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Introduction: Forest spatial structures are the foundations of the structure and 
function of forest ecosystems. Quantitative descriptions and analyses of forest 
spatial structure have recently become common tools for digitalized forest 
management. Therefore, the accuracy and intelligence of acquiring forest spatial 
structure information are of great significance.

Methods: In this study, we developed a forest measurement system using a mobile 
phone. Through this system, the following tree measurements can be achieved: 
(1) point cloud of tree and chest diameter circle to measure tree diameter at breast 
height (DBH) and position coordinates of tree by using simultaneous localization 
and mapping (SLAM) technology, (2) virtual boundary creation of the sample plot, 
and the auxiliary measurement function of tree with the augmented reality (AR) 
interactive module, and (3) position coordinates and single-tree volume factor 
to calculate the spatial structural parameters of the forest (e.g., Mingling degree, 
Dominance index, Uniform angle index, and Crowdedness index).The system was 
tested in three 32 x 32 martificial forest plots.

Results: The average DBH estimations showed BIAS of -0.47 to 0.45 cm and 
RMSEs of 0.57 to 0.95 cm. Its accuracy level met the requirements of forestry 
sample surveys. The tree position estimates for the three plots had relatively 
small RMSEs with 0.17 to 0.22 m on the x-axis and 0.16 to 0.26 m on the y-axis. 
The spatial structural parameters were as follows: the mingling degree of plot 
1 was 0.32, and the overall mixing degree of tree species was low. The trees in 
plots 2 and 3 were all single species, and the mixing degree of both plots was 
0. The dominance index of the three plots was 0.56, 0.51, and 0.51, indicating 
that the competitive advantage of the whole orest species was not obvious. The 
uniform angle index of the three plots was 0.55, 0.59, and 0.61, indicating that the 
positions of trees in the three plots were randomly distributed. The crowdedness 
index of plot 1 was 1.03, indicating that the degree of aggregation of the trees 
was low and showed a random distribution trend. The crowdedness index of the 
other plots were 1.36 and 1.40, indicating that the trees in the plots show a trend 
of uniform distribution, and the uniformity of plot 3 is higher than that of plot 2, 
but the overall uniformity is relatively weak.

Discussion: The findings of this study provide support for the optimization of 
forest structures and improve our conceptual understanding of forest community 
succession and restoration, in addition to the informatization and precision of 
forest spatial structure surveys.
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Introduction

Forest structure describes the relationship between the 
distribution of individual trees and their attributes. Forests are 
ecosystems, and each tree is a structural element of the ecosystem, 
with species, size, and spatial distribution characteristics (Hui et al., 
2019). Measuring and regulating forest structure is essential for 
achieving forest management objectives. Currently, various indices 
for quantitative analysis of forest structure have been proposed, 
which can be  divided into two types: non-spatial and spatial 
structural parameters (Tang, 2010). Non-spatial structural parameters 
mainly include single-tree volume factor such as DBH, tree height, 
crown width, and tree species, which focus on the quality and 
quantity of trees in the forest. Spatial structural parameters (e.g., 
Mingling degree, Dominance index, Uniform angle index, and 
Crowdedness index) describe the spatial distribution characteristics 
of trees and their attributes, and require determining the position 
coordinates of trees and their relationships with neighboring trees 
(Hui and Gadow, 2003; Dong et al., 2022). Spatial grouping mainly 
refers to the positions of trees and their spatial associations (Pastorella 
and Paletto, 2013). Spatial distribution is fundamental to the study of 
the spatial behavior of populations (Hui et al., 2007). Any population 
is distributed in different positions in space, but due to the interaction 
between individuals within the population and the adaptation of the 
population to the environment, the same population presents 
different spatial distribution patterns under different environmental 
conditions. These spatial aspects determine not only the intensity of 
competition between adjacent trees but also the spatial niche between 
trees and the growth potential and stability of the surrounding forest 
(Gao et al., 2021). Therefore, the spatial aspect of the position of 
individual trees is often considered more important than the 
non-spatial aspect (Dong et al., 2022).

