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An animal movement track
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forecasting range adaptation
under global change
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The methods used for predicting space use and geographic distribution

adaptations of animals in response to global change have relied on fitting

statistical and machine learning models to environmentally-contextualized

movement and spatial distribution data. These predictions, however, are made

at particular spatiotemporal scales (from home range to species distribution), but

no comprehensive methods have been proposed for predicting how changes to

subdiel segments of individual movement tracks may lead to emergent changes in

the lifetime tracks of individuals, and hence in the redistribution of species under

global change. In this article, we discuss in terms of a hierarchical movement

track segmentation framework that, anchored by diel activity routines (DARs), how

adaptions in the canonical activity modes (CAMs) of movement can be used to

assess space use adaptations to landscape and climate change at scales ranging

from subdiel movement segments to the lifetime tracks (LiTs) of individuals.

KEYWORDS

diel activity routines (DARs), canonical activity modes (CAMs), lifetime movement phases
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1. Introduction

Movement ecology has matured into an independent research field that supports its
own eponymous meetings and journals, although it overlaps with several other distinct
ecological fields. This overlap includes the following: (i) behavioral ecology’s movement
studies (Liedvogel et al., 2013; Hertel et al., 2020), (ii) resource ecology’s search for resources
dispersed over landscapes (Mueller and Fagan, 2008; Abrahms et al., 2021), and (iii) animal
social ecology’s coordinated movement studies (Couzin et al., 2005; Schweinfurth et al.,
2022), as well as how movement is influenced by social networks (Jacoby and Freeman,
2016).

Movement ecology was created a decade-and-a-half earlier as the interplay of the why
(motivational aspects), where (navigational aspects), when (external contexts), and how
(modes of movement) of animal movements occurred (Nathan et al., 2008). This framing
alone does not provide a road map for the construction of quantitative animal movement
models, while the bulk of existing quantitative animal movement models, regardless of
whether related to this framework or not, do not shed light upon how changes in daily
movement patterns scale up when using models to forecast long-term space-use adaptations
under global change.
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The focus of forecasting models in movement ecology has
been 2-fold. The first focus is on the resolution of fitting models
to environmentally-contextualized sub-daily relocation time-series
data (Dodge et al., 2013), a variety of statistical (Williams et al.,
2020), state-space (Hooten et al., 2017; Patterson et al., 2017),
and machine learning approaches (Wang, 2019; Torney et al.,
2021) have been considered, including recurrent neural network
learning incorporating step-selection kernel density constructions
(Rew et al., 2019). The second focus is on the resolution of
the seasonal location of populations over selected geographical
regions, niches or species distribution models have been used
to assess how the distribution of species shifts over time (Elith
and Leathwick, 2009), with effects on dispersal in response to
global change (Austin and Van Niel, 2011; Travis et al., 2013),
which has particular relevance to movement ecology. Although
the performance of these two types of models can be statistically
assessed under certain assumptions, they are generally unable to
forecast space-use adaptations that emerge because of locomotory
changes in movement patterns at finer spatio-temporal scales of
resolution.

2. Motivation for a hierarchical
approach

Arguably, the best way to capture emergent space-use change
at the locomotory data level is to model movement at hierarchical
scales that parallel emergent patterns such as canonical activity
modes (CAMs; i.e., track segments dominated by a distinguishing
activity such as grazing, searching, or directed walking—e.g., see
Getz and Saltz, 2008; Owen-Smith et al., 2010), diel activity
routines (DARs; Owen-Smith and Goodall, 2014), and lifetime
movement phases (LiMPs; Teitelbaum and Mueller, 2019), as
well as lifetime tracks (LiTs) (Getz, 2022) (Table 1). For example,
forecasting how seasonal use of spatial structures, such as
home ranges, are likely to adapt to climate change may be
best predicted by a model that relies on knowledge of how
an individual’s CAMs and DARs are affected by temperature
and rainfall conditions, or the distribution of resources during
the season under consideration. In this case, a hierarchical
understanding of how the tracks of animals play out at different
spatiotemporal scales (Torney et al., 2018) facilitates changes in
the movement structure of animals tracks during their different
LiMPs of dispersal (Travis et al., 2013), seasonal ranging (Burton-
Roberts et al., 2022), and migration (Seebacher and Post, 2015)
(Table 1).

