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As one of the important strategic measures to increase the international

competitiveness of high-tech manufacturing (HTM), industry-university-research

cooperation (IURC) has received increasing attention in China. However, there is

little literature to explore the links between IURC and the environmental efficiency

(EE) of HTM. To incorporate a variety of environmental pollution indicators into

the efficiency analysis framework and reduce the adverse effects of random errors

on the estimation results, this article combined the projection pursuit model with

the stochastic frontier analysis (SFA) method and proposed a translog stochastic

frontier model considering undesirable outputs to analyze the multiple impacts of

IURC on the EE of HTM. The results show that IURC has both a significant negative

direct effect and a significant positive indirect effect on HTM’s EE. Although IURC

cannot directly promote EE, it has a positive impact on EE of HTM through its

complementary effect with research and development (R&D) investment. The

results also confirm that the average EE of the whole country is only 0.346, while

that of the eastern area is 0.595, and that of the central and western areas are

0.199 and 0.171, respectively. Therefore, it is particularly urgent to improve the EE

of China’s HTM industry through a variety of measures, such as promoting IURC

and increasing R&D investment in environmental technology. This study not only

provides an improved SFA method for measuring EE, but also deepens research

on the mechanism of the impact of IURC on HTM’s EE.

KEYWORDS

environmental efficiency, industry-university-research cooperation (IURC), high-
tech manufacturing, stochastic frontier analysis, undesirable outputs, research and
development investment, projection pursuit model

1. Introduction

Since the 1990s, China’s high-tech manufacturing (HTM) has experienced rapid
development. It is not only among the top 10 in the world in terms of industrial output but
also has global competitiveness in such high-tech fields as aerospace, high-speed rail, and
communications equipment manufacturing. However, due to the neglect of environmental
efficiency (EE), China’s HTM does not present the characteristics of high added value
and low pollution, and environmental pollution incidents are frequently reported in the
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press (Wu Q. et al., 2022). Furthermore, in the increasingly
ecologically fragile eastern region, environmental regulation has
caused many HTM enterprises to transfer their highly polluting
processing and manufacturing links to the central and western
regions, intensifying people’s concern that these regions will
become “pollution refuges” (Peng et al., 2018). Therefore, how to
improve EE has become an important practical problem for the
sustainable development of Chinese HTM.

Developing technologies to reduce environmental pollution
is an expensive, complex, and highly uncertain task (Oke, 2013;
Rabal-Conesa et al., 2022). Usually, it is difficult for enterprises
to deal with the pressure of controlling environmental pollution
only through internal research and development (R&D) (Chang
et al., 2022). Enterprises can and should use external knowledge
to improve their technical capabilities and solve environmental
pollution problems (Hu et al., 2017). The ability to acquire
knowledge from the outside has been proved to be a key factor to
enhance the competitiveness of enterprises (Leiponen and Helfat,
2010). Compared with traditional innovation, environmental
innovation needs more external knowledge (Aldieri et al., 2020).
Enterprises compensate for the lack of the necessary technical
capacity, especially knowledge related to the environment,
through cooperation with external organizations to implement
environmental innovation activities (Diez-Martinez et al., 2022).
In the process of realizing the green development of the
manufacturing industry, developing countries usually actively
acquire external technology to improve their level of environmental
technology (Hou et al., 2017). The main ways to acquire
external knowledge usually include the introduction of foreign
technologies and industry-university-research cooperation (IURC)
(Xu et al., 2022).

With the strengthening of technology export control from
developed countries to China in the high-tech field, it has become
increasingly difficult for China to obtain foreign technology
transfer (Kwan, 2020). In this context, China has not only
continued to increase investments in green technology R&D.
At the same time, it actively accelerates IURC to promote
the sustainable development of its manufacturing industry. The
Chinese government has not only formulated a series of laws and
regulations to promote IURC, but also strengthened its support
for IURC in terms of resources and technology (Yao et al., 2021).
However, there is still a lack of research on whether these efforts
have contributed to the EE of China’s HTM. We attempt to reveal
the relevance of IURC and EE in China’s HTM. Research on this
issue will help clarify the current situation of EE in China’s HTM
and offer a foundation for accelerating its green development.

