; Kettenring et al., 2011; 
Mozdzer et  al., 2013; Long et  al., 2017b). For these reasons, the 
management of P. australis has become a priority for conservation 
practitioners in many wetlands (Hazelton et  al., 2014; Long 
et al., 2017a).

Managing to control or eradicate P. australis is notoriously 
challenging (Hazelton et al., 2014; Long et al., 2017a). As a rhizomatous 
grass, P. australis can propagate both clonally as an underground 
network of rhizomes and via seeds resulting in rapid expansion from 
a local source (Kettenring et  al., 2011; McCormick et  al., 2016; 
Minchinton and Bertness, 2023). Early detection and rapid response 
(EDRR) efforts to control small patches (i.e., seed source patches) 
followed by efforts to slow expansion of increasingly larger patches is 
likely to lead to the most effective management across the landscape 
(Long et al., 2017a, Quirion et al., 2018; Rohal et al., 2019a). Numerous 
methods have been developed for treating P. australis with herbicides 
including hand-wiping, backpack spraying, and aerial spraying and 
with non-chemical approaches such as mowing, burning, and grazing 
(Hazelton et al., 2014; Samiappan et al., 2017; Volesky et al., 2017). 
However, while some methods may effectively control P. australis in 
the short term, a lack of monitoring and continuous follow-up 
treatments may result in reemergence of P. australis 2–3 years after the 
original control efforts (Lombard et al., 2012; Hazelton et al., 2014). 
Therefore, effectively managing P. australis to recover preferred 
wetland plant communities may be expensive to achieve over long 

time frames (Rohal et al., 2019a,b, 2023). A better understanding of 
the distribution of P. australis and the mechanisms that control its 
spread is necessary to improve management of this invasive species 
and to reduce its negative effects.

With advancements in the quality of aerial imagery and spatial 
analyzes, remote sensing has emerged as a valuable tool for studying 
and monitoring plant invasions (Samiappan et al., 2017; Abeysinghe 
et al., 2019; Paz-Kagan et al., 2019; Royimani et al., 2019). Recent 
images collected by satellites, aircraft, or unmanned aerial vehicles 
(UAVs) can be used to generate coverages for landscapes at a very 
high (<1-meter) resolution. Furthermore, remotely-sensed imagery 
provides a unique opportunity to examine historical landscapes and 
to detect changes, even where ground data are unavailable or costly 
(Andrew and Ustin, 2009). Covariates derived from remote-sensing 
imagery can be used to identify plant communities or particular 
species of interest with high accuracy (Andrew and Ustin, 2009; 
Samiappan et al., 2017; Abeysinghe et al., 2019; Paz-Kagan et al., 
2019; Tadros et al., 2020). For example, Samiappan et al. (2017) used 
texture analysis to classify P. australis in the wetlands of Louisiana 
with an average accuracy of 85%, while in northern China invasive 
Spartina alterniflora was identified to a similarly high degree of 
accuracy (87–100%; Okoye et al., 2020). These classifications can then 
be used to target management efforts and reduce non-native plant 
invasions to improve overall ecosystem health (Abeysinghe et al., 
2019; Tadros et al., 2020). Classifications of non-native plant species 
further provide the ability to follow EDRR principles and detect 
biological invasions early, providing managers with a better 
opportunity to eradicate or control the problem (Huang and Asner, 
2009; Bradley, 2014).

While previous research has used aerial or satellite imagery to 
classify P. australis and other co-occurring vegetation in other regions 
of the United  States (Rice et  al., 2000; Philipp and Field, 2005; 
Samiappan et al., 2017; Long et al., 2017b; Abeysinghe et al., 2019), 
little effort has been directed at measuring the invasion of P. australis 
in Suisun Marsh in the upper reach of the San Francisco estuary, the 
largest contiguous brackish marsh on the Pacific coast of the 
continental U.S. Suisun Marsh is recognized as an important wetland 
for regional biodiversity supporting many endemic species of wildlife 
and plants and as an important migratory stopover for waterbirds 
along the Pacific Flyway (Moyle et  al., 2014). A comprehensive 
understanding of the trajectory of the P. australis invasion in Suisun 
Marsh is especially crucial in light of the impending threats of sea-level 
rise that may further degrade natural resources in this region 
(Takekawa et al., 2006; Thorne et al., 2018). Native plants may struggle 
to tolerate increased inundation and salinity caused by sea-level rise, 
providing an opportunity for P. australis invasion and expansion 
(Patger et al., 2005; Touchette et al., 2007; Eller et al., 2017).

Our primary objective was to estimate the magnitude, 
distribution, and potential mechanisms of P. australis spread in Suisun 
Marsh. Thus, we used publicly available aerial imagery to conduct a 
historical analysis of the distribution and spread of P. australis in 
Suisun Marsh over two decades from 2003 to 2020. We  used an 
iterative machine-learning approach (Breiman, 2001; Cutler et al., 
2007) to compare patches of P. australis and non-P. australis and to 
generate an estimate of the changing extent of P. australis. We also 
compared the distributions generated with our method compared 
with those estimated with a manual classification approach to see if 
our models produced similar or higher accuracies.
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2. Methods

2.1. Study area

We examined the historic spread of P. australis in the 46,950-ha 
brackish Suisun Marsh located on the upper reach of the San Francisco 
estuary in northern California, United  States (38.1475 N, 
−122.0053 W). The region provides crucial habitat for over 200 bird 
species, 45 mammal species, and a wide variety of native plants 
(CDFW, 2023). These species include the endangered salt marsh 
harvest mouse (Reithrodontomys raviventris) and the endemic Suisun 
thistle (Cirsium hydrophilum var. hydrophilum). It also serves as an 
important nursery for several fishes in the San Francisco estuary, such 
as the critically endangered delta smelt (Hypomesus transpacificus) 
and endangered runs of Chinook salmon (Oncorhynchus tshawytscha). 
Ownership and management of wetlands involves a mix of public, 
private, and nonprofit landowners (CDFW, 2011).

There are two major types of wetlands in Suisun Marsh (Figure 1): 
managed wetlands that are surrounded by levees with water 
infrastructure controlling the timing and duration of applied water, 
and tidal wetlands that are open to the influence of the mixed diurnal 

tides resulting in twice-daily high and low tides differing in height by 
up to 2 m (CDFW, 2011). Most of the land parcels are managed 
wetlands with vegetated tidal berm areas on the exterior side of levees, 
although in the recent past, several parcels have been restored to tidal 
wetlands to benefit fish. Private landowners primarily oversee 
managed wetlands to support waterfowl habitat during the winter 
months, a traditional land use practice that was established in the late 
1800s (Arnold, 1996). The area has been protected by state law since 
1977, and recent goals for the region established in the Suisun Marsh 
Habitat Management, Preservation, and Restoration Plan EIR/EIS 
(CDFW, 2011) have included enhancing 16,000–20,000 ha of managed 
wetlands and restoring 2,000–3,000 ha of tidal wetlands.

While the exact timing of the invasion is unknown, it is believed 
that non-native P. australis was introduced to Suisun Marsh about 
50–60 years ago. Historic reports and vegetation survey results do not 
mention P. australis until after the 1970s, but the species was not a 
dominant plant reported in the region at that time (Simpson and 
Baruth, 1966). The invasion was still not considered to be extensive as 
recently as 20 years ago when P. australis was found only occasionally 
in brackish marshes of the region (Chambers et  al., 1999). The 
dramatic expansion of P. australis in the estuary is therefore a recent 

FIGURE 1

Suisun Marsh in the upper San Francisco estuary of northern California, United States. The location of Suisun Marsh in central California is indicated by 
the red square on the right inset map. Managed wetlands are shaded green, and tidal wetlands are brown. There are an estimated 20,562 hectares of 
managed and tidal wetlands in Suisun Marsh.
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phenomenon. Thus, while it remains a possible that some native 
Phragmites australis subsp. americanus are found Suisun Marsh 
(B. Grewell, pers. comm.), the majority of the species in the region are 
considered to be the invasive Eurasian lineage (Saltonstall, 2002).

2.2. Random forest classifications

We obtained aerial imagery from 2003 to 2020 taken under the 
National Agriculture Imagery Program (NAIP) of the U. S. Department 
of Agriculture. In California, these images were collected every 3 years 
from 2003 to 2009 and every 2 years from 2010 to the present. NAIP 
flights are typically conducted from early April to mid-August with 
most images of Suisun Marsh collected in May (2012, 2016, 2020) or 
June (2003, 2006, 2009, 2014). The exception to this timing was in 
2018 when images were taken in July. Aerial imagery obtained just 
before peak growth season (late-spring to early-summer in Suisun 
Marsh) may allow for early detection of P. australis (Abeysinghe et al., 
2019) which would be helpful to promote a rapid response (Reaser 
et al., 2020); however, P. australis does not reach its peak growth until 
the late summer (Rice et al., 2000; Engloner, 2009), and new growth 
may not be detected until the subsequent year’s images are taken. 
NAIP images from 2003 and 2006 had a 2-meter resolution and 
included three color bands: red, blue, and green. From 2009 onwards, 
NAIP images included an additional band of near infrared (NIR) and 
were processed at a 1-meter resolution. Therefore, our classifications 
were built on slightly different image characteristics pre-2009 versus 
post-2009; however, our preliminary analyzes indicated that these 
resolution differences were not substantially affecting 
our classifications.