In traditional forestry inventory, the collection of forest structural 
parameters often relies on manual collection. Using traditional 
methods for forest inventory, variables such as tree height and DBH 
are obtained using tools such as the Blume-Leiss hypsometer, diameter 
tape, and measuring tape (Yan et al., 2012). However, the process of 
field measurements using these instruments is costly and inaccurate 
(Božić et  al., 2005). Although ocular estimation is helpful for 
improving the efficiency of forest inventory, it hardly meets the 
accuracy requirements. A total station is a precise electronic surveying 
instrument that combines distance measurement, angle measurement, 
and automatic data processing with much higher accuracy. Total 
stations have been used for forest area measurements and tree height 
measurements since the 1990s in many developed countries (Feng 
et al., 2003).

The development of light detection and ranging (LiDAR) 
technology, coupled with improvements in computer performance, 
has provided new solutions for forest inventory (Lim et al., 2003). 
LiDAR technology involves scanning the sample plot to obtain a 3D 
sampling point cloud, from which the sample plot properties can 
be objectively extracted (Heidenreich and Seidel, 2022). Terrestrial 
laser scanning (TLS), a ground-based LiDAR technology, has been 
used by many scholars to sample plot inventory and extract and 
evaluate forest attributes using algorithms (Liang et al., 2016). TLS 
has been used to collect tree attributes in sample plots, such as DBH 
and tree position (Bienert et al., 2006; Maas et al., 2008; Vastaranta 
et al., 2009; Murphy et al., 2010). However, the scanning efficiency 

of general ground-based LiDAR is often limited due to the large size 
of the equipment, the limited scanning angle, and mutual occlusion 
by trees. The advent of mobile laser scanning (MLS) has solved 
some of these problems, allowing forest attribute inventory to 
be  carried out in larger plots (Liang et  al., 2014). MLS is 
characterized by easy installation, easy operation and portability, 
and adaptability to dense forests and complex terrain. MLS relies 
on the inertial measurement unit (IMU) and Global Navigation 
Satellite System (GNSS) to estimate the position and attitude 
information of LiDAR. However, MLS systems can be difficult to 
build globally consistent point clouds in areas under the forest that 
are not covered by GNSS. Hand-held mobile laser scanning (HMLS) 
has been used in forestry inventory in recent years (Bauwens et al., 
2016). Simultaneous localization and mapping (SLAM) technology 
has enabled HMLS to locate under the forest without GNSS 
signaling. During the movement of the SLAM system, sensors such 
as LiDAR and cameras are used to observe the surrounding 
environment, thereby obtaining an observation sequence. This 
observation sequence is then used to map the surrounding 
environment and estimate the posture of the SLAM system (Fan 
et al., 2019). In forestry survey work, SLAM technology is used to 
construct point cloud maps of forest plots to quickly and accurately 
obtain the spatial location, shape, distribution, and other 
information of forest resources. Using mobile LiDAR scanners for 
SLAM technology measurements, information such as the three-
dimensional structure of the forest, the height, diameter, and 
canopy coverage of trees can be  obtained. Several studies have 
examined the use of SLAM techniques (James and Quinton, 2014; 
Ryding et al., 2015), and they found that HMLS could map complex 
environments about 40 times faster than TLS. However, LiDAR 
systems still have some limitations, such as high cost, cumbersome 
post-data processing, and inability to control measurement errors 
in real time. Additionally, current forest structure survey methods 
often focus on obtaining non-spatial structural parameters, and 
there is no complete solution for investigating and solving spatial 
structural parameters.

Forestry surveys using SLAM technology have primarily focused 
on LiDAR SLAM, with few studies exploring the use of visual 
SLAM. In this study, we designed a new measurement system that 
can be installed on a mobile phone, which uses real-time positioning 
technology to perceive the forest landscape environment and 
estimate the system’s self-pose. By utilizing the camera as a sensor, 
the cost is significantly reduced compared to LiDAR. Our 
measurement system employs monocular SLAM algorithm to 
construct a point cloud map of the forest and fit the chest diameter 
circle according to the coordinates of the discrete point cloud. 
Additionally, the system calculates the position information of the 
tree based on the position and posture of the mobile phone and the 
fitting chest diameter circle. The augmented reality module of the 
system enables real-time interactive operation. It constructs a virtual 
sample boundary to assist surveyors in determining the 
measurement range, thus facilitating better measurement and error 
control. Based on the measured tree position information and 
non-spatial structural parameters, we aim to solve the forest’s spatial 
structural parameters, such as mingling degree, dominance index, 
uniform angle index, and crowdedness index. Our goal is to provide 
a new measurement scheme for forest inventory and spatial 
structural parameter investigation.
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Methods

