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Sexual size dimorphism (SSD) is widespread among animals and is characterized

by differences in body size between sexes. Previous studies suggested SSD

might reflect the adaptations of particular sexes to their specific reproductive

or ecological roles. The large green cascade frogs (Odorrana graminea) exhibit

obvious SSD that females are nearly twice the body size of males. However, the

molecular mechanisms underlying SSD of O. graminea are still unknown. In the

present study, we first obtained nearly 5 Gb of the transcriptome data through

Illumina sequencing, and the de novo transcriptome assembly produced 189,868

unigenes of O. graminea. A total of 774 significantly sex-differentially expressed

genes (DEGs) were identified. Of which, 436 DEGs showed significantly higher

expression levels in females than those in males, whereas 338 DEGs showed

significantly lower expression in females than those in males. We also found

10 sex-differentially expressed genes related to energy metabolism between

sexes of O. graminea, and these DEGs were related to the estrogen signaling

pathway, oxidative phosphorylation, fatty acid biosynthesis, gastric acid secretion,

and nitrogen metabolism. We found that the differences in energy metabolism

and steroid hormone synthesis might be the main driving force leading to

the sexual growth dimorphism of O. graminea. In addition, a total of 63,269

potential EST-SSR loci and 4,669 EST-SSR loci were detected and validated in

different populations of O. graminea and other species within Odorrana. The

assembled transcriptome will facilitate functional genomic studies of O. graminea

and the developed EST-SSR markers will contribute to the population genetics

of the species within Odorrana. The sex-differentially expressed genes involved

in energy metabolism might provide insights into the genetic mechanisms

underlying the SSD of O. graminea.
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1. Introduction

Sexual size dimorphism (SSD), also known as sexual growth
dimorphism, is widespread among animals and is characterized
by differences in body size and growth rate between female and
male individuals (Wang et al., 2018; Chen et al., 2021). The driving
force leading to SSD has attracted the interests of evolutionary
biologists and ecologists. It is generally thought that SSD was
attributed to differential selection of the sexes and reflected the
adaptations of particular sexes to their specific reproductive or
ecological roles (Kubièka et al., 2017). The growth of the animals
is a complex polygenic trait and is regulated by a series of factors,
e.g., environment, nutrients, energy metabolism and reproduction
activity (Wang et al., 2018). The genetic mechanism of SSD is
essential for understanding of the sex-specific adaptive evolution
and is still a major challenge due to the complexity of the growth
mechanisms and the sexual influences.

Sexual size dimorphism has been described in many amphibian
species (Fei et al., 2009). The large green cascade frogs (Odorrana
graminea) belong to the family Ranidae and inhabit cold swift
boulder-strewn areas and montane streams throughout Southern
China and Southeast Asia (Fei et al., 2009; Frost, 2022). Moreover,
these frogs have obvious sexual size dimorphism (SSD) that females
are nearly twice the body size of males (Fei et al., 2009; Liao
et al., 2013; Li et al., 2023), and therefore these frogs are ideal
models for using in investigating the mechanisms of SSD. Previous
analyses suggested that sex-specific differences in energy allocation
to growth might contribute to SSD (Starostová et al., 2013; Luo
et al., 2021). Amphibians consumed lots of energy in the process
of reproduction for the development of male’s secondary sexual
characteristics, courtship calls, egg development, oviposition, etc.
(Basto-Riascos et al., 2017; Ethier et al., 2021). The differences
in reproductive behavior might lead to the differences in energy
acquisition and allocation between sexes during the breeding
season (Li, 1988; Reading, 2007). Increasing evidences suggested
the important role of the neuronal networks within brain in the
regulation of energy metabolism and growth (Aiello and Wheeler,
1995; Magistretti and Allaman, 2015; Wang et al., 2018; Yagound
et al., 2022). Thus, investigating brain gene regulation could
facilitate our understanding of SSD in O. graminea. However, the
brain gene expression profiles between sexes of O. graminea are still
unknown.

In addition, the lack of morphologically diagnosable
characteristics between O. graminea and its affinities posed a
confusing and controversial problem to taxonomists (Chen et al.,
2020; Frost, 2022). Three major mtDNA lineages were revealed
within the O. graminea sensu stricto, whereas the nuclear data
showed a discordant genetic structure (Chen et al., 2020). Simple
Sequence Repeat (SSR), also called microsatellite DNA, has been
proposed as useful molecular markers for studies of population
genetics, phylogeography, and demography due to their high
polymorphism (Antoniou et al., 2018; Qiao et al., 2018; Wu
et al., 2019). Recent advances in RNA sequencing (RNA-seq)
technology provides an excellent strategy for development of
SSR markers and a series of the expressed sequence tag-Simple
Sequence Repeat (EST-SSR) have been identified in frogs, e.g.,
Rana omeimontis (Huang et al., 2016), Pelophylax nigromaculatus

(Huang et al., 2016), O. margaretae (Qiao et al., 2018), and
R. arvalis (Shu et al., 2018).

Here, we sequenced and de novo assembled the brain
transcriptomes between sexes of O. graminea with Illumina
sequencing. The differential gene expression profiles between
sexes of O. graminea were determined and the candidate genes
involved in the sexual size dimorphism were identified. In addition,
a series of EST-SSR markers were characterized and validated
in O. graminea and other species in the genus Odorrana. The
assembled transcriptome will facilitate functional genomic studies
of O. graminea and the developed EST-SSR markers will contribute
to the population genetics of the species within Odorrana. The sex-
differentially expressed genes involved in energy metabolism might
provide insights into the genetic mechanisms underlying the SSD
of O. graminea.