We generated classifications from aerial imagery spanning eight 
different years over the past two decades: 2003, 2006, 2009, 2012, 2014, 
2016, 2018, and 2020. For each year, representative P. australis patches 
were selected from the image and manually classified (Tadros et al., 
2020) to use as a baseline to automate classification of the entire image. 
Phragmites australis often displays a unique, lime-green spectral 
signature and forms ovular patches (Kettenring et al., 2016; Figure 2). 
These patches were assumed to be  homogeneous polygons of 
P. australis, since the species forms dense monocultures within 
1–2 years of its initial invasion (Orson, 1999; Holdredge and Bertness, 
2011). Separate polygons were manually selected to serve as 
“non-P. australis” data for the classifications; these polygons were 
much larger than the P. australis polygons and included a wide range 
of spectral values including those with signatures similar to P. australis.

For each classification, the P. australis and non-P. australis 
polygons were randomly subset into groups: 70% for training and 30% 
for validation (Paz-Kagan et al., 2019). Within the P. australis training 
polygons, 3,500 pixels were randomly selected for analysis, and within 
the validation polygons, 1,500 pixels were selected. Seven thousand 
pixels were randomly selected for analysis from the non-P. australis 
training polygons, and 3,000 pixels were randomly selected from the 
validation polygons. This process ensured that we maintained the 
70:30 split between training and validation data while including 
substantially more non-P. australis than P. australis pixels in 
our models.

Classifications were built with three color bands for 2003 and 2006 
and four bands (color and infrared) for 2009–2020. We also included 
an additional predictor variable for every year following 2003 which 

described the distance of every pixel from the nearest P. australis pixel 
classified on the previous image. Phragmites australis often spreads 
rapidly from a source patch (Lathrop et al., 2003; Kettenring et al., 
2011, 2016); therefore, we expected that if P. australis was present in a 
given location in 1 year, there was a much greater probability of its 
presence nearby in the subsequent year. This additional predictor 
variable was created as a continuous raster in ArcGIS Pro (ESRI, 2019) 
with the “Euclidean Distance” tool from a shapefile of the previous 
year’s classification (Eq. 1). Covariate values were extracted at each 
P. australis and non-P. australis point in R Studio Version 1.2.5033  
(R Core Team, 2021; R Studio Team, 2021). We generated models 
from covariates derived from the publicly accessible imagery to 
simplify the analysis and make it easier to replicate the classification 
for continued future monitoring of P. australis. We used the equation,

 

( ) ( ) ( ) ( )
( ) ( )_ 1

Phrag t red t blue t green t
NIR t Phrag Dist t

= + +
+ + −  (1)

where, Phrag(t) is the distribution of P. australis at time t, red(t), 
blue(t), green(t), and NIR(t) refer to color and infrared values 
extracted from NAIP imagery at time t, and Phrag_Dist(t – 1) is the 
distribution of P. australis in the previous classification iteration. 
We used random forest classifiers (Breiman, 2001; Cutler et al., 2007) 
built in R to compare the covariate values of P. australis points against 
those of non-Phragmites points. Random forest is a machine-learning 
model which generates a series of decision trees that each “cast a vote” 
for the most popular output class based on input vectors (Breiman, 
2001; Pal, 2005). We conducted preliminary testing on a variety of 
other model types including Mahalanobis distance, Maximum 
Likelihood, and Spectral Angle Mapping (SAM) on the 2020 NAIP 
imagery; however, random forest produced the highest accuracy 
metrics and was selected for our analyzes (Supplementary Table S1).

Random forest classifiers were generated using the package 
“randomForest” (Liaw and Wiener, 2002), and we  employed 500 
decision trees. To examine the accuracy of our classifiers, we compared 
the classes predicted by the model against the observed classes for our 
validation points. This process allowed us to calculate a variety of 
accuracy metrics including user’s accuracy, producer’s accuracy, 
overall accuracy, and Kappa’s statistic (Fielding and Bell, 1997; 
Kraemer, 2015) for all classifications. User’s accuracy is calculated for 
each class separately and describes the proportion of validation points 
that were correctly classified by the model. Producer’s accuracy is 
similarly calculated for each class separately and measures the 
proportion of points classified as a class that are truly that class. 
Overall accuracy describes the percentage of all validation points that 
were correctly classified by the model. User’s, producer’s, and overall 
accuracies are measured on a scale from 0.00 to 1.00 (0–100%). Lastly, 
Kappa’s statistic yields a metric similar to overall accuracy, while 
accounting for random chance in classification. Kappa’s statistic is 
measured from −1.00 to 1.00 with higher values indicating 
higher accuracies.

For each year, we  ran five random forest models based on a 
different random selection of training and validation data and 
averaged the accuracy metrics. The singular random forest model 
which produced the best accuracy metrics was then used to create a 
map of predicted P. australis each year with the package “raster” in R 
(version 3.6–11; Hijmans and van Etten, 2012). This process produced 
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a 2-meter (2003, 2006) or 1-meter (all other years) resolution raster 
with values of “1” to represent P. australis and “0” to represent 
non-P. australis.

2.3. Assessment of spread in Suisun Marsh

For each classification year, we examined a variety of metrics in 
ArcGIS Pro to better quantify the spread of P. australis. 
We calculated the hectares of classified P. australis for each year for 
all wetlands, managed wetlands and tidal wetlands, and the 
magnitude of change between each classification. We also quantified 
the amount of overlap between P. australis from one classification 
to the previous classification to determine the extent to which 
established patches persisted. This metric served to describe the 
spread of P. australis as expansion from existing patches compared 
to new emergent patches.

Since the rate of expansion is considered an important component 
of invasion (Kettenring et  al., 2016), we  calculated it on six 
representative patches distributed throughout the region that were 
present in both 2003 and 2020 (Figure 3). These patches needed to 
be spatially distinct from each other and unconfined by natural or 
anthropogenic barriers that could inhibit growth (i.e., roads or upland 
edges). We chose to measure perimeter expansion, rather than area 
expansion, following the methods described in Philipp and Field 
(2005). While generally ovular, P. australis patches can display 
irregular shapes, and we generated ellipses for each patch in each 
classification year to reconcile this issue. We found that the area and 
semi-major axis of these ellipses matched those of their respective 
patches as calculated in ArcGIS Pro, and a perimeter expansion rate 
(in meters/year) could be calculated from these ellipses by averaging 
the increase or decrease in both the semi-major and semi-minor axes 
and dividing by the number of years between classifications.

2.4. Comparison to VegCAMP manual 
classification

We examined the efficacy of our random forest models in 
classifying P. australis against a manual classification of the Suisun 
Marsh plant communities established in 1999 to detect change in 
habitats of the endangered salt marsh harvest mouse (CDFW, 2011; 
Askim et  al., 2022). The Vegetation Classification and Mapping 
Program (VegCAMP) was established by the California Department 
of Fish and Wildlife to provide a vegetation mapping standard for the 
state (Askim et  al., 2022). Observers manually identify plant 
associations or species from a mosaic of true-color images collected 
in the year of interest to create vegetation maps of key areas in 
California including Suisun Marsh (Askim et al., 2022).

VegCAMP maps have been generated from aerial images of 
Suisun Marsh taken every 3 years since 2000, and each report 
documents the vegetation composition that existed 3 years prior (the 
2021 VegCAMP release describes the vegetation in 2018, for example). 
The 3-year or longer delay in providing the vegetation maps has been 
caused by the extensive manual processing and has been considered 
to be a shortcoming of VegCAMP, as the outdated information limits 
its value for ongoing annual vegetation management. Furthermore, 
VegCAMP plant associations are produced on a relatively coarse scale 
with the average polygon measuring 0.69 ha and the minimum 
measuring 0.10 ha (Askim et al., 2022) compared to 1-square meter 
pixels analyzed with NAIP imagery. Therefore, VegCAMP is unable to 
identify small, emergent vegetation patches, while remote sensing 
classifications with NAIP offer a quicker, cheaper, and more accurate 
method for examining specific vegetation types on a local scale and to 
guide invasive species management.

We extracted P. australis polygons from VegCAMP classifications 
in ArcGIS Pro by selecting classes labeled Phragmites australis from 
the “NVCSName” attribute. We compared the accuracy of VegCAMP 

FIGURE 2

(A) Spectral signature of Phragmites australis subsp. australis and non-P. australis patches. Note that P. australis displays a unique signature and is visible 
in a narrow range of red, blue, green, and near-infrared values. (B) Distinct, green patches of P. australis in Suisun Marsh as they appear in the 2020 
National Agriculture Imagery Program (NAIP) imagery.

https://doi.org/10.3389/fevo.2023.1171245
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Hagani et al. 10.3389/fevo.2023.1171245

Frontiers in Ecology and Evolution 06 frontiersin.org

relative to our NAIP classifications by (1) measuring the percent 
overlap between the two classifications for each year in ArcGIS Pro, 
and (2) calculating user’s, producer’s, and overall accuracies from the 
P. australis and non-P. australis polygons that we outlined to create our 
random forest models. Comparisons were made for the 5 years during 
which VegCAMP and NAIP overlapped in 2003, 2006, 2009, 2012, 
and 2018.

2.5. Generalized linear mixed models

Management of P. australis in Suisun Marsh has been ongoing 
since 2000 (S. Chappell, pers. comm.); however, the type of 
management practices allowed depends on the type of wetland 
(managed or tidal). The Suisun Resource Conservation District 
(SRCD) leads a P. australis control program in Suisun Marsh that was 
initiated in 2000 to encourage managed wetland landowners to 
control P. australis supported by funds from a foundation grant to 
subsidize the cost of herbicides for private landowners from 2000 to 
2021 (S. Chappell, pers. comm.). Treatment on managed wetlands 
including herbicide applications is allowed when the marsh plains are 
drained for maintenance work during the mid-summer (July–
September). However, treating P. australis with herbicides is not 
allowed on tidal wetlands to protect rapid dispersal into the estuarine 
waters, and most non-chemical methods are restricted in tidal 
wetlands to protect endangered species habitat. Therefore, land parcels 
that include areas open to tides often have source populations of 

P. australis that are essentially untreatable. In addition, Suisun Marsh 
is comprised of a mixture of both public and private landowners who 
make management decisions independently (Figure 4), and P. australis 
management may therefore differ greatly between neighboring 
land parcels.