This study contributes to existing research in three aspects.
First, the research on EE of China’s industrial sector usually
focuses on pollution-intensive industries, with a relatively lack
of research on HTM. Moreover, DEA is more common in the
method. This article uses the stochastic frontier analysis (SFA)
method to measure the EE of China’s HTM. Second, little research
examines the links between IURC and the EE of Chinese HTM.
This article not only examines the direct action of IURC on
the EE of HTM, but also analyzes the reciprocal action of
IURC and R&D investment and their indirect effect on EE.
Thus, it deepens the research on the mechanism of the effect
of IURC on EE. Finally, this study combines the projection
pursuit (PP) model with SFA and incorporates both desirable

and undesirable outputs into the analysis framework for EE,
providing an improved SFA method to measure EE. Compared
to the commonly used DEA model, this method avoids the error
of estimation results because it considers the influence of random
factors when EE is analyzed.

The next section is the literature review. Section 3 is the
Materials and methods. We combine the PP model and the SFA
model to propose an SFA method considering environmental
pollution. Section 4 is the Results and discussion. We present the
results of the SFA method and discuss the links and differences
between this study and previous studies. The last section is the
Conclusion and policy implications.

2. Literature review

The related research can be divided into two parts: the
estimation of EE and the impact of IURC on EE.

2.1. The estimation of EE

With the rapid growth in economic output, the environmental
pollution problem of China’s industries is becoming more apparent.
This makes its EE has been widely concerned. Much research
has examined the EE of China’s industries. Chen and Jia (2017)
applied the SBM to calculate the EE of Chinese industry. Shao and
Wang (2016) used the Malmquist-Luenberger productivity index
to evaluate the EE of China’s non-ferrous metal manufacturing
industry. Wu et al. (2014) utilized DEA to evaluate the EE of
Chinese interprovincial industries from 2007 to 2011. Wang et al.
(2019) used the SFA method to estimate the EE of China’s coal
industry. Some scholars revealed regional differences in the EE of
China’s industries (Fei et al., 2020). An et al. (2020) found that
industrial EE in East China was more efficient.

More research has analyzed the differences in EE in different
types of Chinese industries. Xiao et al. (2018) examined the
EE of 31 industries and found that the EE of most industries
showed an upward trend. Among these literatures, studies on
China’s manufacturing industry are the most abundant. Xie et al.
(2016) evaluated the EE of Chinese manufacturing industries
and confirmed that EE in most manufacturing industries was
low. Qu et al. (2017) found that the EE of the manufacturing
industry steadily increased between 2003 and 2011. There are also
some studies that compare and analyze differences in EE between
subsectors of the manufacturing industry (Yuan et al., 2017; Kang
et al., 2018). Xie et al. (2017) found that the EE of HTM was higher
than that of the traditional manufacturing industry. Zhang et al.
(2022) confirmed that the EE of China’s HTM grew faster than that
of other manufacturing industries between 2004 and 2017.

DEA and SFA are two common methods to calculate the EE
of industrial sector (Khan et al., 2021; Rasheed et al., 2022). The
former is often used to evaluate the relative efficiency of similar
decision-making units with multi-input and multi-output, and it
does not need to assume the form of production function. However,
this method is difficult to deal with the measurement error of the
data (Li and Tao, 2017). The latter not only allows for the selection
of the best form of function (Khan et al., 2022), but also considers
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the interference of random error and statistical noise (Bibi et al.,
2020). In addition, compared with the former, the latter can analyze
the influencing factors of EE at the same time when estimating EE
(Sun et al., 2019). However, the existing literature usually uses DEA
method to evaluate the EE of China’s industrial sector, while the
literature using SFA method is relatively few. In addition, there is
little literature to evaluate the EE of China’s HTM, especially the
use of the SFA method.