The changes in the structure of CAMs and DARs in
response to changes in the landscape or climate may be
statistically assessable if a sufficiently large sample of DARs
is available for a range of landscape and climatic conditions
corresponding to the anticipated changes. In the absence of suitable
environmentally-contextualized DAR data, a more mechanistic
approach is required. In order to develop such an approach,
we must understand how the CAM segments of DARs may
relate to various landscape and climatic conditions and how
CAMs contribute to the emergent structure of DARs. CAMs
themselves are built from finer scale movements that ultimately

reduce to basic locomotory elements called fundamental movement
elements (FuMEs) (Getz and Saltz, 2008; Getz et al., 2020; Getz,
2022).

Fundamental movement elements generally involve repeatable
sequences of stereotypical body movements (e.g., walking, wing
flapping, body undulating, trotting, galloping, and sprinting).
These movements are generally executed at rates measured in
seconds or fractions thereof in animals that weigh several kilograms
or more. In smaller animals and birds, this rate could be measured
in centiseconds (e.g., some hummingbirds flap their wings up to 60
times per second, Mahalingam and Welch, 2013). At longer time
frames, various combinations of movements are strung together
in repeatable ways that can be associated with different types of
activities such as resting, walking toward a targeted location (i.e.,
directed walking), moving over a landscape to feed (e.g., grazing
grass, or browsing trees), or collecting resources (e.g., searching
for seeds) (Owen-Smith et al., 2010; Owen-Smith and Goodall,
2014). When these different activities are performed often in
repeatable ways, they are called canonical activity modes (CAMs)
(Getz and Saltz, 2008; Getz, 2022). Some CAMs may be short-
lived and switched many times within an hour, such as a feeding
or collecting resource CAM executed within a small landscape
patch that is interspersed with a moving among patches CAM
(Nams, 2005; Owen-Smith et al., 2010). Other CAMs may be long-
lived and last several hours, such as a directed walking CAM
executed when trekking to a distant location (e.g., a waterhole—
Cain et al., 2012, or returning home after hunting many miles from
a den where young have been sequestered—Hofer and East, 1993),
preceded or followed by a search CAM (Bartumeus and Levin,
2008).

In addition to a time series of spatial location points (also
known as relocation time series) collected at regular intervals
of time, the amount of information needed to characterize a
complete FuME sequence requires the simultaneous measurement
of the relative motions of several different body parts (Miller
et al., 2012). Thus, if the only information available is a relocation
time series, the best information that can be generated are
step sizes, turning angle distribution, and correlated measures
(Getz, 2022). When relocation points are collected during
the execution of a homogeneous movement activity (such
as ambling, directed walking, or sprinting), the underlying
elements can be statistically characterized in terms of average
step size and turning angles with associated standard deviations
and auto- and cross-correlations. These statistics can then be
said to represent a metaFuME of that homogeneous activity.
Obviously the values obtained depend on the frequency
of location samples (i.e., the inverse of the sampling time
interval). If the homogeneity of the movement behavior lasts
an order of magnitude longer than the relocation sampling
time frequency, then statistically reliable metaFuMEs can be
constructed.

Finally, the underlying assumption of an animal track
hierarchical segmentation framework is that each metaFuME basis
will be general enough to apply to a class of individuals. If the
class includes all individuals in the population, then it becomes
so much better—but this is likely too much of an expectation.
For example, the metaFuME that is the basis for a directed,
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TABLE 1 Salient aspects of a hierarchical DAR-centered animal movement track segmentation, assembly, and simulation modeling scheme.

Obj./Process Scale (time;
space)

Data Categorize Deconstruct Reconstruct Challenges Applications

Segmenting DARs (same-colored entries directly related)

DARs Fixed diel period; home
range

Multi-minute/sub-hour
relocation data (RD);
landscape mosaic data

Use clustering (e.g.,
based on geometric
measures of DARs) or AI
methods to build
individual type, seasonal
and local range specific
distributions from a
common set of DAR
categories

Segment into CAMs
using biological change
point analyses (BCPA)
and associated CAMs
with local landscape
mosaic

Reassemble CAMs into
DARs using multi-mode
Markov transitions of
CAMs generated from
metaFuME data and
environmental contexts

Identification of
motivational state and
external stimuli biasing
absolute direct of
movement (home,
resource, and danger
locations)