To examine the effect of these management differences for 
managed and tidal wetlands, we generated generalized linear mixed 
models in R. We assessed the relationship between P. australis growth 
on wetland parcels with both managed and tidal areas or on wetland 
parcels with neighboring parcels with P. australis. The within-parcel 
models were excluded if they did not contain P. australis at any point 
between the first and last image. We  used the change in area of 
P. australis on managed areas for each parcel between classification 
iterations as a response variable, the change in area of P. australis in 
tidal areas between classifications and parcel size as fixed effects, and 
year as a random effect.

For the neighboring parcel models, we included land parcels which 
directly shared a border with at least one other parcel that contained 
P. australis between the first and last image. Also, island parcels or those 
separated by sloughs or other sources of permanent water were not 
included. We used the change in the area of P. australis in managed 
areas for each parcel between classifications as a response variable. 
We included the change in area of P. australis in managed areas and 
tidal areas in neighboring parcels as fixed effects. The number of 
neighbors was also treated as a fixed effect, while year was considered 
a random effect. Neighbor statistics were calculated in ArcGIS Pro 
using the “Neighborhood Summary Statistics” tool.

FIGURE 3

Expanding patches of Phragmites australis subsp. australis on Lower Joice Island, a parcel with both managed and tidal wetlands in Suisun Marsh, 
upper San Francisco estuary, northern California, United States. The patches are determined from random forest classifications where different colors 
are associated with different years. The growth in the size of existing patches is likely indicative of growth from spreading rhizomes.
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Before running any models, we  tested for collinearity between 
covariates using Pearson’s correlation test (Benesty et al., 2009; Sedgwick, 
2012; Supplementary Table S2). After running our models, we employed 
a likelihood ratio test (package “lmtest”; Zeileis and Hothorn, 2002) to 
compare the full model with all covariates against a nested model from 
which each fixed effect was removed to identify the influence of individual 
covariates on P. australis expansion in managed areas. Models were 
processed using the “lme4” package (Bates et al., 2015).

3. Results

3.1. Random forest classifications

Random forest classifications of the yearly images included in the 
analysis yielded an average overall accuracy greater than 0.90 (Table 1). 
For P. australis, user’s accuracy was >0.90 for all years except for 2006 
(0.85); producer’s accuracy was 0.90 for all years but 2003 (0.85) and 
2006 (0.73). All classifications produced user’s and producer’s accuracies 
for non-Phragmites that was >0.90 and consistently >0.95 (Table 1).

3.2. Assessment of spread in Suisun Marsh

In 2003, 463 ha of Suisun Marsh were classified as P. australis, but 
by 2020, 980 ha were classified as P. australis (a 112% increase over 
17 years; Figure 5). Phragmites australis peaked in 2018, with 1,547 ha 
classified as the invasive species (a 234% increase over 15 years; 
Figures 5, 6). The largest areal increase between classification years 

occurred between 2016 and 2018 (+392 ha); the largest percentage 
increase occurred between 2014 and 2016 (+35%). The areal extent of 
P. australis increased from the previous year except for in 2 cases: 2009 
to 2012 (13% decrease) and 2018 to 2020 (37% decrease; Figure 5). 
With a total of about 20,560 ha of wetlands in Suisun Marsh, the 2020 
classification indicated that 5% are covered by P. australis with a peak 
of 8% in 2018 compared with an initial estimate of 2% in 2003. 
We classified 271 ha of P. australis in managed wetlands and 191 ha in 
tidal wetlands in 2003 (Figure 6). At its peak in 2018, P. australis had 
expanded in managed wetlands by 721 ha (+266%), and by 364 ha in 
tidal wetlands (+190%).

The perimeter expansion of six representative P. australis patches 
averaged 1.32 m/year (± 0.53 SD) over 17 years. Expansion of patch 
perimeters ranged from a mean of 0.50 to 2.19 m/year Mean perimeter 
expansion was highest between 2012 and 2014 (2.19 ± 1.25 m/year) 
and lowest between 2018 and 2020 (0.61 ± 0.84 m/year; Figure 7). The 
largest expansion rate for a single P. australis patch between two 
classification years was 4.03 m/year (2012 to 2014); the lowest was 
−1.31 m/year (2010 to 2012; Figure 7).

3.3. Comparison to VegCAMP manual 
classification

VegCAMP manual classifications yielded accuracy metrics >0.90 
for all years except 2003 (Table  2). The percent overlap between 
VegCAMP and random forest classifications presented here 
consistently increased from a low of 19% in 2003 to a maximum of 
79% in 2018 (Table 2). In 2003, VegCAMP analyzes estimated 314 ha 

FIGURE 4

Ownership of land parcels in Suisun Marsh, upper San Francisco estuary in northern California, United States. Public lands are displayed in orange and 
private land parcels (including nonprofits) are shown in blue.
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of P. australis in Suisun Marsh while in 2018, VegCAMP analyzes 
estimated 1,739 ha (a 453% increase).

3.4. Generalized linear mixed models

We analyzed 227 land parcels of varying size (137 ha ± 274) in 
Suisun Marsh, and of those, 186 had P. australis at some point during 
the study period. During this time frame, one third of parcels (61, 33%) 
showed a decrease in P. australis on their managed areas. For the 
within-parcel analysis, we included 167 parcels that possessed both 
managed and tidal areas within their boundaries. The change in area 
of P. australis in tidal areas within a parcel had a statistically significant 
effect (p < 0.01) on the change in P. australis in the managed areas of the 
same parcel. Change in area of P. australis increased with increasing 
parcel size, but the effect was not significant (p = 0.06; Table 3).

Our adjacent neighbor models included 178 parcels that shared a 
border with at least one other parcel and that had P. australis between 
2003 and 2020. The number of adjacent neighbors ranged from 1 to 
16, with a mean of 4.3 (± 2.2). Increasing P. australis in both tidal and 
managed wetlands of adjacent neighboring parcels had a significant 
effect associated with the change in area of P. australis in managed 
areas as did the number of adjacent neighbors (Table 4).

4. Discussion

Understanding the historical expansion of P. australis as well as 
potential mechanisms that promote its growth may help landowners 
and conservation practitioners implement effective management plans 
to combat its continued spread (Meyerson et al., 2010a,b; Hazelton 
et al., 2014; Long et al., 2017b). We used publicly accessible NAIP 

TABLE 1 Accuracy metrics for random forest classifications of Phragmites australis subsp. australis in Suisun Marsh.

Metric 2003 2006 2009 2012 2014 2016 2018 2020

P. australis

User’s accuracy 0.96 0.85 0.96 0.88 0.94 0.98 1.00 1.00

Producer’s accuracy 0.95 0.73 0.95 0.92 0.96 0.97 0.97 0.95

Non-P. australis

User’s accuracy 0.97 0.93 0.97 0.95 0.98 0.99 0.98 0.98

Producer’s accuracy 0.99 0.96 0.98 0.94 0.97 0.99 1.00 1.00

Overall accuracy 0.97 0.92 0.97 0.93 0.97 0.99 0.99 0.98

Kappa statistic 0.90 0.73 0.93 0.84 0.92 0.97 0.97 0.96

Metrics are an average of five model iterations, each built and tested on a different random subset of data. User’s, producer’s, and overall accuracies are proportions ranging from 0.0–1.0 with 
higher values indicating a greater accuracy. The Kappa statistic controls for random chance in classifications and can range from −1.0 to 1.0 with higher values indicating a greater accuracy.

FIGURE 5

Estimated change in area of Phragmites australis subsp. australis between 2003 and 2020 as classified by random forest models. Columns are 
partitioned by wetland type: managed wetlands (orange) are surrounded by levees and have water control structures to regulate flooding and draining, 
while tidal wetlands (blue) are open to tidal waters which includes two mixed, daily semi-diurnal low and high tides. Managed wetlands are maintained 
during the summer (July–September) after wetlands are drained, while management of tidal wetlands are restricted and must be individually permitted 
to protect water quality and listed species. Labels above the bars indicate the total estimated area (in hectares) of P. australis in all wetlands for each 
classification year and show an increasing trend of P. australis over the past 2 decades.
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imagery to create a simple, replicable, but highly accurate classification 
for P. australis to document the historical expansion of the invasion. 
Our results indicated that P. australis has expanded substantially in the 
region over the past two decades despite extensive management efforts 
to control it. We also found that P. australis expansion in managed 
wetland areas in Suisun Marsh may be related to the extent of invasion 
in tidal areas within the same parcel or in neighboring parcels of 
managed or tidal wetlands.

4.1. National Agriculture Imagery Program 
(NAIP) classifications and the expansion of 
Phragmites australis in Suisun Marsh

The results produced by our classification models highlighted the 
challenges of managing an invasive species over large temporal and 

geographic scales. Phragmites australis has increased substantially and 
consistently in Suisun Marsh over the past 2 decades, and the 234% 
increase in P. australis extent or 16%/year rate was greater or more 
rapid than results published from other ecosystems (Wilcox et al., 
2003; Philipp and Field, 2005; Ji et al., 2009). In Lake Erie, a 152% 
increase in P. australis was reported between 1945 and 1999 (3%/year, 
Wilcox et  al., 2003), and a 242% expansion was estimated in the 
Liahoe Delta of China between 1953 and 2006 (5%/year, Ji et  al., 
2009). Similarly, the perimeter expansion rate of P. australis in wetland 
ecosystems has varied considerably (Burdick et al., 2001; Philipp and 
Field, 2005; Fussell et al., 2015; Kettenring et al., 2016), but the mean 
perimeter expansion rate estimated here (1.32 m/year) was higher 
than most other estimates in the literature. For example, In the 
wetlands of Delaware and Maine, P. australis perimeter expansion was 
calculated at a mean of 0.91 and 0.70 m/yr (Philipp and Field, 2005; 
Fussell et al., 2015).