2.2. The impact of IURC on EE

Industry-university-research cooperation refers to
collaborative technological innovation and commercialization
of enterprises, universities, and scientific research institutions
(Bai et al., 2020; Song et al., 2020). External knowledge from
universities and scientific research institutions is considered
to have a positive influence on environmental innovation (De
Marchi and Grandinetti, 2013). On the one hand, enterprises can
obtain the external knowledge needed to protect the environment
from universities and research institutions. Through contact
and interaction with academic departments, enterprises can
acquire the technical knowledge needed for their product or
process innovation to supplement or replace expensive R&D work
(Caloghirou et al., 2004). Enterprises enhance their environmental
technology capabilities through cooperation with universities and
research institutions (Wang et al., 2012). On the other hand, IURC
can achieve the coordination of technology, finance, and human
capital, thus stimulating the vitality of environmental technological
innovation (Yang et al., 2021).

In emerging economies, however, the opportunities for
companies to acquire knowledge from domestic universities and
research institutions may be short-lived. Because competitors can
easily identify, acquire, or copy this knowledge (Kafouros and
Forsans, 2012). In addition, enterprises that focus on IURC may
not be able to acquire cutting-edge environmental knowledge,
which is usually developed by enterprises in developed economies
(Hou et al., 2017).

Furthermore, successful environmental innovation requires
enterprises to have the corresponding absorptive capacity to
transform external knowledge into their own skills (Ben Arfi et al.,
2018). Internal R&D promotes the replication of knowledge and
helps enterprises benefit from external knowledge (Kafouros and
Buckley, 2008). When enterprises invest in R&D, they not only
create new knowledge, but also improve their absorptive capacity
(Cohen and Levinthal, 1990). The improvement of absorptive
capacity helps enterprises to acquire external knowledge and
carry out environmental innovation (Rabal-Conesa et al., 2022).
The combination of external knowledge acquisition and internal
R&D can enable enterprises to effectively carry out internal
R&D activities and benefit from knowledge complementarity
(Lokshin et al., 2008).

Although the research literature on the EE of the
manufacturing industry is becoming more and more abundant,
the research on evaluating the EE of China’s HTM is still relatively
lacking. In addition, with the intensification of global competition
in HTM, China regards IURC as an important way to enhance
the international competitiveness of its HTM. However, there is

also a lack of in-depth research on whether IURC can promote the
EE of China’s HTM. Second, the existing literature usually uses a
two-stage method (such as DEA-Tobit) to study China’s industrial
EE (Wang et al., 2017; Peng et al., 2022). This method does not
separate random factors when analyzing the factors influencing EE,
which may lead to errors in the estimates. Therefore, this article
combines the PP model with the SFA method, puts forward a
translog stochastic frontier model considering undesirable outputs,
and analyses the direct and indirect effects of IURC on EE, to
clarify the mechanism of IURC on the EE of HTM.

3. Materials and methods

3.1. Analysis framework

The production system creates value by converting inputs into
outputs. Inputs are usually factors of production such as capital and
labor. Outputs include not only desirable outputs such as output
value, but also undesirable outputs such as wastewater and waste
gas, etc. EE can be understood as the ratio of outputs to inputs
in the production system (Song et al., 2012). For the given inputs,
the more desirable (or less undesirable) outputs provided by the
production system, the higher its EE.

The impact of IURC on industrial EE is multiple (see Figure 1).
First, IURC has a direct effect on industrial EE. This effect can
be positive or negative. Second, IURC has an indirect effect on
industrial EE, and it has an indirect impact on industrial EE
through its complementary effect with R&D investment.

3.2. Model

Due to the ability to incorporate both desirable and undesirable
outputs into the efficiency analysis framework, DEA has become
one of the common methods for evaluating industrial EE (Li et al.,
2013; Song et al., 2018). However, the purpose of this article is
not only to measure the EE of HTM, but also to analyze the
effect of IURC on EE. To reduce the error in the estimation
results caused by random factors, the SFA method was chosen in
this study.

The analysis of industrial EE should consider not only
desirable outputs but also undesirable outputs. The traditional
SFA method is usually difficult to deal with this kind of
efficiency analysis of multiple outputs. Therefore, using the PP
model (Yu and Lu, 2018), we transform multiple output indexes
(multidimensional data) into a compositive output index, that
is, multidimensional data into one-dimensional data. Then, on
this basis, the stochastic frontier model was established (Sun and
Huang, 2020; Zhang and Chen, 2021).