Expenditure of energy
needed to meet daily
needs under landscape
and climate change

CAMs (long and short
duration)

Subdiel periods, short
(mins), long (sub to
several hrs); local
landscape

Short: sub-minute
relocation data

Long: multi-minute
relocation data

Segments identified in
DAR deconstruction

Compile CAM-specific
step-size and turning
angle distributions, auto
and cross correlations.
For high frequency data,
use BCPA to obtain
sub-CAM segments that
can be interpreted as a
finer set of fast CAMs

Construct CAMs from
metaFuME step-size and
turning angle
distributions, using
landscape dependent
step-selection methods

Identification of short
duration CAMs require
data that is an order of
magnitude faster than
for long duration CAMs

Detection of sick
animals, animals under
stress, adaptions to
landscape and climate
change

MetaFuMEs Relocation intervals fixed
by data; step-size kernels

Only valid for relatively
high frequency data (viz.,
sub-minute to minute)

Step-size and turning
angle distributions
obtained from a refined
set of CAMs should be
clustered into
metaFuME categories
(e.g., running, walking,
ambling, resource
handling etc.)

Smallest statistically
characterizable segments
of a track.

Generate step-size,
turning angle, and
correlation statistics for
identified CAM
categories

Results are data
frequency and
BCPA-method
dependent

Required for CAM and
DAR modeling studies;
assessment of
environmental effects
and landscape change on
DARs

Assembling DARs

LiMPs Several days to months;
regional to global for
some birds

Multiday locations (also
DAR sequences),
revisitations, migrations,
dispersals

Categories based on
biological data relating
to life history stages and
seasonal activities

Use BCPA or climate
data to determine
switches from one LiMP
to another (e.g., breeding
season, migration
period, etc.)

Assemble LiMPs from
LiMP-specific DAR
distribution and Markov
transition matrices

Availability of track data
over a sufficiently long
period to cover double
the length of the longest
LiMP period

Use in LiMP modeling
studies of response to
landscape and global
change and long-term
redistribution of species

LiTs Lifetime of individuals;
regional to global

Lifetime tracks from one
to several daily locations

Use clustering methods
based on spatial coverage
measures of LiTs and
LiMP segments
including revisitation
rates

Segment in LiTS using
BCPA methods
associated with regional
landscape structure

Assemble LiTs from
LiMPs sequences using
biological,
environmental and
geographic data

Available of sufficiently
many LiTs for groups of
individuals of interest

Use to assess how global
and landscape change
results in the
redistribution of
populations over time

DAR, Diel activity routine; CAM, Canonical activity mode; FuME, Fundamental movement element; LiMP, Lifetime movement phase; LiT, Lifetime movement track.
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FIGURE 1

A graphical representation of a DAR-anchored animal movement track segmentation, assembly, and simulation modeling scheme.

uninterrupted walk between two points may have a characteristic
(average with small standard deviations) “step size” or speed that
depends on individual age or sex. Again, it is assumed that the
classification of DARs, for example, may depend on particular
traits, such as age or sex, have an environmental context, and
may also reflect a particular syndromic personality type (Sih
et al., 2004; Dingle, 2006; Abrahms et al., 2017; Spiegel et al.,
2017). If inter-individual variation, though, is high beyond these
specific groupings—i.e., variation becomes too idiosyncratic—then
the generality of the hierarchical segmentation framework will be
severally eroded and its ability to provide a basis for building
forecasting models of populations’ responses to global change is
highly compromised.

3. Categorizing DARs

Within the metaFuME/CAM/DAR/LiMP/LiT segmentation
hierarchy, metaFuMEs and DARs have fixed periods, whereas the
CAMs, LiMPs, and LiTs have variable lengths (Getz, 2022). The
metaFuME period is selected based on statistical criteria (primarily
relocation data sample size) and the relocation sampling frequency
(Getz et al., 2020). The DAR period, on the other hand, is fixed by
the earth’s rotation. The best choice of the start/end time, however,
may vary among species. For the nocturnal barn owl, it is before
the individual leaves for its nocturnal feeding bouts (Luisa Vissat
et al., 2023), while for the black rhinoceros, a dawn start/end time
is better than selecting midday, dusk, or midnight (Seidel et al.,
2019).