2. Materials and methods

2.1. Sample collection and ethics
statement

Eight adult individuals (four males and four females) of
O. graminea were collected from the Huangshan Mountain, Anhui
province (30◦08′N, 118◦15′E), China in April 2015. They were
randomly divided into two male (named M1 and M2) and two
female (named F1 and F2) groups for Illumina sequencing. Each
male and female group contained two individuals, respectively. Six
other individuals (three females and three males) collected from
the same location in April 2021 were used for quantitative real-
time PCR (qRT-PCR) verification. In addition, 26 individuals of
O. graminea from Jingxi, Guangxi province (23◦00′N, 106◦39′E)
and 27 individuals of the other nine species in the genus Odorrana
(e.g., O. rotodora, O. chloronota, O. leporipes, O. schmackeri,
O. hejiangensis, O. tianmuii, O. tormota, O. chapaensis and
O. versabilis) were used to test the polymorphism of EST-SSR
markers. The brain and muscle tissues of these frogs were collected
after they were immediately killed with 1% aqueous solution of
tricaine methanesulfonate (MS-222, Sigma-Aldrich, Darmstadt,
Germany). These tissues were frozen in liquid nitrogen for 3 h
and then stored at −80◦C. The sampling and animal-use protocols
of this study were approved by the Institutional Care and Ethics
Committee of Henan Normal University, and complies with the
ethical guidelines in China and ARRIVE guidelines for reporting
in vivo Experiments.

2.2. RNA extraction, library preparation,
and Illumina sequencing

First, according to the manufacturer’s protocol, we extracted
total RNA of each sample from whole brains by using TRIzol
Reagent (Invitrogen, Carlsbad, CA, USA). Second, we collected the
same amount of total RNA from each individual for each group
(e.g., F1, F2, M1, and M2), and then used the mixed RNA for library
construction and sequencing. The RNA quality and concentration
were measured by Agilent Bioanalyzer 2100 (Agilent Technologies,
Santa Clara, CA, USA) and Qubit R© RNA Assay Kit in Qubit R©
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TABLE 1 Results of quality pretreatment.

Sample Raw reads Raw bases Clean reads Clean bases Valid ratio (base) Q30 (%) GC content (%)

F1 73,299,912 9,162,489,000 71,056,948 8,882,118,500 96.94 90.16 44.50

F2 69,294,478 8,661,809,750 67,179,812 8,397,476,500 96.94 90.35 44.50

M1 68,822,550 8,602,818,750 66,689,522 8,336,190,250 96.90 91.64 45.00

M2 80,015,958 10,001,994,750 77,535,500 9,691,937,500 96.90 91.55 45.00

M1 and M2 were two groups of males, and F1 and F2 were two groups of females.

TABLE 2 The statistical results of annotation proportions of each
database.

Database NR SWISSPROT KOG KEGG GO

Annotation_numbers 36,865 27,820 20,541 9,252 18,345

Annotation_ratio 19.42% 14.65% 10.82% 4.87% 9.66%

2.0 Fluorometer (Life Technologies, Carlsbad, CA, USA). Third,
the sequencing libraries were constructed for the RNA samples
with an RNA integrity number (RIN) greater than seven using
NEBNext R© UltraTM RNA Library Prep Kit for Illumina R© (New
England Biolabs, Ipswich, MA, USA). Finally, the prepared libraries
were sequenced through the Illumina HiSeqTM 2500 platform and
the paired-end reads were generated. The library was constructed
and sequenced at OE Biotech Co., Ltd., Shanghai, China.

2.3. Data filtering, assembly, and
annotation

We used FASTQC 0.11.7 software1 to evaluate the raw reads
quality. NGS QC Toolkit v2.3.3 software (Patel and Jain, 2012)
was used to remove adaptors, reads containing poly-N and low-
quality reads. The data filtering conditions were set according to the
following requirements: (1) filtered low-quality reads with a quality
threshold of 20 and a length threshold of 70%, (2) removed low
quality bases from the 3’ end, (3) cut out the sequences containing
N with a length threshold of 35 bp. The high-quality clean data
was determined by Q30 and GC-content, and then it was used
in the subsequent analyses. As no reference genome sequence for
O. graminea, the Trinity software2 was used to de novo assemble
the total high-quality clean reads from all samples with default
parameters (Grabherr et al., 2011). TGICL software (Pertea et al.,
2003) was used to remove the redundancy sequences and produced
the longest unigenes. We combined all the unigenes from the four
groups as the reference sequences for subsequent analyses.

We used BLASTx to align the assembled reference sequences
with NCBI NR (non-redundant protein database), Swiss-Prot
(manually annotated and reviewed protein sequence database),3

and KOG (eukaryotic Ortholog Groups).4 We submitted the
best BLASTx hit of each unigene from the NR database to the
Blast2GO (Conesa et al., 2005), and obtained GO (Gene Ontology)

1 http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

2 https://github.com/trinityrnaseq/trinityrnaseq/wiki

3 http://www.ebi.ac.uk/swissprot/

4 http://www.ncbi.nlm.nih.gov/COG

terms based on annotations between GO terms and gene names.
The KEGG pathway annotation and assignments were performed
through KEGG (the Kyoto Encyclopedia of Genes and Genomes)
Automatic Annotation Server (KAAS) (Moriya et al., 2007).