Simultaneous localization and mapping

Simultaneous localization and mapping is a technology that 
allows sensors to build the consistent map of the unknown 
environment, and at the same time, use this map to deduce its 
position. That is, during SLAM, the position of the motion platform 
state and all road signs is estimated in real time without any prior 
information. From the point of view of probability distribution, the 
SLAM problem requires that the probability distribution P 
be computed for all times k (Bailey and Durrant-Whyte, 2006).

 k 0:k 0:k 0P(x , m|Z , U , x )  (1)

Z0:k = {z1, z2, · · ·, zk} = {Z0:k − 1, zk}: the set of all landmark observations.
xk: the state vector describing the position and orientation of 

the vehicle.
U0:k = {u1, u2, · · ·, uk} = {U0:k − 1, uk}: the history of control inputs.
m = {m1, m2, · · ·, mn} the set of all landmarks.

In the SLAM algorithm, the motion model and the observation 
model can solve the posterior distribution of the current state through 
Bayes theorem. This computation requires a state transition model 
and an observation model those were described the effect of the 
control input and observation, respectively. Control input can 
be described as motion models.

 k k-1 kP(x |x , u )  (2)

uk: the control vector, applied at time k − 1 to drive the vehicle to 
a state xk at time k.

Observational inputs can be described as observational models.

 k kP(z |x , m)  (3)

zk: an observation taken from the vehicle of the position of the 
landmark at time k.

The SLAM algorithm is completed by estimating the prior state 
and solving the post-state by using the prior distribution and 
observation model. The estimation of prior state is described as 
time-update.

 

k-1 0:k-1 0:k, 0

k k-1 k k-1 0:k-1 0:k-1, 0 k-1

P(x , m|Z , U  x )

P(x |x , u )× P(x , m|Z , U  x )dx

=

∫  (4)

Post-check state estimation using prior distributions and 
observational models is described as measurement Update.

 

k 0:k 0:k 0

k k k 0:k-1 0:k 0

k 0:k-1 0:k

P(x , m|Z , U , x )= 
P(z |x , m)P(x , m|Z , U , x )

P(z |Z , U )  
(5)

Through the recursion of the above two steps, the joint posterior 
P (xk, m|Z0:k, U0:k, x0) for the state x of the sensor and map m at a time 
k are calculated. Bayes theorem only solves the SLAM problem from 
the perspective of probability, and the specific form of the motion 
model and the observation model needs to be  given in 
practical application.

Measurement system

In this paper, the system is divided into two parts: the front end 
and the back end. The front end is a visual-inertial odometer which 
estimates the pose of the device and the position of the landmark 
points using techniques such as those described in Gui et al. (2015) 
and Leutenegger et  al. (2015). The back end uses loop closure 
detection to identify the areas that have been visited, and then employs 
graph optimization techniques, such as those described in Angeli et al. 
(2008) and Hu et al. (2013), to optimize the global pose. In this way, 
the system is able to achieve drift-free pose estimation and construct 
a globally consistent map.

Front end
The SLAM front-end fuses observation sensor data, such as 

cameras, with motion sensor data, such as IMU, to achieve pose 
estimation in complex application scenarios. The front-end used in 
this paper is a visual-inertial odometer, which uses the camera as the 
observation input sensor and the IMU as the motion input sensor. 
During the movement of the mobile platform, the two data are fused 
in real-time to estimate the current pose. This study employs an EKF 
to fuse IMU data and camera observation data for real-time pose 
estimation. Firstly, the IMU data is pre-integrated from the previous 
frame to the current frame to estimate the prior pose estimation of the 
current frame. After acquiring the camera image, feature extraction is 
performed on the image, and the descriptor is calculated. Based on the 
descriptor, it is matched with the features retained in the sliding 
window. Finally, the posterior pose estimation is performed based on 
the prior pose estimation and feature constraints (Li and Mourikis, 
2012, 2013).