Given that the DAR is the only segment of a LiT that has a
natural fixed period, it is acceptable to use the DAR as the anchor
for a hierarchical deconstruction (i.e., segmentation process) and

reconstruction (i.e., assembling process) of animal tracks (Figure 1
and Table 1). Thus, one begins with a set of animal tracks with each
track lasting at least one or more days long. These tracks are then
organized into distinct diel segments once a particular start/end
time has been selected. Each distinct diel segment is then regarded
as one observation of a DAR. The result of this approach will be a
set of DARs belonging to one or more individuals in a population.
The ideal situation is to obtain sufficiently many segments to be
able to conduct statistically relevant studies on the set of DARs
obtained.

At its crudest level, DARs can be plotted in terms of
“activity” levels measure (e.g., energy expenditure rate, such
as overall dynamic body acceleration (ODBA), although there
are some issues with this latter concept, see Martin Lopez
et al., 2022) or as has been done using camera trap data for
13 species of mammals on Barro Colorado Island, Panama
(Rowcliffe et al., 2014). Such DAR plots can then be sorted
in categories or types using a host of techniques, with the
current best method being some kind of machine learning
approach (Valletta et al., 2017; Wang, 2019; Torney et al., 2021).
Obvious visual differences, though, include the timing of peak
activity, the number of peaks, and the ratio of peak to trough
periods.

Animal daily activity routines represent a combination of
activities related to ensuring their survival, promoting their
growth and development to reproductive maturity, and enhancing
their reproductive fitness. As expressed by Papastamatiou et al.
(2015) in a study of marine predators “Animal daily routines
represent a compromise between maximizing foraging success
and optimizing physiological performance, while minimizing
the risk of predation.” Ectothermic marine predators, such as
sharks, are expected to have DARs influenced by both prey
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abundance and thermal clines. In particular, if prey are relatively
abundant, then predators may be expected to maximize their
feeding rates by hunting in colder and resting in warmer than
average waters (Papastamatiou et al., 2015). While, in a relatively
depleted prey environment, Papastamatiou et al. (2015) posit that
energy efficiency considerations may lead ectothermic marine
predators to hunt in colder and rest in warmer than average
waters.

In addition to categorizing DARs based on activity data and
activity rate plots, various movement track generated measures
may be used to sort DARs into categories using hierarchical
clustering methods. As with many analytical methods in movement
ecology (Codling and Hill, 2005; Codling and Plank, 2011), the
method we propose in this study for categorizing DARs will
exhibit some sensitivity to the relocation frequency of the data
used. Thus, we recommend using data that has a sub-hourly or
multi-minute frequency (e.g., 2–20 points an hour). In organizing
the data for the DAR analysis, we need to determine where
to break multi-day tracks into 24-h diel segments: the most
appropriate start/end points will depend on the daily rhythms
of the movement of individuals within a population (e.g., in
the context of rhinos, see Seidel et al., 2019). After this, our
method then employs a hierarchical clustering algorithm to identify
a set of n cluster types (Murtagh and Contreras, 2012; Saxena
et al., 2017). The number of clusters is determined using various
heuristics (Saxena et al., 2017) that recognize that the optimal
choice is actually a subjective trade-off among several criteria.
These include capturing a desired level of the variation when the
DARs are organized into descriptive spaces of lower dimension
than the factor space itself; having sufficiently many categories
to reveal novel phenomena that may be masked if particular
categories are not separated out; and having few enough categories
so that the number of DARs are sufficient to generate reliable
average statistics in all categories. We emphasize, however, that
any reliable cluster analysis suffices for our method, including
various machine learning methods (Tarca et al., 2007; Valletta et al.,
2017).

Luisa Vissat et al. (2023), for example, developed a method
for categorizing DARs using the following four geometric
measures: maximum displacement—from starting location,
diameter—maximum distance between any two points on the
DAR, width—maximum side-to-side extent perpendicular to
the diameter, and net displacement—the distance between start
and end locations. They then illustrated the approach using
data from barn owls. Their analysis enabled them to distinguish
how distributions of seven different types of DARs (five classes
with little net displacement grouped by size and width/diameter
characteristics, one class with moderate net displacement, and
the remaining class with essentially one-way trips) varied as a
function of age, gender, and location covariables. The question
remained, though, how well these seven different types could be
jointly segmented into distinct CAM segments, reflecting various
behavioral models during the execution of DARS. Such segments
likely include directed locomotion modes (at least one outbound
and one inbound segment of this type for DARs with small net
displacement), resource search, food item extraction, and handling
modes, perhaps interspersed with periods of rest.