2.4. Identification of differentially
expressed genes between females and
males

We used the false discovery rate (FDR) (Benjamini and
Yekutieli, 2005) to estimate the p-value threshold and FPKM
(Fragment Per Kilo Bases per Million reads) method (Trapnell
et al., 2010) to estimate the gene expression levels. Based on the
screening criteria of a fold change greater than two (| log2Fold
Change| > 1) and p-value (FDR) less than 0.05, we used DEGseq R
package to filter the differentially expressed genes (DEGs) (Anders
and Huber, 2012). Further, the hierarchical cluster analysis was
performed on DEGs to analyze the gene expression patterns in
different groups. In order to elucidate the biological significance of
the DEGs and reveal whether those DEGs are related to sexual size
dimorphism, the GO and KEGG pathway enrichment analysis of
the DEGs were performed. We conducted GO enrichment analysis
of the DEGs by using the GOseq R packages according to the
Wallenius’ non-central hypergeometric distribution, which could
adjust for transcript length bias. The KOBAS software5 was used
to test the KEGG pathway enrichment analysis of the DEGs. We
identified the significant GO categories and KEGG enrichment
pathway based on Fisher’s exact test, and used FDR to correct the
p-values (Kanehisa et al., 2008). The threshold of significance was
defined by p-value < 0.05.

2.5. Quantitative real-time PCR
(qRT-PCR) validation

To confirm the reliability of our transcriptome expression
profiles obtained with RNA-seq, we randomly selected five DEGs
for qRT-PCR. We firstly used Oligo v7 software to design
specific primers (Supplementary Table 1). Then the qRT-PCR
was performed on LightCycler96 Real Time system (Roche,
Switzerland) in a total volume of 10 µl containing 5 µl TB Green R©

Premix EX TaqTM II (TaKaRa, Beijing, China). The following
cycling parameters were used: 95◦C for 30 s, followed by 40 cycles
of 95◦C for 10 s and 60◦C for 30 s. Three biological replicates were

5 http://kobas.cbi.pku.edu.cn
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performed in females and males, respectively, with the GADPH
(glyceraldehydes-3-phosphate dehydrogenase) as the reference for
internal standardization. Each sample was detected in triplicate.
The relative gene expression levels were calculated using the 2−1

1 Ct method and presented as fold changes for the calibrator
(Yuan et al., 2006). Besides, we analyzed the significances for qRT-
PCR data through the Unpaired Student’s t-test using Graphpad
prism v8.0. Finally, visualization of the results was performed with
Graphpad prism v8.0.

2.6. EST-SSR loci identification and
primers design

The MISA software was used to search for the EST-SSR loci with
the criteria mononucleotide repeats ≥10, dinucleotide repeats ≥6,
and trinucleotide to hexanucleotide repeats ≥5. The interrupted
composite EST-SSR loci was also selected. The dinucleotide repeats
(e.g., AT/TA and CT/GA) were treated as the same type of
repeat motif. The EST-SSR primers were designed by Primer v3
(Untergasser et al., 2012) and synthesized at Sangon Biological
Engineering Technology (Shanghai, China). The reverse primers
were labeled with a fluorescent dye (FAM, HEX or TAMRA).

2.7. EST-SSRs amplification and
population genetic diversity analysis

Genomic DNA was extracted from muscles using a standard
phenol-chloroform extraction protocol followed by ethanol
precipitation. The reaction system and cycling parameters of
PCR amplification were performed followed Qiao et al. (2015).
Each EST-SSR locus was amplified separately. The PCR products
were visualized on 2% agarose and then sent to Sangon Biological
Engineering Technology (Shanghai, China) for genotyping. The
genotyping data was read by GeneMarker R© ID v1.95 software.
The Hardy-Weinberg equilibrium (HWE), linkage disequilibrium
(LD), and population genetic parameters were analyzed by online
Genepop v4.2.6 The number of alleles (Na), expected (He) and
observed (Ho) heterozygosity, polymorphism information content
(PIC) was calculated by Cervus v3.0.7 (Kalinowski et al., 2007).
A sequential Bonferroni correction was applied for multiple tests.
The null alleles and possible scoring errors were assessed by
Micro-Checker v2.2.3 (van Oosterhout et al., 2004).

3. Results

3.1. Illumina sequencing and de novo
assembly

Our Illumina sequencing produced 73,299,912 raw reads for
F1, 69,294,478 raw reads for F2, 68,822,550 raw reads for M1 and
80,015,958 raw reads for M2 (Table 1). After raw data filtering,

6 https://genepop.curtin.edu.au/

282,461,782 clean reads were obtained for all samples. The Q30
values of four samples were all over 90%, showing the high-
quality of our sequencing data. The GC-contents were 44.5% in
female group and 45.0% in male group, respectively (Table 1).
We obtained 189,868 unigenes with 89,061 unigenes ≥500 bp and
34,096 unigenes ≥1,000 bp (Supplementary Table 2). Most of the
unigenes were between 300 and 2,000 bp and the detailed length
distribution of all unigenes is shown in Supplementary Figure 1.
The values of N50 (sequence length of the shortest transcript at 50%
of the total genome length), max, min, and average unigene length
were 981, 27,452, 301 and 787 bp, respectively. The sequencing
results were shown in Table 1. All raw sequence reads data have
been deposited in the NCBI Sequence Read Archive (SRA) database
under the accession number BioProject: PRJNA931772.