In this study, the Oriented-FAST and Rotated BRIEF algorithms 
are chosen for feature extraction and descriptor calculation, 
respectively. Specifically, Oriented-FAST is used for feature detection, 
and the BRIEF descriptor is calculated to describe the feature points 
for matching (Rublee et al., 2011). Based on tests, this feature detection 
algorithm and descriptors are 100 times faster than SIFT, SURF, and 
other methods, making them more suitable for real-time scenarios 
and devices with low computing power, such as mobile phones 
(Figure 1).

Back end
After completing front-end pose estimation, the system enters 

back-end loop detection work. The Bag of Words method (BoW) is a 
popular appearance-based loop detection method (Angeli et al., 2008). 
The system uses the feature point description sub-sample of the 
observed environment image to obtain a dictionary through k-means 
training. Then, it checks whether a loop is formed by calculating word 
frequency (TF), inverse document frequency (IDF), and similarity 
calculation. Generally, when a loop is detected in multiple consecutive 
frames, it is considered that a loop is detected, and the pose 
transformation relationship (loop constraint) between the frame and 
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the compared frame is calculated through feature matching, 
optimization, etc. Finally, new pose nodes and loop constraints are 
added to the keyframe pose graph, and the global pose can 
be corrected through graph optimization (Figure 2).

DBH and position calculation

The main difference between the DBH measurement function 
adopted in this study and the current forest survey using LiDAR 
SLAM lies in the real-time performance. With LiDAR SLAM, post-
processing is required on the obtained point cloud data after scanning 
the plot, and additional work is needed to extract the DBH position. 
In contrast, this research is mainly based on the single-frame point 
cloud solution obtained by visual SLAM to calculate the diameter, 
position of the tree, and various forest parameters in real-time.

To obtain the DBH, the system first acquires more than three 
points at the height of the DBH of the tree and projects them onto the 
horizontal plane to obtain their plane coordinates. It then calculates 
the vertical bisector between two points and sets the corresponding 
weight coefficient according to the position. The center coordinates 
are calculated when the angle bisector intersects in pairs, and the 
weighted center plane coordinates, that is, the position coordinates, 
are determined according to the weight. Finally, the system uses the 
center coordinates and DBH height points to calculate the radius and 
its mean value to determine the cross-sectional area. Once the area is 
obtained, this value can be used to calculate the DBH.

System operation process

In this study, a mobile phone camera is used as the sensor in the 
SLAM system (Figure 3). The system acquires images and solved state 
data, and constructs a consistent point cloud map. Then, the 

single-tree volume factor is solved. The images and states are used to 
build 3D virtual scenes using OpenGL. By aligning the SLAM 
coordinate system with the OpenGL coordinate system, observers can 
view augmented reality (AR) scenes through the mobile phone screen 
(Figure 4). The AR scene can be interacted with through the screen in 
the following ways: (1) The plot boundary is constructed in the 
OpenGL coordinate system. When the observer approaches the plot 
boundary, the mobile phone screen displays the position of the plot 
boundary. (2) When measuring a tree, the observer clicks the position 
of the ground diameter and the position of the breast diameter on the 
mobile phone screen. This helps the system determine the point cloud 
at the diameter circle and fit the discrete point cloud in a circle. The 
measurement system consists of four parts: defining the sample 
coordinate system, constructing a globally consistent sparse map, 
measuring each tree, and calculating parameters. The operation flow 
is shown in Figure 5. The defined plot coordinate system describes the 
position of each tree in the plot. The construction of a globally 
consistent sparse map reduces the drift of the mobile phone pose 
obtained during measurement through loop detection, thereby 
reducing the estimation error of tree position. All trees in the sample 
plot are observed during the measurement of each tree. The parameter 
calculation process calculates the forest structural parameters of the 
area represented by the sample plot.