FIGURE 6

Expansion of Phragmites australis subsp. australis in Suisun Marsh, upper San Francisco estuary, northern California, United States from the first 
classification year (2003, lime green) to the most recent peak extent in 2018 (pink). We estimated 463 hectares of Phragmites in 2003, which expanded 
to a peak in 2018 (1,547 hectares; 234% increase).
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TABLE 2 Accuracy and comparison metrics for VegCAMP manual classifications of Phragmites australis subsp. australis.

Metric 2003 2006 2009 2012 2018

P. australis extent

NAIP (hectares) 463 586 766 665 1,547

VegCAMP (hectares) 314 460 739 1,006 1738

Overlap (hectares) 89 119 253 373 1,226

Overlap (percent; relative to NAIP) 19 20 33 56 79

VegCAMP P. australis

User’s accuracy 0.79 0.77 0.94 0.97 0.99

Producer’s accuracy 1.00 1.00 1.00 0.97 1.00

VegCAMP Non-P. australis

User’s accuracy 1.00 1.00 1.00 0.99 1.00

Producer’s accuracy 0.96 0.94 0.97 0.99 1.00

VegCAMP overall accuracy 0.97 0.95 0.98 0.98 1.00

Metrics were calculated only for years in which VegCAMP and NAIP overlap. User’s, producer’s, and overall accuracies are proportions ranging from 0.0–1.0, with higher values indicating a 
greater accuracy. The Kappa statistic controls for random chance in classifications, and can range from −1.0 to 1.0, with higher values indicating a greater accuracy.

The patch expansion rate that we  estimated combined with a 
larger and more rapid increase in total area suggests that our brackish 
study site may be particularly susceptible to the invasive P. australis 
growth and expansion. Previous studies have shown that the species 
is especially adept at invading disturbed areas, and its detrimental 
impact is aggravated by anthropogenic activities (Saltonstall, 2002; 
Mozdzer et al., 2013; Hazelton et al., 2014; Kettenring et al., 2015). 
Wide variation in annual precipitation in this Mediterranean climate 
region may likewise play a role in the P. australis expansion reported 
in this study. Average perimeter expansion of P. australis patches was 

highest in 2014 (2.19 m/yr) a drier period regionally, and lowest in 
2012 (0.50 m/yr) during a comparatively wetter period (California 
Nevada River Forecast Center, National Ocean and Atmospheric 
Administration). Phragmites australis may therefore be  able to 
withstand, if not thrive, in years of water deficit (Patger et al., 2005; 
Touchette et al., 2007), as it has been shown to rapidly expand in 
extreme low-water conditions elsewhere (Eller et al., 2017).

Other classification types, including object-based classification, 
texture analysis, and hyperspectral classification, have been used to 
model the distribution of P. australis (Arzandeh and Wang, 2003; 

FIGURE 7

Perimeter expansion rates for six representative Phragmites australis subsp. australis patches distributed across Suisun Marsh shows consistent 
increases in the growth of patches. The perimeter expansion was calculated from 2006 to 2020 and indicated a consistent rate of linear increase that 
would result in an exponential increase in area. The average expansion rate of the six patches is displayed by a black dashed line. Data was unavailable 
for Patch 5 (dark blue) in 2012.
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Pengra et al., 2007; Samiappan et al., 2017; Abeysinghe et al., 2019). 
These previous efforts have consistently yielded accuracies over 0.80 
but rely on more expensive methods of data collection (Abeysinghe 
et  al., 2019). The accuracies produced from NAIP imagery were 
generally higher (> 0.90) and provide a more replicable and cost-
effective option for wetland managers interested in monitoring 
P. australis distributions in the future (Walter and Mondal, 2023). 
Similarly, the use of publicly available imagery to create our 
classification will remove a barrier to continuous and long-term 
monitoring of the invasive species (Walter and Mondal, 2023). The 
ability to effectively monitor P. australis in the long term has shown to 
be critical in successfully managing the invasive species, but logistical 
and financial constraints are among the strongest deterrents to long-
term monitoring (Hazelton et al., 2014; Long et al., 2017a; Quirion 
et  al., 2018). Having a simple, replicable, and highly accurate 
classification model, is therefore valuable to ensuring future 
monitoring and successful control of P. australis. Managers interested 
in assessing the distribution or expansion of any invasive species 
should consider using publicly-available imagery like NAIP 
where applicable.

4.2. Remote sensing and manual 
classification accuracy: the potential for 
informing management

Our results on P. australis expansion generally agreed with results 
from the lengthy manual classification method conducted under 
VegCAMP. While VegCAMP may provide the accurate distribution 

of large P. australis patches, the size of the polygons analyzed limits its 
ability to identify small, emergent patches. This finding is further 
reinforced by the increased percent overlap between our random 
forest classifications and the VegCAMP analyzes. As P. australis 
patches become pervasive and more established, the overlap between 
the two classifications became larger (~80% in 2018).

In contrast to VegCAMP, our classifications built with remote 
sensing imagery can be generated in days, yield comparatively high 
accuracy metrics, and have the potential to effectively locate not only 
large patches but also emergent P. australis growth to support EDRR 
management (Huang and Asner, 2009; Bradley, 2014). The use of 
publicly available imagery also provides a much cheaper alternative to 
VegCAMP which costs 10 to over a hundred thousand dollars for each 
iteration (R. Klingonsmith, Department of Water Resources, pers. 
comm.). Finally, the rapid processing time of our classification allows 
better adaptive management to identify and target new invasions in 
real time (Huang and Asner, 2009; Bradley, 2014).

Despite the high accuracies produced by all of our classification 
iterations, certain shortcomings may be present. During its primary 
growth season, P. australis displays a distinct bright green signature 
and clusters of the invasive tend to form large, ovular patches 
(Kettenring et al., 2016). The classifications produced here were built 
upon these features; however, P. australis patches can demonstrate 
other visual characteristics. Before annual growth commences or 
toward the conclusion of its annual lifespan, P. australis patches may 
appear brown or beige (Figure 8). These brown marcescent patches 
can be difficult to distinguish and isolate given their visual similarity 
to a variety of other plants.

Similarly, annual precipitation varies considerably in this system, 
and in drier years P. australis biomass may be less visibly apparent 
despite its continued presence. Phragmites australis in Suisun Marsh 
increased steadily from 2003 to 2018 before dropping almost 50% 
between 2018 and 2020. This dramatic decrease could be attributed to 
precipitation in the rainy season preceding the 2 years which affected 
their color rather than an actual reduction in P. australis. October 
2016–April 2018 yielded 145.8 cm of rain, while October 2018–April 
2020 yielded just 114.6 cm (California Nevada River Forecast Center, 
National Ocean and Atmospheric Administration).

Also, other variation among years could have affected the results 
of our classification. The 2018 NAIP imagery was collected in July (all 
other years were collected in May or June), and biomass of P. australis 
is likely greatest later in the summer (Rice et al., 2000; Engloner, 2009). 
Ideally, classifications targeting P. australis or plants which grow 
through the summer would use aerial imagery taken at the end of the 
peak growing season. In addition, P. australis can be affected by the 
annual management of water in managed wetlands (Rohal et  al., 
2019a). Year-to-year changes occur when landowners flood or drain 
their land parcels with leach cycles to reduce soil salinities on different 
schedules depending on the availability and water quality (salinity) of 
applied water. It may affect when and how long the P. australis growth 
season occurs and when P. australis is most visible from the air. 
Recognizing the limitations in classifying P. australis from aerial 
imagery is crucial for interpreting the distribution maps presented 
here and for creating management plans based on the findings.

The unique spectral signature of healthy P. australis allowed for 
the development of a highly successful classification based primarily 
on color attributes. Unfortunately, the historical nature of this study 
limited our ability to include ground-truthing data for the NAIP data. 

TABLE 3 Likelihood ratio tests indicated that increases in growth of 
Phragmites australis subsp. australis in managed areas were related to 
change in area of P. australis in tidal areas on the same land parcels 
between two subsequent iterations of our random forest classifications.

Model DF Chi-Sq Value of p

Full (all covariates) 5 --- ---

Change in tidal P. australis 4 52.0 <0.01

Parcel size 4 3.6 0.06

Null (no fixed effects) 3 56.5 <0.01

The response may have been related to parcel size, but the effect was not significant. 
Classification year was included as a random effect. All model comparisons were made 
relative to the full model.

TABLE 4 Results of likelihood ratio tests assessing the effect of change in 
area of Phragmites australis subsp. australis in managed and tidal areas of 
adjacent neighboring land parcels on the change in area of P. australis in 
managed areas on a given parcel between two subsequent iterations of 
our random forest classifications.