3.2. Functional annotation

After aligned to the five public databases based on a 10−5

e-value cut-off value, a total of 36,865 unigenes were annotated
to the NR (19.42% of the total unigenes), 27,820 unigenes to
Swiss-Prot (14.65% of the total unigenes), 20,541 unigenes to KOG
(10.82% of the total unigenes), 9,252 unigenes to KEGG (4.87%
of the total unigenes), and 18,345 unigenes to GO (9.66% of the
total unigenes) databases (Table 2). The species distribution of
NR BLAST matches was shown in Supplementary Figure 2, and
the top three matched species were Xenopus tropicalis (53.26%),
X. laevis (10.02%), and Larimichthys crocea (4.07%).

The KOG annotation analysis showed that 10.82% (20,541 of
189,868) of the annotated unigenes was classified into 25 KOG
categories. Among them, the largest group was “General function
prediction”, followed by “Signal transduction mechanisms” and
“Posttranslational modification, protein turnover, chaperones”
(Figure 1). Additionally, 9.66% (18,345 of 189,868) of the unigenes
were categorized into 64 subcategories of GO terms under three
major categories: Biological Process (BP), Cellular Component
(CC), and Molecular Function (MF). The predominant group
in each of BP, CC and MF was cellular process (10,644
unigenes, 58.02%), cell (9,395 unigenes, 51.21%), and cell part
(9,395 unigenes, 51.21%), and binding (9,951 unigenes, 54.24%),
respectively (Figure 2).

To further determine the biological functions and interactions
of the transcripts, a total of 9,252 unigenes were mapped to
344 KEGG pathways and assigned to six major categories:
Cellular Processes, Environmental Information Processing,
Genetic Information Processing, Human Diseases, Metabolism
and Organismal Systems. The most abundant category was
“signal transduction,” followed by “infectious diseases,” “cancers,”
“endocrine system,” and “immune system” (Figure 3). The
annotation and predicted pathways will aid the understanding of
the gene functions in O. graminea.

3.3. Identification and analysis of
differentially expressed genes (DEGs)

To identify DEGs between female and male groups, we
compared relative transcript abundance in each unigene through
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FIGURE 1

Eukaryotic Ortholog Group (KOG) classification of the Unigenes in O. graminea. Different letters and colors were used to represent different KOG
function classes, and the vertical axis represented the number of genes.

FIGURE 2

Gene ontology (GO) classification of the assembled unigenes. The three main GO categories were displayed in different colors (Red represented the
biological processes, green represented the cell components, and blue represented the molecular functions). The horizontal axis represented GO
terms name, and the vertical axis represented the gene number and percentage of unigenes.

the FPKM algorithm. The results of hierarchical clustering analysis
showed that the DEGs in the same gender had higher similarity
and formed a sister-group relationship (Supplementary Figure 3).
Under the standard of | log2Fold Change| > 1 and p-value (adjusted
FDR) < 0.05, we identified 774 significant sex-differentially
expressed unigenes in O. graminea. We found 436 unigenes showed
significantly higher expression levels in females than those in males
and 338 unigenes showed significantly lower expression in females
than those in males (Supplementary Table 3).

Based on the standard of the p-value (adjusted FDR) less than
0.05, we found 272 sex-differential GO terms (Supplementary
Table 4). These terms were allocated to 152 terms of “biological
process” ontology (55.88% of total terms), 34 terms of “cellular
component” ontology (12.50% of total terms) and 86 terms
of “molecular function” ontology (31.62% of total terms). The
GO annotation of the DEGs indicated that the DEGs in the
brain were related to the regulation of oxidoreductase activity,
hormone activity, regulation of cell growth, muscle organ
development, growth factor binding, lipid catabolic process, ATP

metabolic process, etc. (Supplementary Table 4). In addition,
based on the same filtering criteria, 13 sex-differential KEGG
pathways were identified (Supplementary Table 5 and Figure 4).
According to their functions, these pathways were divided
into four categories including “metabolism” (including two
subcategories), “cellular processes” (including one subcategories),
“organismal systems” (including five subcategories), and “human
diseases” (including two subcategories). The KEGG annotation
of the DEGs showed that the DEGs in the brain were
related to phagosome, estrogen signaling pathway, oxidative
phosphorylation, etc. (Supplementary Table 5).

3.4. Analysis of KEGG pathways related to
sexual size dimorphism

Among 13 sex-differential KEGG pathways, the SSD-related
pathways in the brain were mainly contained the duct acid
secretion (ko04966), fatty acid biosynthesis (ko00061), oxidative
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FIGURE 3

Histogram of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation of the unigenes in O. grminea. The six main KEGG
classifications were displayed in different colors. The x-axis represented the annotated pathway, and the y-axis represented the number of
annotated unigenes.