3.2.1. PP model
Projection pursuit is a statistical method to analyze high-

dimensional and non-normal data. At the same time, this method
has the characteristics of robustness, anti-interference, and high
precision (Ouyang et al., 2021).

The steps to establish the PP model are as follows
(Wu S. et al., 2022):
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FIGURE 1

Research framework.

À Data normalization.
Let the set of HTM output indexes be

{
x∗(i, j)∣∣ i = 1, 2, · · · , m; ; j = 1, 2, · · · , n

}
, where x∗(i, j) is

the j-th output index of the i-th province. To unify the range
of index values, the output indicators are normalized as
follows:
For the positive index,

x
(
i, j
)
=

x∗
(
i, j
)

xmax
(
j
) (1)

For the negative index,

x
(
i, j
)
=

xmin(j)
x∗
(
i, j
) (2)

here x
(
i, j
)

is the normalized value of the output index set,
xmax

(
j
)

and xmin(j) are the maximum and minimum values
of the j-th index in the index set, respectively.

Á Construct the projection objective function.
After determining the projection direction
p =

{
p1,, p2, · · · , pn

}
, the n-dimensional data{

x(i, j)
∣∣ j = 1, 2, · · · , n

}
is converted into a one-dimensional

projection value z(i):

z(i) =
n∑

j=1

p(j)x(i, j), i = 1, 2, · · · , m. (3)

where p(j) is a unit vector.
Next, the projection objective function is constructed:

Q (a) = SzDz (4)

where Sz and Dz are the standard deviation and local density
of z(i), respectively.

Sz =

√∑m
i=1 (z (i)− E (z))2

m− 1
(5)

Dz =

m∑
i=1

m∑
j=1

(R− r(i, j))× u(R− r(i, j)) (6)

here E(z) is the mean value of z (i) and R is the window radius;
r
(
i, j
)
=
∣∣z (i)− z(j)

∣∣; and u(a) is a unit step function, u(a) =

1 when a ≥ 0, u(a) = 0 when a < 0.
Â Optimize the projection objective function.

The value of Q (a) depends on the projection direction. Solve
the following objective function to obtain the best projection
direction. 

max Q (a) = SzDz

s.t.
n∑

j=1

a2 (j) = 1
(7)

For this non-linear optimization problem, the accelerated
genetic algorithm can be used to solve the maximum problem.

Ã Calculate the comprehensive index of the outputs.
After determining the optimal projection direction p∗, p∗, and
x(i, j) are brought into the Equation 4 to obtain the projection
value z∗(i).

3.2.2. SFA model
Commonly used stochastic frontier models include the Cobb–

Douglas production frontier and the translog production frontier.
The Cobb–Douglas production frontier model can be set as follows
(Battese and Coelli, 1995):

lnYit = β0 + β1t + β2lnKit + β3lnLit + (Vit − Uit) (8)

here Yit is the output of the i-th observed value in period t. Kit and
Lit are the capital input and labor input of the i-th observation in
period t, respectively. β1, β2, and β3 are parameters to be estimated.
Vit is a random variable with normal distribution N

(
0,σ2

V
)
. Uit

is a non-negative random variable used to explain production
inefficiency, which follows the normal distribution N

(
mit, σ

2
U
)

censored at 0, independent of Vit . Where mit = zitδ, zit is a vector
that may affect EE, and δ is the parameter vector to be estimated.

Compared with the Cobb–Douglas production function, the
translog production function considers substitution effects and
interactions between input factors and is more flexible in form (Sun
and Huang, 2020; Zhang and Chen, 2021). Therefore, the stochastic
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frontier model of the translog production function was used to
explore the impact of IURC on the EE of the HTM. The translog
production frontier model can be set as (Bibi et al., 2020):

lnYit = β0 + β1t + β2lnKit + β3lnLit + 0.5β4t2
+ 0.5β5

(
lnKit

)2

+ 0.5β6 lnLit
2
+ β7tlnKit + β8tlnLit + β9lnKit lnLit

+ (Vit − Uit) (9)

The inefficiency model may be expressed as:

mit = δ0 + δ1IURCit + δ2RDit + ω8 (10)

where IURCit represents IURC, RDit represents R&D
investment. 8 is the vector of control variables, and ω is the
vector of parameters.