4. Segmenting DARs

Biological change point analyses (BCPA; Gurarie et al., 2009,
2016; Chen and Gupta, 2011; Matteson and James, 2014; Owen-
Smith and Martin, 2015), including Hidden Markov Models
(HMM; Langrock et al., 2012; Michelot et al., 2016; Zucchini
et al., 2016; Pohle et al., 2017), can be used to segment DARs
into sets of segments (Figure 1), where within set compared
with across set movement statistics (step size, turning angle
distributions, and auto and cross-correlated statistics–e.g., see
Benhamou, 2004; Nams, 2014; Getz et al., 2020) are more
homogeneous. The relatively homogeneous within set segments
constitute distinct activity modes that can be regarded as
canonical activity models (CAMs) when appropriate lengths
of such different activity modes can be reassembled using
simulation models (Figure 1) into different types of DARS. To
some extent, some of these CAMs (e.g., directed locomotion)
may be contextualized when their statistics depend on the age
or gender of the individual, or even environmental attributes of
the landscape including resistance to movement (Zeller et al.,
2012).

The set of CAMs that have been identified may differ,
depending on the resolution of the relocation data that are
used to identify the points at which the “biological change”
occurs. The number of types of CAMs identified is likely to be
associated with an increasing function of the resolution of the
data. Thus, relatively low resolution data may only support the
division of DARs into high and low activity phases (Papastamatiou
et al., 2015). On the other hand, relatively high resolution data
may facilitate the segmentation of a mammalian, a herbivore
foraging mode (i.e., a relatively long foraging CAM) into the
actual handling of the resource (i.e., a short feeding CAM)
interspersed with small movements among patches of resources
(i.e., a short patch transfer CAM) (Owen-Smith, 2002). Another
example is that animals involved in moving directly from one
known location to another may stop from time to time to check
for predators so that a relatively long period direct movement
CAM may actually consist of shorter period segments of a
persistent movement CAM interspersed with shorter periods of
vigilance CAM (Kröschel et al., 2017). The vigilance CAM may
also be evident during feeding activities (Robinson and Merrill,
2013).

Once a set of n different CAM types has been extracted from
a set of DARs (where the best value of n that emerges from
the cluster analysis will likely increase with the frequency of the
relocation data), a set of underlying metaFuME statistics can then
be extracted for each of these CAM types and used to formulate a
simulation model (Figure 1) (Getz et al., 2020; Getz, 2022). Again,
themetaFuME statisticsmay have some dependence on age, gender,
or environmental covariates (attributes).

5. Assembling DARs and global change

The key to reassembling n identified categories of CAMs into
DARs (the value of nwill differ from one study to another) is to fit a
set of n×n transition probability functions pij(ts, t) (i, j = 1, · · · , n,
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0 ≤ ts ≤ t) to the DAR data from which the CAMs were extracted,
where ts is the amount of time the individual has already been
in CAM of type i, and t denotes the start time of the track in
question. We note that the salient aspects of t will be its points
in the 24-h diel cycle, the annual seasonal cycle, and possibly the
lunar cycle (Polansky et al., 2010). If the functions pij(ts, t) were
constants, then the n × n matrix P of elements (P)ij = pij would
represent a Markov transition matrix, and the CAM construction
would be a finite, discrete-time Markov process (Iosifescu, 2014).
More likely, however, is that the transition probabilities are best
fitted to switching functions of the form pij(ts, t) = 1

1+e
−σij(t)(ts−τij(t))

(Michalski et al., 2020), where σij(t) are CAM dependent switching
“abruptness” and τij(t) are switching “location” parameters. In
addition to the dependencies on residence and absolute times ts and
t, the switching probabilities may also be influenced by individual
type (e.g., sex or age) and are also almost certainly influenced by
their “local” environmental context.