FIGURE 4

The top 20 of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways significantly enriched in differentially expressed genes (DEGs). The
horizontal and vertical axis showed the enrichment scores of DEGs and the specific pathways, respectively. The color of each dot represented the
corrected p-value for the corresponding pathway, and the dot size indicated the number of the DEGs associated with each corresponding pathway.
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FIGURE 5

Schematic diagram for the functions of the sexual size dimorphism (SSD)-related differentially expressed genes (DEGs) between sexes in
O. graminea. Red showed the upregulated DEG of females, green showed the upregulated DEGs, and the arrow showed the upregulated genes.

FIGURE 6

Quantitative real-time PCR (qRT-PCR) validation of transcriptome data. The X and Y axis represented gene name and the relative expression level of
RT-qPCR, respectively. All data represented the average of three student replicates. Error bars indicated the standard error of three replicates.
*Significant level p < 0.05.

phosphorylation (ko00190), estrogen signaling pathway (ko04915),
gastric acid secretion (ko04971) and nitrogen metabolism
(ko00910) (Supplementary Table 5). Furthermore, the estrogen
signaling pathway genes (Hsp90, Hsp70, and Prkcd), oxidative
phosphorylation-related genes (ATP4A, ATP6V1G3, and
ATP6V1B1), nitrogen metabolism-related gene (Ca12) were
upregulated in females, whereas gastric acid secretion-related
gene (PLCB2), fatty acid biosynthesis-related gene (ACSL5) and
estrogen signaling pathway gene (JUN) were upregulated in
males (Supplementary Table 3). The regulatory pathway of the
SSD-related genes revealed in this study were shown in Figure 5.

3.5. Validation of the differentially
expressed genes by quantitative
real-time PCR (qRT-PCR)

To test the accuracy of the expression profiles of DEGs, we
randomly selected five DEGs (e.g., OTOL, comp185285_c0_seq5,
ACSL5, TEKT3, and comp197617_c0_seq1) for qRT-PCR. As
shown in Figure 6, the expression of TEKT3 and OTOL were
upregulated in females, while ACSL5, comp197617_c0_seq1 and
comp185285_c0_seq5 were upregulated in males. The expression
patterns of the RNA-Seq results is in consistent with the results
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of qRT-PCR validation (Figure 6), indicating the accuracy and
reliability of transcriptome data in this study.

3.6. Frequency and distribution of
EST-SSR loci

We found 63,269 potential EST-SSR loci from 45,217 sequences
and 4,669 EST-SSR loci in the compound formation (Table 3).
The occurrence rate of EST-SSR loci was 23.81% (the ratio of
the amount of SSR-contained unigenes to the total amount of
unigenes), and the distribution rate (the ratio of SSR quantity to
total unigenes quantity) was 33.32%. The average distance of EST-
SSR loci was 2.36 kb (the ratio of total length of unigenes to SSR
quantity) (Table 3).

Six repeat types (e.g., one, two, three, four, five, and
six nucleotides repeat units) were identified for EST-SSRs of
O. graminea (Table 4). Expect mononucleotides repeat unit and
dinucleotides were the most abundant type (6,699, accounting for
70.50% of 9502), followed by trinucleotide (2,379, accounting for
25.04%), and tetranucleotide (407, accounting for 4.28%) repeat
units (Table 4). The total ratio of mononucleotide, dinucleotides
and trinucleotide repeat units was 99.33%, whereas the remaining
repeat units accounted for 0.67%. The number of repeat units
showed a decline trend as the quantity of unit length increased.
Additionally, the number of repetitions of EST-SSR repeat units was
ranged from 5 to 24 (those over 11 times were not listed in Table 4).
A total of 33,723 (accounting for 53.30%) EST-SSRs repetitions
were less than 11 and 29,546 (accounting for 46.70%) EST-SSRs
repetitions were over eleven. The EST-SSRs with 10 repetitions were
the most abundant (15,416, accounting for 24.37%), followed by
11 (9,584, accounting for 15.15%) and 12 (6,338, accounting for
10.02%) (Table 4).

In total, 54 types of repeat units were detected in EST-
SSRs, mononucleotide, dinucleotide, trinucleotide, tetranucleotide,
pentanucleotide, and hexanucleotide repeat units had two, four,
10, 23, 12, and three types, respectively (Supplementary Table 6).
In mononucleotide unit, A/T was the most frequent which
reached up to 46,797 accounting for 73.97% of 63,269. The
AC/GT (accounting for 3.37%) and AT/AT (accounting for
4.93%) were dominant in dinucleotide units. Among trinucleotide
unit, AAT/ATT was the most frequent which added up 730
accounting for 1.15%. For tetranucleotide unit, AGAT/ATCT was
the most abundant (153, accounting for 0.24%), followed by
AAAT/ATTT (67, accounting for 0.11%), and AAAG/CTTT (42,
accounting for 0.07%). For pentanucleotide unit, the number of
AATCT/AGATT and AGAGG/CCTCT were equal. Three kinds of
types in hexanucleotide repeat units with same frequency were also
identified (Supplementary Table 6).