SLAM operates through a process that is divided into four 
modules: front-end odometer, back-end optimization, loop closure 
detection, and map building. The loop closure detection module is 
crucial for refining data and correcting pose drift caused by the 
front-end visual odometer. Its main function is to detect similar data 
collected by the sensor at the same place, and use this information to 
ensure data consistency. The accuracy of the globally consistent map 
is closely related to the scan trajectory, and proper loop closure 
detection during the scanning process is essential for obtaining an 
accurate map. In this study, a fixed sample scan path was designed, 
starting at the center of the sample plot and measuring the trees along 
the route of progress, as shown in the Figure 6. Traditional SLAM 
systems with image feature-based backends may not work well in 
poorly constructed forests. Therefore, an online trunk-based backend 
was designed in this study to estimate tree position accurately and 
correct pose drift in real time for large-scale forest inventories. 
Specifically, a trunk-based loop closure detection algorithm was 
developed to detect whether an earlier observed tree is re-observed, 
providing nodes and constraints for tree position graph optimization. 
This algorithm builds and optimizes the tree position graph using the 
provided nodes and constraints, and corrects the current pose based 
on the optimized globally consistent tree position graph.

Spatial parameter selection

The forest spatial structure index based on the relationship 
between adjacent trees has been widely used in the research of forest 
spatial structure analysis, competition and advantage calculation, 
species diversity measurement, forest structure reconstruction and 
management optimization. The spatial structural parameters are 
mainly a comprehensive expression of the single-tree volume factor 
and spatial position. The position of standing trees and the single-tree 
volume factor were measured by mobile phone measurement system 
to solve the spatial structural parameters, and the spatial structural 

FIGURE 1

Front-end workflow.
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parameters considered in this study mainly included Mingling degree, 
Dominance index, Uniform angle index, and Crowdedness index.

Mingling degree mainly describes the species composition and 
spatial pattern in the forest. It is defined as the proportion of 
individuals in the four nearest neighboring trees of the target tree 
i who are not of the same species as the target tree.

 
M vij

j
i =

=
∑1

4
1

4

 

ij

1,  neighboring tree  target
 

v
0,  neighboring tree  target

 

If the j and the tree i
are different species

If the j and the tree i
are same species


= 

  

(6)

Uniform angle index describes the uniformity of adjacent trees 
around the reference tree i, and is defined as the proportion of the 
number of α angles less than the standard angle α0 in the number of 
nearest neighboring trees. The standard angle α0 is selected as 72° 
according to the research conducted by Hui et al. (2004).

 
W ij

j
i z=

=
∑1

4
1

4

 
z

 ±    ±

 ±    
ij =

1

0

0,

,

If the is less than the
If the is greater than or    ±equal to 0



  

(7)

The Dominance index quantitatively describes tree competition 
and is defined as the proportion of the adjacent trees of the reference 
tree whose DBH is greater than the number of reference trees to the 
four nearest neighbors examined.

 
D ij

j
i k=

=
∑1

4
1

4

 

ij

1,  neighboring tree    
target

k
0,  neighboring tree    

   target

If the j is smaller than
the tree i

If the j is greater than
or equal to the tree i


= 

  

(8)

FIGURE 2

System workflow.

FIGURE 3

Measurement phone.
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The Crowdedness index describes the horizontal distribution 
pattern of tree positions and is defined as the ratio of the average 
distance of the nearest neighbor to the expected average distance 
under random distribution.

 

R
ri

S
n

i

n

= =
∑1

1

2

1
n

 

(9)

ri is the distance from the tree i to its nearest neighbor; n is the 
total number of plants in the plot; S is the sample area.

Study area and sample plots information

In this study, three plots of 32 m × 32 m were selected for testing, 
located in the campus forest area of Beijing Forestry University, the 
Olympic Forest Park, and Dongsheng Bajia Park in Beijing, China. 

Plot 1 is a mixed forest with Juniperus chinensis L. as the dominant 
tree species, while the other two plots are artificial pure forests 
dominated by Ginkgo biloba L. and Populus L. The three plots contain 
trees of different diameters, and the number and distribution of trees 
in each plot are different, which comprehensively tests the function of 
the measurement system. The sample plots have few shrubs and are 
convenient for data collection. The mobile phone measurement 
system was used to conduct the sample plot survey, and the spatial 
structure of the forest area was analyzed using the calculated spatial 
structural parameters. Additionally, the chest diameter and position 
data of the trees were recorded as reference data using a total station 
and a chest diameter ruler to test the accuracy.