Model DF Chi-Sq Value 
of p

Full (all covariates) 6 --- ---

Change in neighbors’ tidal P. australis 5 13.8 <0.01

Change in neighbors’ managed P. australis 5 5.45 0.02

Number of neighbors 5 53.2 <0.01

Null (no fixed effects) 3 74.6 <0.01

Classification year was included as a random effect. All model comparisons were made 
relative to the full model.
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We encourage scientists and wetland managers to employ ground-
truth data to support the remote-sensing classifications when possible. 
The manual selection of training and validation P. australis polygons 
with aerial images can introduce human error and biases, and while 
we are confident that the polygons selected for our classifications were 
P. australis, ground-truth data would confirm our assessment. With 
adequate planning, the polygons used for classification could 
be  outlined in the field to provide a more accurate training and 
validation data set for models. Ground-truth data also is valuable to 
better identify very small and emergent patches of P. australis (<5 m2) 
that would benefit remote-sensing classifications (Huang and Asner, 
2009; Bradley, 2014) and allow implementation of EDRR management 
practices. Ground-truth data are best collected in the field 
concurrently with aerial imagery flights to ensure that temporal 
mismatches in phenology are avoided.

4.3. Drivers of Phragmites australis 
expansion and management implications

Control of P. australis in Suisun Marsh has included ground and 
aerial herbicide spraying, burning, mowing, and disking (S. Chappell 
pers. comm.). While P. australis has spread dramatically over the past 
two decades despite these efforts, it is important to note that P. australis 
management has not been completely ineffective. Although we lack a 
database to indicate which specific wetland areas were treated, 61 land 
parcels showed a decrease in P. australis between 2003 and 2020 
despite the 111.6% increase in P. australis overall. It is likely that 
without management efforts, the current distribution of P. australis 
would be much more expansive. Instead, our findings reinforce the 
difficulty in managing a pervasive and highly successful invasive 
species at a large scale (Kettenring et al., 2011; Hazelton et al., 2014) 
and the importance of consistent, multi-year treatment programs 
(Rohal et al., 2019a,b). Innovative solutions may be needed to help 
reduce the pervasive spread of P. australis. For example, advancements 

in drone technology have produced an effective alternative for treating 
plant invasions (Shahbazi et al., 2014; Roslim et al., 2021; Takekawa 
et al., 2023). Small survey drones can shoot high-resolution imagery 
of small-to-medium geographic areas relatively quickly (Koh and 
Wich, 2012; Cruzan et  al., 2016), after which spray-drones can 
precisely target invasive plants to treat with herbicides (Martinez-
Guanter et al., 2019; Takekawa et al., 2023).

In addition, alternative factors to individual management efforts 
may influence P. australis expansion. Natural processes, such as 
wildfire, flooding, and drought, may also influence P. australis 
distributions (Thompson and Shay, 1985; Patger et al., 2005; Touchette 
et  al., 2007; Eller et  al., 2017) in addition to limiting herbicide 
effectiveness (i.e., P. australis response to herbicide is diminished 
under drought conditions, Rohal et al., 2019a,b). Also, P. australis in 
Suisun Marsh may be developing a resistance to herbicide, which 
could contribute to its unrelenting spread. Little is known about 
P. australis and herbicide resistance (Wang et al., 2017; Blossey et al., 
2020), but resistance has been demonstrated on a variety of other 
wetland or aquatic plants, such as Hydrilla verticillata and Agrostis 
stolonifera (Bollman et al., 2012; Simberloff and Leppanen, 2019). 
Such resistance can severely hinder management efforts by failing to 
kill invasive plants and creating even stronger and more pervasive 
strains (Peterson et al., 2018).

Our within-parcel model showed that the change in P. australis in 
managed areas was significantly correlated with the change in 
P. australis in tidal areas within the same parcel. Most managed areas 
are bordered by tidal areas on the exterior side of the levee; P. australis 
in these tidal areas are likely the primary source that spread into the 
managed wetlands. P. australis has been shown to spread 0.5–10 
kilometers via seed transmission, and rhizome fragments can spread 
clonally via water drift (Fér and Hroudova, 2009; McCormick et al., 
2016). Continuous monitoring of P. australis will help ensure curtail 
its spread, but long-term monitoring has been expensive and time-
consuming (Hazelton et al., 2014; Long et al., 2017a; Quirion et al., 
2018). Our classification method that uses NAIP imagery may help to 

FIGURE 8

Effects of drought or seasonality on the visualization of Phragmites australis subsp. australis in Suisun Marsh, upper San Francisco estuary, northern 
California, United States. Vibrant, green patches of P. australis (2018) may appear as senesced and brown (2020) in drier years or earlier in the growing 
season. Our models were not trained to identify brown patches of P. australis.
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reconcile these issues and provide a simpler way to promote long-
term monitoring.

Varying management efforts between adjacent neighboring 
parcels has also inhibited the overall eradication of P. australis. Our 
results show that the change in P. australis over time on managed areas 
of a parcel was associated with the change in P. australis on the tidal 
and managed areas of neighboring parcels. The number of neighbors 
bordering a parcel was also a significant factor influencing P. australis 
growth. Our results highlighted the complexity of P. australis 
management in a diverse landscape (Epanchin-Niell et  al., 2010). 
Co-management of invasive species has shown to be a crucial aspect 
of successful eradication of detrimental plants (Graham, 2019; 
Graham et  al., 2019; Clarke et  al., 2021), including P. australis 
management in other regions (Young and Kettenring, 2020). The 
different ownerships that comprise Suisun Marsh create a landscape 
in which collaboration is essential to protecting health of the overall 
ecosystem. There is a clear need for more research on the social 
aspects of P. australis management, including decision-making 
processes, in order to establish an adaptive and cooperative treatment 
strategy where neighboring parcels, as well as private and public 
entities, work together more closely to halt the spread of this disruptive 
invasive species (Young and Kettenring, 2020; Conrad et al., 2023). 
Conservation practitioners in similarly complex social-ecological 
landscapes will need to consider these factors when managing their 
invasive plants.

Data availability statement

The datasets presented in this study can be  found in online 
repositories. The names of the repository/repositories and accession 
number(s) can be found at: https://drive.google.com/drive/folders/1
mgzlguW8TYEFjExTUrbHVnln9_-euW75?usp=sharing.

Author contributions

JH compiled the data, conducted the statistical and spatial 
analyzes, and wrote the initial draft of the manuscript. JT conceived 
of the project, advised the analyzes, and contributed to the writing. 
SC contributed to developing the project and provided input to the 
writing. RT contributed to developing the project and writing and 
review. AE provided support for writing and review. KK contributed 
to project development and writing and review comments. All 

authors contributed to the article and approved the 
submitted version.

Funding

This project was supported by the Suisun Resource Conservation 
District (SRCD) with funding under a grant (DSC-21005) from the 
Delta Stewardship Council.

Acknowledgments

The authors appreciate the data and analysis assistance of J. Collins 
and T. Edmunds (SRCD) and C. Potter (Casa 2100). E. Fintel (CSU 
Chico) provided 2018 VegCamp analysis results, and M. Levin 
(Columbia University) offered valuable suggestions for the modeling 
process. The authors received helpful comments on the draft from 
Z. Ma and V. Tripuraneni (Purdue University), and V. Matzek (Santa 
Clara University).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers.  
Any product that may be evaluated in this article, or claim that may 
be made by its manufacturer, is not guaranteed or endorsed by the  
publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fevo.2023.1171245/
full#supplementary-material

References
Abeysinghe, T., Simic Milas, A., Arend, K., Hohman, B., Reil, P., Gregory, A., et al. 

(2019). Mapping invasive Phragmites australis in the old Woman Creek estuary using 
UAV remote sensing and machine learning classifiers. Remote Sens. 11:1380. doi: 
10.3390/rs11111380

Andrew, M. E., and Ustin, S. L. (2009). Habitat suitability modelling of an invasive 
plant with advanced remote sensing data. Divers. Distrib. 15, 627–640. doi: 
10.1111/j.1472-4642.2009.00568.x

Arnold, T. (1996). Suisun marsh history: Hunting and saving a wetland. Monterey 
Pacific Publishers. Marina, CA. 257.

Arzandeh, S., and Wang, J. (2003). Monitoring the change of Phragmites distribution 
using satellite data. Can. J. Remote. Sens. 29, 24–35. doi: 10.5589/m02-077

Askim, L., Fintel, E., Kreb, B., and Quigley, K.. (2022). 2018 vegetation map update for 
Suisun marsh Solano County, California. A report to the California Department of 

Water Resources. Prepared by Geographical Information Center California State 
University, Chico, p, 75.

Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-effects models 
using lme4. J. Stat. Softw. 67, 1–48. doi: 10.18637/jss.v067.i01

Battisti, C., Grosso, G., Ioni, S., Zullo, F., and Cerfolli, F. (2020). Response of 
specialized birds to reed-bed aging in a Mediterranean wetland: significant changes in 
bird biomass after two decades. Israel J. Ecol. Evol. 67, 17–22. doi: 10.1163/22244662-
bja10007

Benesty, J., Chen, J., Huang, Y., and Cohen, I. (2009). “Pearson correlation coefficient” 
in Noise Reduction in Speech Processing (Berlin: Springer), 1–4.