3.7. Population genetic diversity and
universality evaluation

A total of 169 primer pairs were randomly designed to
determine the polymorphism of EST-SSRs among different
populations of O. graminea. Thirteen primer pairs were successfully
amplified and eight primer pairs of them were polymorphic with

the expected size products, whereas the other five primer pairs
were monomorphic. After Bonferroni correction (Rice, 1989) and
Micro-Checker analysis, only one locus (213,074) significantly
deviated from HWE. No significant pairwise linkage disequilibrium
was shown between any of the loci, indicating the independent
behavior of all loci. The number of alleles per polymorphic locus
ranged from 3 to 36. The observed heterozygosities (Ho) ranged
from 0.148 to 0.852, and the expected heterozygosities (He) ranged
from 0.142 to 0.865. The polymorphism information content (PIC)
ranged from 0.133 to 0.831 (Supplementary Table 7).

Loci 177957, 190011, 208970, 212884, and 213074 were
successfully amplified in O. rotodora, O. chloronota, O. leporipes,
O. schmackeri, O. hejiangensis, O. tianmuii, O. tormota,
O. chapaensis, and O. versabilis. For locus 214363, seven species
could be successfully amplified. For locus 100238, O. rotodora,
O. chloronota, O. leporipes, O. schmackeri, O. hejiangensis, and
O. tianmuii could be successfully amplified (Supplementary
Table 7). The polymorphism of locus 203080 was the highest,
followed by locus 213077, and their pic values were greater than
0.5 (Supplementary Table 7).

4. Discussion

In this study, we compared the gene expression patterns
between male and female of O. graminea, and identified ten
potential sexual size dimorphism-related candidate genes involved
in the regulation of cell cycle, metabolic process, ATP metabolic
process, lipid catabolic process, and other related regulatory
function. Furthermore, the expression patterns of ten DEGs
showed that seven were highly expressed in females and three were
highly expressed in males. The highly expressed genes in females
were involved in the pathways of the estrogen signaling pathway,
oxidative phosphorylation, and nitrogen metabolism, while the
highly expressed genes in males were involved in the gastric
acid secretion and fatty acid metabolism. Our results will provide
insights for understanding of the genetic changes underlying the
sexual difference of energy metabolism and SSD in O. graminea. In
addition, we have developed EST-SSR molecular markers that can
be used for population genetics researches for Odorrana.

4.1. Illumina sequencing and de novo
assembly

Among terrestrial vertebrates, amphibians have high repetitive
DNA content and the largest reported variation in genome size,

TABLE 3 The statistical results of microsatellite search.

Designation Numbers

Total number of sequences examined 189,868

Total size of examined sequences (bp) 149,389,565

Total number of identified SSRs 63,269

Number of SSR containing sequences 45,217

Number of sequences containing more than 1 SSR 12,299

Number of SSRs present in compound formation 4,669
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TABLE 4 The statistical results of expressed sequence tag-Simple Sequence Repeats (EST-SSRs) different repeat type.

Number of repeats
unit

Number of repeat units (n) Total Frequency of
repeats

5 6 7 8 9 10 11 >11

Mononucleotide – – – – – 14,833 9,397 29,537 53767 84.98%

Dinucleotide – 2,790 1,493 893 744 583 187 9 6699 10.59%

Trinucleotide 1,488 576 281 31 3 – – – 2379 3.76%

Tetranucleotide 354 49 2 2 – – – – 407 0.64%

Pentanucleotide 13 – – – 1 – – – 14 0.02%

Hexanucleotide 3 – – – – – – – 3 0%

Total 1,858 3,415 1,776 926 748 15,416 9,584 29,546 63,269 100%

Frequency of repeats 2.94% 5.40% 2.81% 1.46% 1.18% 24.37% 15.15% 46.70% – –

with the estimates ranging from 0.93 to 137 Gb and typical sizes
of ∼2–8 Gb for anurans, ∼5–10 Gb for caecilians, and ∼20–60 Gb
for salamanders (Liedtke et al., 2018; Weisrock et al., 2018). For this
reason, only a few Amphibian genomic data was available to date.
For non-model organisms, RNA-seq-based de novo transcriptome
analysis was an attractive alternative to examine the properties of a
transcriptome as a proxy for the whole genome.

In this study, through Illumina sequencing, we got 189,868
unigenes of O. graminea which were greater than O. margaretae
(54,093 unigenes) (Huang et al., 2016), Rhacophorus dennysi
(63,614 unigenes) (Huang et al., 2016), R. omeimontis (55,841
unigenes) (Huang et al., 2016), Polypedates megacephalus (69,425
unigenes) (Huang et al., 2016), P. nigromaculatus (61,691 unigenes)
(Huang et al., 2016), R. arvalis (124,071 unigenes) (Shu et al.,
2018), and H. chinensis (148,510 unigenes) (Che et al., 2014). The
average unigene length of O. graminea (787 bp) was longer than
in O. margaretae (687 bp), R. dennysi (770 bp), R. omeimontis
(626 bp), P. megacephalus (699 bp), P. nigromaculatus (690 bp)
(Huang et al., 2016), R. arvalis (728 bp) (Shu et al., 2018),
and H. chinensis (580 bp) (Che et al., 2014), but shorter than
in Megophrys sangzhiensis (868 bp) and Leptobrachium boringii
(840 bp) (Huang et al., 2016). The differences of the mean unigene
length could be related to the genome size, sampling organization,
biological attribute of species, different parameters setting during
sequence assembly. In general, the assembly length reflected the
quality of transcriptome sequencing and it suggested that the
transcriptome of O. graminea was assembled efficiently.