If we use the variables α to index an individual type, η

to index its environmental context, and ξ to index its internal
state (physiological/motivational), then for an individual of type α

executing CAM i at time t for ts units of time with an internal state
ξ and in environment η, the following applies. At time t + 1, this
individual will transition to CAM j with probability pα

ij (t; ts, ξ , η)
(where the parameters σ and τ in the switching functions may also
be now α and η specific) and, hence, will remain in CAM i with

probability
∑

j=1,··· ,n, j6=i

(

1− pα
ij (t; ts, ξ , η)

)

. This implies that we

always need to ensure that
∑

j=1,··· ,n, j6=i p
α
ij (t; ts, ξ , η) ≤ 1.

We note that though time spent in a particular CAM has
been explicitly identified, it may also be regarded as part of the
internal state of an individual. It has been separated out because
it may easier to measure than other internal state variables.
These latter variables may be associated with salient geographic
information that includes both learned landscape markers and
remembered locations (Bracis and Mueller, 2017; Doherty and
Driscoll, 2018) and sensory information obtained from magnetic
and celestial cues. Such “global” cues will be implicated in
the choice of CAMs initiated when heading absolute directions
of motivate movement to distant locations, such as known
resource areas, or return to home sites, or core areas of ranges.
Once a simulation model that uses CAM-specific metaFuMEs
to generate CAM segments that can then be strung together
using the CAM transition matrix Pα (t; ts, ξ , η) of switching
functions to generate sets of DARs (Figure 1), we will then be
in a position to string together the DARs themselves to reflect
landscape use at the home range and seasonal spatiotemporal
scales.

The scale at which environmental information is represented,
for example, spectral data pertaining to a remotely sensed landscape
pixel (Tsalyuk et al., 2017) containing the location of the individual,
is important and is perhaps on the order of the distance that an
individual can move under the current CAM in one metaFuME
time step. Furthermore, for CAMs where turning angles are
relatively ranged between [−π ,π], fitted step-selection kernels
(Thurfjell et al., 2014; Avgar et al., 2015; Tsalyuk et al., 2019)
may prove useful in simulating a local movement track relocation
sequence, particularly when barriers to movement are present on
the landscape (Panzacchi et al., 2016).

6. Conclusion

From the above discussion, it is clear that the functions
governing the transitions from one CAM to another can be
complex. Thus an assumption that they remain constant is likely
to only hold locally for short periods of time. The challenge
then is to extract transition probabilities from empirical data that
are sufficiently rich to allow dependencies on an individual type,
internal state, and environmental context to be identified. This is
a tall order, though one that is becoming more likely as our ability
to collect environmentally contextualized relocation data increases
(Nathan et al., 2022).

At this juncture, in terms of available data and methods
of analysis, computing new sets of DARs from CAMs and
transition probabilities that have little internal state information
beyond time spent in the current CAM and some assessment
of a modeled energy-expenditure/hunger variable (Malishev and
Kramer-Schadt, 2021) should be attainable in the context of
changing local landscape structures. The resulting DARs, when
assembled using an empirically fitted set of DAR transitions
functions, should permit forecasting home range adaptations, time
of migrations, migration routes, and movement through corridors
created to mitigate wildland habitat fragmentation (McClure et al.,
2016; Panzacchi et al., 2016). In addition to such LiMPs, forecasting
adapted LiTs should remain highly speculative until greater
progress has been made and more experience obtained in modeling
DAR and LiMP adaptations with some reliability. Furthermore,
the inclusion of the motivational state of an individual to move
to distant locations remains a challenge until we obtain a better
understanding of how to detect such states within individuals
and incorporate this information into simulation models, although
heuristic inferred memory approaches may prove useful (Fagan
et al., 2013; Abrahms et al., 2021).

A review of this article highlights that ideas presented herein
are based largely on animal routine movements that are then
used in a hierarchical framework to forecast animal movement
responses, but the presentation fully ignores the literature on
dispersal motivated by climate change. I agree that novel dispersal
is a problem that also needs to be considered when forecasting
the response of individuals to global change. In fact, the issue of
individuals establishing a new home range when confronted with a
novel environment (either due to natural dispersal or translocation)
has been considered by me and others (Saltz and Getz, 2021). The
question of then how to forecast when individuals make decisions
to disperse in ways that are not part of their normal life cycle is
a challenge that, as suggested by the title of this paper, is beyond
the scope of this “Perspective” article. After all, many of the ideas
presented in this article remain to be tested and can only be tested
when sufficiently high resolution data become available on the
movement responses of individuals to stressors resulting from the
effects of global change.
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