Benoit, L. K., and Askins, R. A. (1999). Impact of the spread of Phragmites on the 
distribution of birds in Connecticut tidal marshes. Wetlands 19, 194–208. doi: 10.1007/
BF03161749

https://doi.org/10.3389/fevo.2023.1171245
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://drive.google.com/drive/folders/1mgzlguW8TYEFjExTUrbHVnln9_-euW75?usp=sharing
https://drive.google.com/drive/folders/1mgzlguW8TYEFjExTUrbHVnln9_-euW75?usp=sharing
https://www.frontiersin.org/articles/10.3389/fevo.2023.1171245/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fevo.2023.1171245/full#supplementary-material
https://doi.org/10.3390/rs11111380
https://doi.org/10.1111/j.1472-4642.2009.00568.x
https://doi.org/10.5589/m02-077
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1163/22244662-bja10007
https://doi.org/10.1163/22244662-bja10007
https://doi.org/10.1007/BF03161749
https://doi.org/10.1007/BF03161749


Hagani et al. 10.3389/fevo.2023.1171245

Frontiers in Ecology and Evolution 14 frontiersin.org

Blossey, B., Endriss, S. B., Casagrande, R., Häfliger, P., Hinz, H., Dávalos, A., et al. 
(2020). When misconceptions impede best practices: evidence supports biological 
control of invasive Phragmites. Biol. Invasions 22, 873–883. doi: 10.1007/
s10530-019-02166-8

Bollman, M. A., Storm, M. J., King, G. A., and Watrud, L. S. (2012). Wetland and 
riparian plant communities at risk of invasion by transgenic herbicide-resistant Agrostis 
spp. in Central Oregon. Plant Ecol. 213, 355–370. doi: 10.1007/s11258-011-0015-z

Bradley, B. A. (2014). Remote detection of invasive plants: a review of spectral, textural 
and phenological approaches. Biol. Invasions 16, 1411–1425. doi: 10.1007/
s10530-013-0578-9

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32. doi: 10.1023/A:1010933404324

Burdick, D. M., Buchsbaum, R., and Holt, E. (2001). Variation in soil salinity 
associated with expansion of Phragmites australis in salt marshes. Environ. Exp. Bot. 46, 
247–261. doi: 10.1016/S0098-8472(01)00099-5

CDFW. (2011). Suisun marsh habitat management, preservation, and restoration plan: 
Final environmental impact statement/environmental impact report. California 
Department of Fish and Wildlife, p. 176.

CDFW. (2023). Suisun Marsh Atlas. California Department of Fish and Wildlife. 
Available at: https://wildlife.ca.gov/Regions/3/Suisun-Marsh/Atlas. (Accessed January 
26, 2023).

Chambers, R. M., Meyerson, L. A., and Saltonstall, K. (1999). Expansion of Phragmites 
australis into tidal wetlands of North America. Aquat. Bot. 64, 261–273. doi: 10.1016/
S0304-3770(99)00055-8

Clarke, M., Ma, Z., Snyder, S. A., and Floress, K. (2021). Factors influencing family 
forest owners’ interest in community-led collective invasive plant management. Environ. 
Manag. 67, 1088–1099. doi: 10.1007/s00267-021-01454-1

Conrad, L. J., Thomas, M., Jetter, K., Madsen, J., Pratt, P., Moran, P., et al. (2023) 
Invasive aquatic vegetation in the Sacramento-san Joaquin Delta and Suisun marsh: The 
history and science of control efforts and recommendations for the path forward. San 
Francisco. San Francisco Estuary and Watershed Science.

Cruzan, M. B., Weinstein, B. G., Grasty, M. R., Kohrn, B. F., Hendrickson, E. C., 
Arredondo, T. M., et al. (2016). Small unmanned aerial vehicles (micro-UAVs, drones) 
in plant ecology. Appl Plant Sci 4:160041. doi: 10.3732/apps.1600041

Cutler, D. R., Edwards Jr,, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., et al. 
(2007). Random forests for classification in ecology. Ecol. 88:2783–2792. doi: 
10.1890/07-0539.1

Dibble, K. L., Pooler, P. S., and Meyerson, L. A. (2013). Impacts of plant invasions can 
be reversed through restoration: a regional meta-analysis of faunal communities. Biol. 
Invasions 15, 1725–1737. doi: 10.1007/s10530-012-0404-9

Eller, F., Skálová, H., Caplan, J. S., Bhattarai, G. P., Burger, M. K., Cronin, J. T., et al. 
(2017). Cosmopolitan species as models for ccophysiological responses to global change: 
the common reed Phragmites australis. Front. Plant Sci. 8:1833. doi: 10.3389/
fpls.2017.01833

Engloner, A. I. (2009). Structure, growth dynamics and biomass of reed (Phragmites 
australis)–a review. Flora 204, 331–346. doi: 10.1016/j.flora.2008.05.001

Epanchin-Niell, R. S., Hufford, M. B., Aslan, C. E., Sexton, J. P., Port, J. D., and 
Waring, T. M. (2010). Controlling invasive species in complex social landscapes. Front. 
Ecol. Environ. 8, 210–216. doi: 10.1890/090029

ESRI. (2019). ArcGIS Desktop: Release 10.7. Redlands, CA: Environmental Systems 
Research Institute.

Fér, T., and Hroudova, Z. (2009). Genetic diversity and dispersal of Phragmites 
australis in a small river system. Aquat. Bot. 90, 165–171. doi: 10.1016/j.
aquabot.2008.09.001

Fielding, A. H., and Bell, J. F. (1997). A review of methods for the assessment of 
prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49. 
doi: 10.1017/S0376892997000088

Fussell, S. B., Dionne, M. L., and Theodose, T. A. (2015). Expansion rates of Phragmites 
australis patches in a partially restored Maine salt marsh. Wetlands 35, 557–565. doi: 
10.1007/s13157-015-0645-3

Graham, S. (2019). Coordinating invasive plant management among conservation and 
rural stakeholders. Land Use Policy 81, 247–255. doi: 10.1016/j.landusepol.2018. 
10.043

Graham, S., Metcalf, A. L., Gill, N., Niemiec, R., Moreno, C., Bach, T., et al. (2019). 
Opportunities for better use of collective action theory in research and governance for 
invasive species management. Conserv. Biol. 33, 275–287. doi: 10.1111/cobi. 
13266

Hazelton, E. L. G., Mozdzer, T. J., Burdick, D. M., Kettenring, K. M., and 
Whigham, D. F. (2014). Phragmites australis management in the United States: 40 years 
of methods and outcomes. AoB PLANTS 6:plu001. doi: 10.1093/aobpla/plu001

Hijmans, R. J., and Van Etten, J. (2012). Raster: Geographic Data Analysis and 
Modeling. Available at: http://CRAN.R-project.org/package=raster (Accessed May 31, 
2022).

Holdredge, C., and Bertness, M. D. (2011). Litter legacy increases the competitive 
advantage of invasive Phragmites australis in New England wetlands. Biol. Invasions 13, 
423–433. doi: 10.1007/s10530-010-9836-2

Huang, C., and Asner, G. P. (2009). Applications of remote sensing to alien invasive 
plant studies. Sensors 9, 4869–4889. doi: 10.3390/s90604869

Ji, Y., Zhou, G., Lv, G., Zhao, X., and Jia, Q. (2009). Expansion of Phragmites australis 
in the Liaohe Delta, north-East China. Weed Res. 49, 613–620. doi: 
10.1111/j.1365-3180.2009.00727.x

Kettenring, K. M., de Blois, S., and Hauber, D. P. (2012). Moving from a regional to a 
continental perspective of Phragmites australis invasion in North America. AoB 
PLANTS 2012:pls040. doi: 10.1093/aobpla/pls040

Kettenring, K. M., McCormick, M. K., Baron, H. M., and Whigham, D. F. (2011). 
Mechanisms of Phragmites australis invasion: feedbacks among genetic diversity, 
nutrients, and sexual reproduction. J. Appl. Ecol. 48, 1305–1313. doi: 
10.1111/j.1365-2664.2011.02024.x

Kettenring, K. M., and Mock, K. E. (2012). Genetic diversity, reproductive mode, and 
dispersal differ between the cryptic invader, Phragmites australis, and its native 
conspecific. Biol. Invasions 14, 2489–2504. doi: 10.1007/s10530-012-0246-5

Kettenring, K. M., Mock, K. E., Zaman, B., and McKee, M. (2016). Life on the edge: 
reproductive mode and rate of invasive Phragmites australis patch expansion. Biol. 
Invasions 18, 2475–2495. doi: 10.1007/s10530-016-1125-2

Kettenring, K. M., Whigham, D. F., Hazelton, E. L. G., Gallagher, S. K., and 
Baron, H. M. (2015). Biotic resistance, disturbance, and mode of colonization impact 
the invasion of a widespread, introduced wetland grass. Ecol. Appl. 25, 466–480. doi: 
10.1890/14-0434.1

Koh, L. P., and Wich, S. A. (2012). Dawn of drone ecology: low-cost autonomous aerial 
vehicles for conservation. Trop. Conserv. Sci. 5, 121–132. doi: 
10.1177/194008291200500202

Kraemer, H. C. (2015). “Kappa coefficient” in Wiley StatsRef: Statistics reference online 
(Hoboken, NJ: Wiley), 1–4. doi: 10.1002/9781118445112.stat00365.pub2

Lambert, A. M., Dudley, T. L., and Saltonstall, K. (2010). Ecology and impacts of the 
large-statured invasive grasses Arundo donax and Phragmites australis in North 
America. Invasive Plant Sci. Manage. 3, 489–494. doi: 10.1614/ipsm-d-10-00031.1

Lathrop, R. G., Windham, L., and Montesano, P. (2003). Does Phragmites expansion 
alter the structure and function of marsh landscapes? Patterns and processes revisited. 
Estuaries 26, 423–435. doi: 10.1007/BF02823719

Liaw, A., and Wiener, M. (2002). Random forests. R News 2, 18–22. doi: 
10.1023/A:1010933404324

Lombard, K. B., Tomassi, D., and Ebersole, J. (2012). Long-term management of an 
invasive plant: lessons from seven years of Phragmites australis control. Northeast. Nat. 
19, 181–193. doi: 10.1656/045.019.s614

Long, A. L., Kettenring, K. M., Hawkins, C. P., and Neale, C. M. U. (2017b). 
Distribution and drivers of a widespread, invasive wetland grass, Phragmites australis, 
in wetlands of the great salt Lake, Utah, USA. Wetlands 37, 45–57. doi: 10.1007/
s13157-016-0838-4