4.2. Oxidative phosphorylation

The oxidative phosphorylation provides most ATP for animals
and plants to maintain the homeostasis in life and energy
metabolism (Wilson, 2017). Vertebrate growth is regulated
by the “hypothalamic-pituitary-liver” axis and a variety of
energy metabolic processes (e.g. glycolysis/gluconeogenesis and
oxidative phosphorylation) (Michaeloudes et al., 2017). The main
physiological functions of the glycolysis and gluconeogenesis are
the decomposition and synthesis of sugars, respectively. They
are the central pathway of most organisms, providing energy
in the form of ATP (Plaxton, 1996; Roosterman et al., 2018).
Three differentially expressed genes (e.g., ATP4A, ATP6V1B1, and

ATP6V1G3) revealed in the present study were involved in the
oxidative phosphorylation pathway (ko00190) (Supplementary
Table 3). The ATP4A gene catalyzed the hydrolysis of ATP,
combined with the exchange of H+ and K+ ions through the
plasma membrane, and is responsible for the acid production
in the stomach (Castro et al., 2013; Barnawi et al., 2020).
Previous analyses have shown that the ATP4Ap.R703C mutation
can cause the gastric acid poisoning in mouse, and also
destroy the acid-base balance in the parietal cells and affect the
mitochondrial biogenesis (Benítez et al., 2020). Mitochondrial
dysfunction activates ROS signaling pathway and triggers Caspase-
3-mediated apoptosis of parietal cells. The ATP6V1B1 gene is
a subunit of the V1 complex of vacuolar (H+)-ATPase (V-
ATPase) (Vasanthakumar and Rubinstein, 2020; Wang et al., 2020).
V-ATPase is responsible for acidifying and maintaining the pH
of the intracellular compartments and it is targeted to the plasma
membrane in some cell types, where it is responsible for acidifying
the extracellular environment (Vasanthakumar and Rubinstein,
2020). These three DEGs were significantly upregulated in females
O. graminea compared with males, and they were involved
in the ATP biosynthetic process (ATP4A), vacuolar proton-
transporting V-type ATPas (ATP6V1G3), and ATP metabolic
process (ATP6V1B1) (Supplementary Tables 3, 4). Therefore, the
higher metabolic levels of females O. graminea might provid more
energy for growth, and females grown faster and were larger than
males, as in Misgurnus anguillicaudatus (Luo et al., 2021).

4.3. Estrogen signaling pathway

Another three DEGs (e.g., Hsp90, Hsp70, and Prkcd) were
significantly upregulated in female O. graminea, and they
were found to be involved in the Estrogen signaling pathway
(Supplementary Tables 3, 5). Heat shock protein-90 (Hsp90) is
a molecular chaperone responsible for maintaining the stability
and activity of a large number of different proteins, known as
the clients. The ability of Hsp90 to accompany about 300 client
proteins is strictly dependent on its ATP hydrolysis activity (Biebl
and Buchner, 2019). Recently, Hsp90 co-chaperone network have
been found to increase the affinity of steroid hormone receptors,
glucocorticoid receptors and estrogen receptors with their ligands
in higher organisms (Backe et al., 2022). Heat shock protein-70
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(Hsp70) played an important role in regulating the reproductive
function (Xu et al., 2021). Hsp70 binding protein 1 (HspBP1) and
Bcl2-associated athanogene 1 (BAG-1), the functional orthologous
nucleotide exchange factors of the heat shock protein 70 kilodalton
(Hsc70/Hsp70) chaperones, catalyze the release of ADP from
Hsp70 while inducing different conformational changes of the
ATPase domain of Hsp70. Studies have shown that BAG-1M and
HspBP1 have different effects on the dynamic composition and
the receptor function of the steroid receptor folding complex. The
Hsp70 binding to the ligand-binding domain of the glucocorticoid
receptor (GR) was reduced in the presence of HspBP1 but not in
the presence of BAG-1M (Knapp et al., 2014). In addition, Prkcd
is calcium-independent, phospholipid- and diacylglycerol (DAG)-
dependent serine/threonine-protein kinase. It plays contrasting
roles in cell death and cell survival by functioning as a pro-
apoptotic protein during DNA damage-induced apoptosis, but
acting as an anti-apoptotic protein during cytokine receptor-
initiated cell death. It is required for oxygen radical production
by NADPH oxidase and acts as positive or negative regulator in
platelet functional responses (Hamaguchi et al., 2003). Therefore,
the differential expression of these three DEGs in the estrogen
signaling pathway between male and female might lead to the
phenotypic differentiation.

4.4. Fatty acid biosynthesis

Fatty acids are regarded as the main energy source, secondary
metabolites, and nutritional contents. With an adequate supply
of oxygen, fatty acids can be degraded into H2O and CO2, and
large amounts of energy are released in the form of adenosine
triphosphate (ATP), which is then used by organisms. They are
directly or indirectly involved in almost every process of our
physiology. Acyl-coa synthetase long chain (ACSL) protein is a key
participant in fatty acid metabolism in skeletal muscle, catalyzed
the conversion of long-chain fatty acids into their active form
acyl-CoAs to synthesize cellular lipids and β-oxidation degradation
(Klett et al., 2017). It can activate exogenous fatty acids to
synthesize triacylglycerol for intracellular storage (Mashek et al.,
2006). Mammalian ACSL5 is present in the brown adipose tissue,
skeletal muscle, liver, brain and is involved in the pro-apoptotic
induction of cells (Mashek et al., 2006). In addition, PLCB2 gene
plays a role in the fatty acid metabolism (Park et al., 1992; Tall
et al., 1997). The ACSL5 and PLCB2 were highly expressed in males
of O. graminea (Supplementary Table 3) and it suggested that
males O. graminea might obtain large amounts of energy through
fatty acid metabolism for the development and reproduction of
secondary sexual characteristics.