Equation 10 does not consider the links between IURC and
R&D investment and its impact on EE. In fact, R&D can not only
produce more environmentally friendly technologies (Song et al.,
2019), but also enhance the absorptive capacity of enterprises to
external technologies (Aldieri et al., 2018). The interaction between
R&D investment and external technology can be expressed by their
product (Danquah, 2018; Barasa et al., 2019). Therefore, to explore
the effect of IURC on EE more accurately, this study added an
interaction term between IURC and R&D investment and further
set the inefficiency model as follows:

mit = δ0 + δ1IURCit + δ2RDit + δ3IURCit × RDit + ω8 (11)

here δ3 represents the interaction effect between IURC and R&D
investment. If δ3 is significantly positive, it indicates that there is a
substitution effect between IURC and R&D investment, which leads
to inefficiency of environmental technology. If δ3 is significantly
negative, it indicates that there is a complementary effect between
IURC and R&D investment, thus reducing the inefficiency of
environmental technology (and improving EE).

To determine whether the stochastic frontier production model
is applicable, a common method is to test the hypothesis of the
variation coefficient γ (Battese and Coelli, 1995).

γ =
σ2

U
σ2

U + σ2
V

(12)

If γ is significantly different from 0, it indicates that
the stochastic frontier production function is more suitable.
The closer γ is to 1, the deviation comes mainly from the
inefficiency effect, and it is more appropriate to adopt the
stochastic frontier model.

3.3. Variables and data

3.3.1. Input-output index
Production inputs include labor and capital. Labor was

reckoned by employment in HTM (Peng et al., 2018). Capital
was calculated using the perpetual inventory method (PIM) (Chen
et al., 2018). Take the total output value and the output value
of new products as desirable output indicators (Peng et al.,
2022). Due to the availability of HTM environmental pollution
data, sulfur dioxide emissions and industrial wastewater emissions

were selected as undesirable output indicators in this study
(Chen et al., 2021). The PP model was used to transform the four
outputs into a compositive output index (CY).

3.3.2. Explanatory variables
Explanatory variables include IURC and R&D investment

(RD).
The funds obtained from enterprises, universities, and scientific

research institutions can measure the degree of IURC (Zhang and
Sun, 2022). Therefore, we measure IURC by the expenditure of
enterprises to purchase domestic technology.

According to the technology purchase expenditure and the RD
expenditure, the PIM was used to estimate the knowledge stock
of IURC and R&D investment (Coe et al., 2009; Shahabadi et al.,
2018). To attenuate heteroscedasticity in the regression model,
we used the logarithm of the technological knowledge stock to
represent IURC, and the logarithm of the R&D knowledge stock
to represent RD.

3.3.3. Control variables
Existing studies have identified the factors that influence

industrial EE (Chen et al., 2020; Ma et al., 2022). These factors
include foreign direct investment (FDI), R&D investment, and
human capital (Tao et al., 2012; Lu and Pang, 2017; Chen
et al., 2022). Chen et al. (2020) verified that R&D and human
capital have a positive influence on China’s industrial EE. Ma
et al. (2022) found that human capital and FDI are positively
correlated with China’s industrial EE. Some studies point out
that since China’s manufacturing industry has undergone drastic
structural changes during market-oriented reform, the degree
of marketization plays an important role in explaining the
efficiency change and technology gap of China’s manufacturing
industry (Walheer and He, 2020). In addition, enterprise
scale may also be an important factor affecting industrial EE
(Wang et al., 2017).

Some literatures have further empirically tested the role of these
factors in China’s HTM (Peng et al., 2022). Related studies show that
in addition to IURC and RD, marketization level (MAR), enterprise
size (ES), human capital (HC), government support (GS), FDI, and
regional factors may also be important factors affecting the EE of
HTM. Therefore, these variables were selected as control variables.

Degree of marketization (MAR): the share of private
firms in HTM’s production value is used to represent MAR
(Wang et al., 2021).

Enterprise scale (ES): The logarithm value of the average
production value of the enterprises in HTM is used to represent
ES (Li et al., 2018).