Results

DBH accuracy

The diameter at breast height (DBH) of trees in the sample plot 
was estimated using a mobile phone measurement system, and the 

FIGURE 4

Different statuses of system during observation. (A) Determine the location of the plot center. (B) Sample boundaries. (C) Click on the position of the 
tree. (D) Click on the position of the DBH. (E) Overview of the sample. (F) Calculated forest structure parameters.
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estimated values were compared to the true DBH obtained by 
measuring the trees with a diameter tape as a reference. In this study, 
the accuracy of DBH estimation was evaluated using the BIAS, RMSE, 

relative BIAS (relBIAS), and relative RMSE (relRMSE) metrics, which 
were calculated using the following formulas:

 
B

x x

nIAS
i

n
i ir

=

−( )
=
∑

1
 

(10)
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B
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(13)

where xi is an estimate; xir is the reference value corresponding to 
xi; n is the total number of trees.

The Figure 7A displays the overall distribution of DBH estimates 
for the three plots obtained using the mobile phone measurement 
system. The figure shows that all DBH estimates were close to the 
corresponding reference values, and there were no apparent abnormal 
estimates. This observation suggests that this method of estimating 
breast diameter is highly robust. Statistical analysis of all DBH 
estimates was performed, and the results are presented in Table 1.

The DBH obtained through the mobile phone measurement 
system had a BIAS value close to zero, indicating that it was nearly 
unbiased (−0.47 ~ 0.45 cm, −2.04% ~ 2.74%) compared to the 
reference value obtained using the diameter tape. Moreover, the DBH 
estimates had small RMSEs overall (0.57 ~ 0.95 cm, 2.95% ~ 4.5%), as 
shown in Table 1. Figure 7B is a box plot of the error of the DBH 
estimates in different diameter steps, which indicates that the average 
error of the DBH estimate in different DBH ranges was close to zero. 
These results demonstrate that the mobile phone measurement system 
can achieve high-precision DBH measurement, and the measurement 
accuracy meets the requirements for further determining forest 
structural parameters.

Position accuracy

The measured tree position data for the three plots are shown in 
Figure 8. The overall deviation was small, and the estimated position 
could accurately reflect the actual position of the sampled trees. As 
shown in Table 2, the BIAS of the x-axis was −0.04 to 0.22 m and the 
y-axis was 0.01 to 0.20 m. The tree position estimates for the three 
plots had relatively small RMSEs of 0.17 to 0.22 m on the x-axis and 
0.16 to 0.26 m on the y-axis. The scatter distribution of errors in the 
two axes was relatively uniform. Since the spatial structural parameters 
only require the determination of neighboring trees based on their 
position, and the position data was not calculated as a parameter, the 
position accuracy of the system fitting could meet the requirements 
for further spatial structural parameter calculations.

FIGURE 5

Workflow of forest inventory system.

FIGURE 6

Scanning trajectory for building plot map.
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Spatial structural parameter calculation

The horizontal distance between trees was calculated based on the 
position coordinates, and the four nearest neighboring trees of each 
reference tree were determined based on their distances. By comparing 
the non-spatial structural parameters (such as DBH, tree species, and 
position distribution) of the reference tree and its neighboring trees, 
and applying the relevant formula, the spatial structural parameters of 
the forest area in the sample plot were calculated, including Mingling 
degree, Dominance index, Uniform angle index, and Crowdedness 
index. The value range and index system of each spatial parameter are 
presented in Table 3.