Long, A. L., Kettenring, K. M., and Toth, R. (2017a). Prioritizing management of the 
invasive grass common reed (Phragmites australis) in great salt Lake wetlands. Invasive 
Plant Sci. Manage. 10, 155–165. doi: 10.1017/inp.2017.20

Mack, R. N., Simberloff, D., Lonsdale, W. M., Evans, H., Clout, M., and Bazzaz, F. A. 
(2000). Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. 
Appl. 10, 689–710. doi: 10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2

Martinez-Guanter, J., Agüera, P., Agüera, J., and Pérez-Ruiz, M. (2019). Spray and 
economics assessment of a UAV-based ultra-low-volume application in olive and citrus 
orchards. Precis. Agric. 21, 226–243. doi: 10.1007/s11119-019-09665-7

McCormick, M. K., Brooks, H. E., and Whigham, D. F. (2016). Microsatellite analysis 
to estimate realized dispersal distance in Phragmites australis. Biol. Invasions 18, 
2497–2504. doi: 10.1007/s10530-016-1126-1

Meyerson, L. A., Lambert, A. M., and Saltonstall, K. (2010a). A tale of three lineages: 
expansion of common reed (Phragmites australis) in the U.S. southwest and Gulf Coast. 
Invasive Plant Sci. Manage. 3, 515–520. doi: 10.1614/ipsm-d-09-00052.1

Meyerson, L. A., Viola, D. V., and Brown, R. N. (2010b). Hybridization of invasive 
Phragmites australis with a native subspecies in North America. Biol. Invasions 12, 
103–111. doi: 10.1007/s10530-009-9434-3

Minchinton, T., and Bertness, M. D. (2023). Disturbance-mediated competition and 
the spread of Phragmites australis in a coastal marsh. Ecol. Appl. 13, 1400–1416. doi: 
10.1890/02-5136

Moyle, P. B., Manfree, A. D., and Fiedler, P. L. (2014). Suisun marsh: Ecological history 
and possible futures. Berkeley, CA: University of California Press.

Mozdzer, T. J., Brisson, J., and Hazelton, E. L. G. (2013). Physiological ecology and 
functional traits of north American native and Eurasian introduced Phragmites australis 
lineages. AoB Plants 5:plt048. doi: 10.1093/aobpla/plt048

Okoye, O. K., Li, H., and Gong, Z. (2020). Retraction of invasive Spartina alterniflora 
and its effect on the habitat loss of endangered migratory bird species and their decline 
in YNNR using remote sensing technology. Ecol. Evol. 10, 13810–13824. doi: 10.1002/
ece3.6971

Orson, R. A. (1999). A paleoecological assessment of Phragmites australis in New 
England tidal marshes: changes in plant community structure during the last few 
millennia. Biol. Invasions 1, 149–158. doi: 10.1023/A:1010047731369

https://doi.org/10.3389/fevo.2023.1171245
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://doi.org/10.1007/s10530-019-02166-8
https://doi.org/10.1007/s10530-019-02166-8
https://doi.org/10.1007/s11258-011-0015-z
https://doi.org/10.1007/s10530-013-0578-9
https://doi.org/10.1007/s10530-013-0578-9
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/S0098-8472(01)00099-5
https://wildlife.ca.gov/Regions/3/Suisun-Marsh/Atlas
https://doi.org/10.1016/S0304-3770(99)00055-8
https://doi.org/10.1016/S0304-3770(99)00055-8
https://doi.org/10.1007/s00267-021-01454-1
https://doi.org/10.3732/apps.1600041
https://doi.org/10.1890/07-0539.1
https://doi.org/10.1007/s10530-012-0404-9
https://doi.org/10.3389/fpls.2017.01833
https://doi.org/10.3389/fpls.2017.01833
https://doi.org/10.1016/j.flora.2008.05.001
https://doi.org/10.1890/090029
https://doi.org/10.1016/j.aquabot.2008.09.001
https://doi.org/10.1016/j.aquabot.2008.09.001
https://doi.org/10.1017/S0376892997000088
https://doi.org/10.1007/s13157-015-0645-3
https://doi.org/10.1016/j.landusepol.2018.10.043
https://doi.org/10.1016/j.landusepol.2018.10.043
https://doi.org/10.1111/cobi.13266
https://doi.org/10.1111/cobi.13266
https://doi.org/10.1093/aobpla/plu001
http://cran.r-project.org/package=raster
https://doi.org/10.1007/s10530-010-9836-2
https://doi.org/10.3390/s90604869
https://doi.org/10.1111/j.1365-3180.2009.00727.x
https://doi.org/10.1093/aobpla/pls040
https://doi.org/10.1111/j.1365-2664.2011.02024.x
https://doi.org/10.1007/s10530-012-0246-5
https://doi.org/10.1007/s10530-016-1125-2
https://doi.org/10.1890/14-0434.1
https://doi.org/10.1177/194008291200500202
https://doi.org/10.1002/9781118445112.stat00365.pub2
https://doi.org/10.1614/ipsm-d-10-00031.1
https://doi.org/10.1007/BF02823719
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1656/045.019.s614
https://doi.org/10.1007/s13157-016-0838-4
https://doi.org/10.1007/s13157-016-0838-4
https://doi.org/10.1017/inp.2017.20
https://doi.org/10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2
https://doi.org/10.1007/s11119-019-09665-7
https://doi.org/10.1007/s10530-016-1126-1
https://doi.org/10.1614/ipsm-d-09-00052.1
https://doi.org/10.1007/s10530-009-9434-3
https://doi.org/10.1890/02-5136
https://doi.org/10.1093/aobpla/plt048
https://doi.org/10.1002/ece3.6971
https://doi.org/10.1002/ece3.6971
https://doi.org/10.1023/A:1010047731369


Hagani et al. 10.3389/fevo.2023.1171245

Frontiers in Ecology and Evolution 15 frontiersin.org

Pal, M. (2005). Random forest classifier for remote sensing classification. Int. J. Remote 
Sens. 26, 217–222. doi: 10.1080/01431160412331269698

Patger, M., Bragato, C., and Brix, H. (2005). Tolerance and physiological responses of 
Phragmites australis to water deficit. Aquat. Biol. 81, 285–299. doi: 10.1016/j.
aquabot.2005.01.002

Paz-Kagan, T., Silver, M., Panov, N., and Karnieli, A. (2019). Multispectral approach 
for identifying invasive plant species based on flowering phenology characteristics. 
Remote Sens. 11:953. doi: 10.3390/rs11080953

Pengra, B. W., Johnston, C. A., and Loveland, T. R. (2007). Mapping an invasive plant, 
Phragmites australis, in coastal wetlands using the EO-1 Hyperion hyperspectral sensor. 
Remote Sens. Environ. 108, 74–81. doi: 10.1016/j.rse.2006.11.002

Peterson, M. A., Collavo, A., Ovejero, R., Shivrain, V., and Walsh, M. J. (2018). The 
challenge of herbicide resistance around the world: a current summary. Pest Manag. Sci. 
74, 2246–2259. doi: 10.1002/ps.4821

Philipp, K. R., and Field, R. T. (2005). Phragmites australis expansion in Delaware Bay 
salt marshes. Ecol. Eng. 25, 275–291. doi: 10.1016/j.ecoleng.2005.04.008

Pimentel, D., Lach, L., Zuniga, R., and Morrison, D. (2000). Environmental and 
Economic Costs of Nonindigenous Species in the United States. Bioscience 50, 53–65.  
doi: 10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO;2

Poulin, B., Lefebvre, G., and Mauchamp, A. (2002). Habitat requirements of passerines 
and reedbed management in southern France. Biol. Conserv. 107, 315–325. doi: 10.1016/
S0006-3207(02)00070-8

Quirion, B., Simek, Z., Dávalos, A., and Blossey, B. (2018). Management of invasive 
Phragmites australis in the Adirondacks: a cautionary tale about prospects of 
eradication. Biol. Invasions 20, 59–73. doi: 10.1007/s10530-017-1513-2

R Core Team. (2021). R: A language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.R-
project.org/.

R Studio Team (2021). RStudio: Integrated development for R. RStudio, PBC, 
Boston, MA. Available at: http://www.rstudio.com/.

Reaser, J. K., Burgiel, S. W., Kirkey, J., Brantley, K. A., Veatch, S. D., and 
Burgos-Rodriguez, J. (2020). The early detection and rapid response (EDRR) to invasive 
species: a conceptual and federal capacities assessment. Biol. Invasions 22, 1–19. doi: 
10.1007/s10530-019-02156-w

Rice, D., Rooth, J., and Stevenson, J. (2000). Colonization and expansion of Phragmites 
australis in upper Chesapeake Bay tidal marshes. Wetlands 20, 280–299. doi: 
10.1672/0277-5212(2000)020[0280:CAEOPA]2.0.CO;2

Robichaud, C. D., and Rooney, R. C. (2017). Long-term effects of a Phragmites 
australis invasion on birds in a Lake Erie coastal marsh. J. Great Lakes Res. 43, 141–149. 
doi: 10.1016/j.jglr.2017.03.018

Rohal, C., Cranney, C., Hazelton, E., and Kettenring, K. M. (2019b). Invasive 
Phragmites australis management outcomes and native plant recovery are context 
dependent. Ecol. Evol. 9, 13835–13849. doi: 10.1002/ece3.5820

Rohal, C., Cranney, C., and Kettenring, K. M. (2019a). Abiotic and landscape factors 
constrain restoration outcomes across spatial scales of a widespread invasive plant. Front. 
Plant Sci. 10, 1–17. doi: 10.3389/fpls.2019.00481

Rohal, C. B., Hazelton, E. L. G., McFarland, E., Downard, R., McCormick, M., 
Whigham, D., et al. (2023). Landscape and site factors drive invasive Phragmites 
management and native plant recovery across Chesapeake Bay wetlands. Ecosphere 
14:e4392. doi: 10.1002/ecs2.4392

Roslim, M. H. M., Juraimi, A. S., Che’Ya, N. N., Sulaiman, N., Manaf, M. N. H., 
Ramli, Z., et al. (2021). Using remote sensing and an unmanned aerial system for weed 
management in agricultural crops: a review. Agronomy 11, 1809–1824. doi: 10.3390/
agronomy11091809

Royimani, L., Mutanga, O., Odindi, J., Dube, T., and Matongera, T. N. (2019). 
Advancements in satellite remote sensing for mapping and monitoring of alien invasive 
plant species (AIPs). Phys. Chem. Earth Parts A/B/C 112, 237–245. doi: 10.1016/j.
pce.2018.12.004

Saltonstall, K.. (2002). Cryptic invasion by a non-native genotype of the common reed, 
Phragmites australis, into North America. Available at: https://www.pnas.org.