4.5. The mechanism of the sexual size
dimorphism

The growth and development of amphibians are influenced
by multiple physiological pathways that regulate the material
and energy metabolism. Previous studies have shown that
the differences in the energy metabolism might be the main
causes of sexual growth dimorphisms (Starostová et al., 2013;
Luo et al., 2021). Odorrana graminea have obvious growth sexual

dimorphism that females are nearly twice the body size of males
(Fei et al., 2009; Liao et al., 2013; Li et al., 2023). It is often
assumed that the growth difference is mediated by the differences
in the expression of genes present in both sexes (Connallon and
Knowles, 2005; Rinn and Snyder, 2005). In anurans, female body
size is related to fertility and larger females have more offspring
(Liao and Lu, 2011; Nali et al., 2014). Females need to gain more
capacity for the size growth (Luo et al., 2021). The female-biased
growth dimorphism of O. graminea may be partially attributed to
the sexually dimorphic metabolism in the brain.

During the breeding season, males had obvious secondary sex
characteristics, such as the paired subgular vocal sacs located at
corners of throat, the gray-white pads on dorsal surface of first
finger, and the pinkish lineae masculine on dorsal side (Fei et al.,
2009). Due to O. graminea inhabiting in turbulent streams, males
had to resist the impact of running water for a long time and their
forelimbs were extremely strong (Liu and Hu, 1961; Fei et al., 2009).
It was the development of secondary sexual characteristics that
might cause males to consume more energy during breeding season
(Li, 1988). Odorrana graminea also performed axillary amplexus
that males used his forelimbs to tightly hold female’s armpit (Fei
et al., 2009). Therefore, we speculate that males might need more
energy for reproduction. Moreover, in our field studies, we found
that the sex ratio tends to be skewed toward a surplus of males, so
that males expend energy in the intense reproductive competition.

4.6. Characteristics of EST-SSR loci

The average distance of EST-SSR in O. graminea was 2.36 Kb
with a 23.81% occurrence rate (Table 3), which were higher than
that (2.69 Kb and 21.54%) in Chinese salamander (Che et al.,
2014) and (4.53 Kb and 20.23%) in the Chinese swamp buffalo
(Deng et al., 2016), but lower than that (1.2 Kb and 58.66%) in
the yellow sisoridae catfish (Du et al., 2018) and (2.14 Kb and
45.25%) in the anadromous fish (Fang et al., 2015). The differences
in the abundance estimation and frequency of EST-SSRs among
various species could be partially due to the SSR search criteria,
the size of the unigene assembly dataset, the database-mining tools
and the sequence redundancy as well as the actual differences
between species (Varshney et al., 2005). The EST-SSRs identified
in this study were not uniformly distributed in the transcriptome
database. When the mononucleotide repeats were excluded, the
dinucleotide, trinucleotide and tetranucleotide repeat units were
the top three of O. graminea (Table 4), which was consistent with
that in O. margaretae (Qiao et al., 2013), and was different with
the Chinese salamander that the dinucleotide repeats accounted
for 40.41% (3,525), followed by tetranucleotide (2,088, accounting
for 23.93%) and trinucleotide (1,747, accounting for 20.03%) (Che
et al., 2014). The SSR search parameters and search algorithms
might contributed to this difference.

Compared to genomic-SSRs, the expressed sequence tags (EST)
EST-SSRs were reported to provide higher levels of transferability
across the related species, because EST-SSR loci were identified
in the coding regions of the genome and the identified sequences
are more conserved among homologous genes (Wu et al., 2014).
These features lead to the highly variable of the EST-SSR loci
and were useful for distinguishing closely related populations or
varieties compared to genomic-SSRs. Transcriptome sequencing
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provided a fast, reliable and cost-effective tool for identifying
and developing large-scale EST-SSR markers. The results of cross-
species amplification showed that it was successful in many species
of Odorrana (Supplementary Table 5). Furthermore, based on
these markers, the population genetic structure of O. graminea was
successfully analyzed and the gene flow between populations was
revealed (Chen et al., 2020).

5. Conclusion

In conclusion, we successfully identified the DEGs related to
the sexual size dimorphisms and EST-SSR loci in O. graminea
by using comparative transcriptome analysis. We found that the
DEGs were mainly involved in the oxidative phosphorylation,
estrogen signaling pathway, and fatty acid biosynthesis. Our results
suggest that the differences in the energy metabolism, estrogen
hormone synthesis, and fatty acid biosynthesis abilities might be
the important factors leading to the sexual dimorphisms in frogs.
Specifically, females grown faster and have higher levels of energy
metabolism, while males had greater fatty acid biosynthesis abilities
than females. Our study not only indicates the direction for us
to further investigate the molecular mechanisms of sexual growth
dimorphisms of frogs, but also provides essential gene information
for future functional studies. The developed EST-SSR markers will
also contribute to the population genetics of the species within
Odorrana.
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