The spatial distribution of each tree species in Plot 1 can be clearly 
seen in Figure 9, where it shows that Juniperus chinensis L. was the 
dominant tree species in the area. The parameter values of the forest 
stand are presented in Table 4, showing that the mixing degree of the 
whole forest stand was 0.32, which is considered weak. As both Plots 
2 and 3 were single-species plots, their species distribution is not 
shown, and the mixing degree of both plots was 0. From Figure 10A, 
a relatively high percentage of 0 values can be observed, indicating 
that trees of the same species were clustered in Plot 1. This conclusion 
is also apparent from Figure 8, as trees of the same species in the 
sample plot had a higher degree of aggregation. The dominance index 
reflects the competition among forest trees, and the dominance index 
values for the three plots were 0.56, 0.51, and 0.51, suggesting that the 
competitive advantage of the whole forest species was not apparent, 
and tree growth was relatively balanced. The uniform angle index and 
crowdedness index describe the spatial distribution of trees in the 
forest area. The uniform angle index values for the three plots were 
0.55, 0.59, and 0.61, indicating that the position of trees in the plots 

was randomly distributed. The crowdedness index is the ratio of the 
mean distance between the horizontal distance of the reference tree 
and the neighboring trees to the expected average distance. The 
crowdedness index for Plot 1 was 1.03, indicating that the degree of 
aggregation of the trees was low and showed a random distribution 
trend. The crowdedness index for Plots 2 and 3 were 1.36 and 1.40, 
respectively, suggesting that the trees in the plots showed a trend of 
uniform distribution, and the uniformity of Plot 3 was higher than 
that of Plot 2, but the overall uniformity was relatively weak.

Discussion

In recent years, the development of forestry inventory has been 
based on intelligence and precision. Obtaining point cloud data of 
forest plots is an essential method to construct a 3D forest model and 
invert forest structural parameters. At this stage, the construction of 
forest point clouds mainly uses LiDAR (TLS, MLS, HMLS, etc.) to 
register the point cloud with different algorithms and realize the 
construction of a complete point cloud map. Its core is to find the 
corresponding relationship between the initial point cloud and the 
target point cloud, transform the point cloud on the target object into 
the coordinate system, and convert the point cloud of the same target 
object scanned multiple times into the same coordinate system. The 
difference in the algorithm between LiDARs with different working 
methods lies in the use of different methods to obtain the 
corresponding relationship of point clouds at different times. The 
SLAM algorithm is an algorithm that obtains the position and attitude 
changes of the sensor during its movement and calculates the 
corresponding relationship of point clouds at different times according 
to the changes to realize the work of point cloud registration and map 
construction. Research on intelligent forestry survey tools is mainly 
concentrated on LiDAR, and they include (1) designing a multi-sensor 
fusion LiDAR system to improve the scanning range and improve the 
point cloud mapping effect, (2) designing and improving point cloud 
matching algorithms to obtain high-quality point cloud data, and (3) 
proposing a more efficient and accurate circle fitting method based on 
the original discrete point fitting DBH circle algorithm (e.g., least 
squares method, random sample consensus, and HoughCircles). 

FIGURE 7

DBH estimates error statistics. (A) DBH estimates distribution. (B) The errors under different DBH ranges.

TABLE 1 Accuracies of the DBH estimates.

BIAS 
(cm)

relBIAS (%)
RMSE 
(cm)

relRMSE (%)

Plot 1 0.45 2.74% 0.57 3.08%

Plot 2 −0.47 −2.04% 0.95 4.50%

Plot 3 −0.25 −0.9% 0.94 2.98%
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These research efforts have greatly improved the efficiency and 
accuracy of forestry inventory.

However, lidar-based research still relies on computers for post-
data processing and parameter extraction, which increases workload 
and reduces real-time performance. In this study, a measurement 
system was constructed on a mobile phone using visual SLAM+AR 
technology installed in the mobile phone camera to visually construct 
a sample site cloud map. This system got rid of the limitations of lidar 
for data collection, and real-time integrated measurement work was 
realized without requiring post-processing.