Samiappan, S., Turnage, G., Hathcock, L., Casagrande, L., Stinson, P., and 
Moorhead, R. (2017). Using unmanned aerial vehicles for high-resolution remote 
sensing to map invasive Phragmites australis in coastal wetlands. Int. J. Remote Sens. 38, 
2199–2217. doi: 10.1080/01431161.2016.1239288

Sedgwick, P. (2012). Pearson’s correlation coefficient. BMJ 345:e4483. doi: 10.1136/
bmj.e4483

Shahbazi, M., Théau, J., and Ménard, P. (2014). Recent applications of unmanned 
aerial imagery in natural resource management. GISci. Remote Sens. 51, 339–365. doi: 
10.1080/15481603.2014.926650

Simberloff, D., and Leppanen, C. (2019). Plant somatic mutations in nature conferring 
insect and herbicide resistance. Pest Manag. Sci. 75, 14–17. doi: 10.1002/ps.5157

Simpson, S., and Baruth, K. H.. (1966). Suisun soil Conservation District final report 
phase I. San Francisco, California.

Tadros, M. J., Al-Assaf, A., Othman, Y. A., Makhamreh, Z., and Taifour, H. (2020). 
Evaluating the effect of Prosopis juliflora, an alien invasive species, on land cover change 
using remote sensing approach. Sustainability 12:5887. doi: 10.3390/SU12155887

Takekawa, J. Y., Hagani, J. S., Edmunds, T. J., Collins, J. M., Chappell, S. C., 
Reynolds, W. H., et al. (2023). The sky is not the limit: use of a spray drone to surgically 
apply herbicide and control an invasive plant in managed wetlands. In prep.

Takekawa, J. Y., Woo, I., Spautz, H., Nur, N., Grenier, J. L., Malamud-Roam, K., et al. 
(2006). Environmental threats to tidal-marsh vertebrates of the San Francisco Bay 
estuary. Stud. Avian Biol. 32:176.

Tallamy, D. W. (2004). Do alien plants reduce insect biomass? Conserv. Biol. 18, 
1689–1692. doi: 10.1111/j.1523-1739.2004.00512.x

Thompson, D. J., and Shay, J. M. (1985). The effects of fire on Phragmites australis in 
the Delta marsh, Manitoba. Can. J. Bot. 63, 1864–1869. doi: 10.1139/b85-261

Thorne, K., MacDonald, G., Guntenspergen, G., Ambrose, R., Buffington, K., 
Dugger, B., et al. (2018). US Pacific coastal wetland resilience and vulnerability to sea-
level rise. Sci. Adv. 4:eaao3270. doi: 10.1126/sciadv.aao3270

Touchette, B. W., Iannacone, L. R., Turner, G. E., and Frank, A. R. (2007). Drought 
tolerance versus drought avoidance: a comparison of plant-water relations in herbaceous 
wetland plants subjected to water withdrawal and repletion. Wetlands 27, 656–667. doi: 
10.1672/0277-5212(2007)27[656:DTVDAA]2.0.CO;2

Tozer, D. C., and Mackenzie, S. A. (2019). Control of invasive Phragmites increases 
marsh birds but not frogs. Can. Wildl. Biol. Manage. 8, 66–82.

Vitousek, P. M., D’antonio, C. M., Loope, L. L., Rejmánek, M., and Westbrooks, R. 
(1997). Introduced species: a significant component of human-caused global change. 
Available at: https://www.jstor.org/stable/24054520.

Volesky, J. D., Young, S. L., and Jenkins, K. H. (2017). Cattle grazing effects on 
Phragmites australis in Nebraska. Invasive Plant Sci. Manage. 9, 121–127.  doi: 10.1614/
IPSM-D-15-00056.1

Wails, C. N., Baker, K., Blackburn, R., Del Vallé, A., Heise, J., Herakovich, H., et al. 
(2021). Assessing changes to ecosystem structure and function following invasion by 
Spartina alterniflora and Phragmites australis: a meta-analysis. Biol. Invasions 23, 
2695–2709. doi: 10.1007/s10530-021-02540-5

Walter, M., and Mondal, P. (2023). Mapping of Phragmites in estuarine wetlands using 
high-resolution aerial imagery. Environ. Monit. Assess. 195:478. doi: 10.1007/
s10661-023-11071-6

Wang, Q., Li, C., Chen, C., Chen, J., Ma, X., and Que, X. (2017). Physiological 
responses of Phragmites australis to atrazine exposure and their relevance for tolerance. 
J. Agroenviron. Sci. 36, 1968–1977.

Wilcox, K. L., Petrie, S. A., Maynard, L. A., and Meyer, S. W. (2003). Historical 
distribution and abundance of Phragmites australis at long point, Lake Erie, Ontario. J. 
Great Lakes Res. 29, 664–680. doi: 10.1016/S0380-1330(03)70469-9

Young, S. L., and Kettenring, K. M. (2020). The social-ecological  
system driving effective invasive plant management: two case studies of  
non-native Phragmites. J. Environ. Manag. 267:110612. doi: 10.1016/j.jenvman.2020. 
110612

Zeileis, A., and Hothorn, T. (2002). Diagnostic checking in regression relationships. 
R News 2, 7–10.

https://doi.org/10.3389/fevo.2023.1171245
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://doi.org/10.1080/01431160412331269698
https://doi.org/10.1016/j.aquabot.2005.01.002
https://doi.org/10.1016/j.aquabot.2005.01.002
https://doi.org/10.3390/rs11080953
https://doi.org/10.1016/j.rse.2006.11.002
https://doi.org/10.1002/ps.4821
https://doi.org/10.1016/j.ecoleng.2005.04.008
https://doi.org/10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO;2
https://doi.org/10.1016/S0006-3207(02)00070-8
https://doi.org/10.1016/S0006-3207(02)00070-8
https://doi.org/10.1007/s10530-017-1513-2
https://www.r-project.org/
https://www.r-project.org/
http://www.rstudio.com/
https://doi.org/10.1007/s10530-019-02156-w
https://doi.org/10.1672/0277-5212(2000)020[0280:CAEOPA]2.0.CO;2
https://doi.org/10.1016/j.jglr.2017.03.018
https://doi.org/10.1002/ece3.5820
https://doi.org/10.3389/fpls.2019.00481
https://doi.org/10.1002/ecs2.4392
https://doi.org/10.3390/agronomy11091809
https://doi.org/10.3390/agronomy11091809
https://doi.org/10.1016/j.pce.2018.12.004
https://doi.org/10.1016/j.pce.2018.12.004
https://www.pnas.org
https://doi.org/10.1080/01431161.2016.1239288
https://doi.org/10.1136/bmj.e4483
https://doi.org/10.1136/bmj.e4483
https://doi.org/10.1080/15481603.2014.926650
https://doi.org/10.1002/ps.5157
https://doi.org/10.3390/SU12155887
https://doi.org/10.1111/j.1523-1739.2004.00512.x
https://doi.org/10.1139/b85-261
https://doi.org/10.1126/sciadv.aao3270
https://doi.org/10.1672/0277-5212(2007)27[656:DTVDAA]2.0.CO;2
https://www.jstor.org/stable/24054520
https://doi.org/10.1614/IPSM-D-15-00056.1
https://doi.org/10.1614/IPSM-D-15-00056.1
https://doi.org/10.1007/s10530-021-02540-5
https://doi.org/10.1007/s10661-023-11071-6
https://doi.org/10.1007/s10661-023-11071-6
https://doi.org/10.1016/S0380-1330(03)70469-9
https://doi.org/10.1016/j.jenvman.2020.110612
https://doi.org/10.1016/j.jenvman.2020.110612

	A remote sensing approach to assess the historical invasion of Phragmites australis in a brackish coastal marsh
	1. Introduction
	2. Methods
	2.1. Study area
	2.2. Random forest classifications
	2.3. Assessment of spread in Suisun Marsh
	2.4. Comparison to VegCAMP manual classification
	2.5. Generalized linear mixed models

	3. Results
	3.1. Random forest classifications
	3.2. Assessment of spread in Suisun Marsh
	3.3. Comparison to VegCAMP manual classification
	3.4. Generalized linear mixed models

	4. Discussion
	4.1. National Agriculture Imagery Program (NAIP) classifications and the expansion of Phragmites australis in Suisun Marsh
	4.2. Remote sensing and manual classification accuracy: the potential for informing management
	4.3. Drivers of Phragmites australis expansion and management implications

	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note

	References