Human capital (HC): It is expressed as the proportion of HTM’s
employees in the local population (Wang and Zhao, 2021).

Government support (GS): GS is represented by the proportion
of government funds in R&D funds (Li and Zeng, 2020).

Foreign direct investment: It is measured by the percentage of
foreign-funded enterprises in HTM (Wei and Liu, 2006).

Location factor: The National Bureau of Statistics divides China
into eastern, central, and western regions. Different regions have
different environmental policies. The eastern region is relatively
strict, while the central region is relatively loose. In this article,
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EAST is used to represent the dummy variable in the eastern
region, and CEN is used to represent the dummy variable in
the central region.

The panel data of the HTM from 2006 to 2017 in 28 provinces
in China (with seriously missing data in other provinces) were
selected for empirical analysis. We have clarified the abbreviations
and descriptions of all variables in Table 1. The descriptive statistics
of the variables are shown in Table 2. The data is obtained from the
EPS data platform.

The correlation matrix in Table 3 examines the relationship
between variables. Both IURC and RD are significantly positively
correlated with CY, and all control variables are also significantly
correlated with CY.

4. Results and discussion

4.1. Compositive output index

When the PP model is used for solving the projection index
function, an accelerating genetic algorithm was used to better
obtain the optimal solution (Wang and Zhan, 2019). We used
MATLAB software to obtain the compositive output index of HTM,
as shown in Table 4.

Table 4 shows that the comprehensive output index of HTM
in all provinces showed an increasing trend from 2006 to 2017.
On the one hand, it is due to the growth of the output value
of HTM in each province. On the other hand, it benefits from
strengthening environmental regulation in China. Guangdong,
Jiangsu, and Shanghai have the highest comprehensive output
index, these provinces are economically developed, their HTM
output is higher, and these provinces have more strict controls
on environmental pollution. The lowest comprehensive output
index is Guizhou, Inner Mongolia, and Heilongjiang. The economy
of these provinces is relatively backward, and the development
of their HTM is relatively slow. Therefore, the comprehensive
output index can accurately reflect the actual output level
of HTM.

TABLE 2 Descriptive statistical results.

Variable Mean SD Min Max

K 125.585 160.713 2.598 1,258.418

L 40.547 72.706 0.474 389.417

CY 0.095 0.171 0.008 1.403

IURC −1.959 1.342 −5.514 2.009

RD 1.280 1.806 −3.947 5.593

MAR 79.308 17.180 0.000 100.000

ES −1.651 0.725 −3.369 −0.178

HC 0.733 0.836 0.054 3.627

GS 12.195 11.075 0.675 54.465

FDI 12.238 11.102 0.000 53.521

EAST 0.393 0.489 0.000 1.000

CEN 0.286 0.452 0.000 1.000

4.2. Estimation results of stochastic
frontier model

When using Equation 9 to analyze the impact of IURC on the
EE of China’s HTM, it is necessary to determine the form of the
frontier production function. That is, Cobb–Douglas production
frontier or translog production frontier, which production function
is better? We make our choices through LR tests (see Table 5). The
results show that translog production frontier is more suitable than
Cobb–Douglas production frontier.

To test whether IURC can promote the EE of China’s HTM,
this article uses the stepwise regression method to introduce
control variables in turn (see Table 6). The variation coefficients
of the four models are all greater than 0.95 and are significant
at a 1% significance level, showing that the stochastic frontier
model is more reasonable than the traditional production
function. At the same time, the test results also show that
the translog production function has good applicability to the
sample data.

TABLE 1 The description of variables.

Variables Abbreviation Description Unit

Comprehensive output CY The projection pursuit model was used for calculation Index

Capital input K Estimated using the perpetual inventory method 109 RMB

Labor input L The average number of employees 104 people

Industry-university-research cooperation IURC The logarithm of technological knowledge stock 109 RMB

R&D investment RD The logarithm of R&D knowledge stock 109 RMB

Degree of marketization MAR The proportion of output value of non-state-owned enterprises %

Enterprise scale ES The logarithm value of the average output value of enterprises 109 RMB

Human capital HC The proportion of employees in the HTM in the local population %

Government support GS The proportion of government funds in R&D funds %

Foreign direct investment FDI The proportion of the number of foreign-funded enterprises %

Eastern region EAST The dummy variable in the eastern region –

Central region CEN The dummy variable in the central region –
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TABLE 3 Correlation matrix of variables.