The results of the study show that the mobile phone 
measurement system can accurately solve the single-tree volume 
factor, meeting the needs of forestry inventory and providing high-
quality data support for further solving other forest structural 
parameters. The system also allows for the investigation of forest 
spatial structure, which has become an increasingly important 
content of forestry investigation. The nearest neighbor method is an 
important means to calculate the parameters of the forest spatial 
structure. Using neighboring trees to investigate spatial structure 
parameters usually requires manual determination of neighboring 
trees to calculate parameters and assign values. This process is 
cumbersome and may cause errors due to subjective factors of the 
measurer. According to the position of the trees measured by this 
system, the four neighboring trees of the reference tree can 
be determined, and the spatial structural parameters of the forest 
can be preliminarily solved according to the relationship between 
the breast diameter and position of the reference tree and the 
neighboring tree. Therefore, by optimizing the forest inventory 
method, this study obtains the forest spatial structural parameters 

FIGURE 8

Position estimates error statistics. (A) Tree position distribution. (B) Position errors of all trees in plots.

TABLE 2 Accuracies of the position estimates.

BIASx (m) BIASy (m)
RMSEx 

(m)
RMSEy 

(m)

Plot 1 0.22 0.20 0.21 0.16

Plot 2 0.01 0.01 0.17 0.19

Plot 3 −0.04 0.05 0.22 0.26
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TABLE 4 Frequency values for different spatial structural parameters.

Spatial parameters Frequency distribution Parameter value

0 0.25 0.5 0.75 1

Plot 1

Mingling degree 0.61 0 0.07 0.18 0.14 0.32

Dominance index 0.21 0.14 0.14 0.11 0.4 0.56

Uniform angle index 0.04 0.07 0.5 0.25 0.14 0.55

Crowdedness index – – – – – 1.03

Plot 2

Mingling degree 1 0 0 0 0 0

Dominance index 0.21 0.21 0.18 0.30 0.14 0.51

Uniform angle index 0.09 0.08 0.26 0.52 0.06 0.59

Crowdedness index – – – – – 1.36

Plot 3

Mingling degree 1 0 0 0 0 0

Dominance index 0.16 0.21 0.26 0.16 0.21 0.51

Uniform angle index 0.16 0.05 0.05 0.68 0.05 0.61

Crowdedness index – – – – – 1.40

more efficiently, moreover, provides good data support for the study 
of forest ecology, and ultimately realizes the promotion of forest 
ecological management, optimization, and promotion of ecological 
sustainable development.

However, due to the performance gap between the mobile phone 
camera and the lidar, the current system based on vision has issues 
with its stability. The problem of pose drift occurs in actual use, and 
the stability and robustness of the system need to be improved. In the 

future, more measurement and auxiliary functions can be developed 
on mobile phones, including tree species recognition based on the 
surface characteristics of trunks or leaves and using point clouds to 
realize 3D modeling of trees. Overall, this system has high application 
value and broad development space in forestry inventory, as it 
optimizes the forest inventory method, provides good data support for 
the study of forest ecology, and ultimately promotes ecological 
sustainable development.

TABLE 3 Forest spatial structure index system.

Spatial 
parameters

Variable
Values

0 0.25 0.5 0.75 1

Mingling degree (M) Species Non mixture Low mixture Intermediate mixture High mixture Complete mixture

Dominance index (D) Diameter Pre-dominant Sub-dominant Intermediate Disadvantaged Absolutely disadvantaged

Uniform angle index (U) Angle Very regular Regular Random Clumped Very clumped

Crowdedness index (C) – C > 1 is regular distribution; C = 1 is random distribution; and C < 1 is clustered distribution

FIGURE 9

Spatial distribution of different tree species.
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Conclusion

In this study, the mobile phone is used as a sensor, and the visual 
SLAM technology is used to replace the HMLS based on LiDAR 
SLAM, which improves the efficiency and portability. At the same 
time, the embedding of augmented reality technology realizes real-
time measurement and can control errors well with high 
measurement accuracy of DBH and position, which can be used to 
determine the neighboring trees and calculate the spatial structural 
parameters of the forest areas. The test results show that the system 
can meet the inventory needs well and can be used as a new direction 
for future forest resources investigation and solving spatial 
structure parameters.

At this stage, there are still some problems in this study. The 
positioning method based on vision sometimes has positioning drift, 
and the stability still needs to be further improved. In addition, the 
number of system calculation parameters is currently limited, and in 
some surveys it is still necessary to rely on other tools for assistance, 
and more measurement functions need to be embedded in the future.
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