CY K L IURC RD MAR ES HC GS FDI EAST CEN

CY 1.000

K 0.696*** 1.000

L 0.922*** 0.638*** 1.000

IURC 0.535*** 0.593*** 0.554*** 1.000

RD 0.587*** 0.631*** 0.611*** 0.789*** 1.000

MAR 0.306*** 0.310*** 0.300*** 0.281*** 0.126 1.000

ES 0.449*** 0.498*** 0.387*** 0.582*** 0.650*** 0.408*** 1.000

HC 0.819*** 0.581*** 0.849*** 0.634*** 0.717*** 0.383*** 0.601*** 1.000

GS −0.269*** −0.231*** −0.266*** −0.153 −0.021 −0.690*** −0.253*** −0.267*** 1.000

FDI 0.313*** 0.185** 0.313*** 0.418*** 0.445*** 0.252*** 0.477*** 0.680*** −0.176* 1.000

EAST 0.429*** 0.281*** 0.418*** 0.477*** 0.518*** 0.325*** 0.430*** 0.604*** −0.256*** 0.735*** 1.000

CEN −0.222*** 0.003 −0.170 −0.049 −0.124 −0.013 −0.237*** −0.264*** 0.102 −0.352*** −0.509*** 1.000

The symbols *, **, and *** represent the significance at 10%, 5%, and 1% levels, respectively.

TABLE 4 Compositive output index.

Province 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Beijing 0.069 0.117 0.105 0.112 0.111 0.113 0.113 0.131 0.148 0.140 0.156 0.165

Tianjin 0.081 0.074 0.066 0.068 0.074 0.077 0.106 0.146 0.154 0.165 0.152 0.116

Hebei 0.009 0.010 0.011 0.013 0.015 0.017 0.021 0.025 0.030 0.038 0.041 0.038

Shanxi 0.017 0.017 0.017 0.017 0.017 0.019 0.018 0.019 0.021 0.023 0.024 0.028

Inner Mongolia 0.017 0.016 0.015 0.013 0.012 0.012 0.015 0.015 0.016 0.017 0.021 0.025

Liaoning 0.019 0.023 0.026 0.026 0.031 0.036 0.039 0.042 0.042 0.039 0.040 0.053

Jilin 0.008 0.009 0.010 0.012 0.013 0.018 0.021 0.027 0.030 0.034 0.040 0.027

Heilongjiang 0.010 0.012 0.011 0.012 0.012 0.014 0.014 0.016 0.017 0.020 0.021 0.023

Shanghai 0.140 0.155 0.163 0.155 0.172 0.162 0.159 0.156 0.168 0.181 0.184 0.185

Jiangsu 0.151 0.198 0.255 0.285 0.322 0.414 0.505 0.554 0.608 0.702 0.791 0.712

Zhejiang 0.056 0.063 0.059 0.067 0.076 0.090 0.104 0.126 0.143 0.177 0.205 0.216

Anhui 0.013 0.013 0.012 0.014 0.016 0.024 0.032 0.038 0.051 0.071 0.086 0.091

Fujian 0.057 0.061 0.066 0.064 0.079 0.093 0.103 0.110 0.112 0.124 0.147 0.155

Jiangxi 0.011 0.012 0.012 0.016 0.018 0.021 0.027 0.033 0.038 0.051 0.062 0.065

Shandong 0.052 0.070 0.079 0.099 0.104 0.122 0.152 0.172 0.196 0.247 0.269 0.228

Henan 0.011 0.012 0.013 0.017 0.019 0.028 0.041 0.094 0.116 0.150 0.160 0.153

Hubei 0.014 0.016 0.019 0.026 0.029 0.033 0.042 0.050 0.061 0.077 0.086 0.086

Hunan 0.011 0.011 0.012 0.016 0.019 0.028 0.034 0.052 0.059 0.073 0.083 0.078

Guangdong 0.313 0.338 0.388 0.439 0.586 0.648 0.722 0.823 0.913 1.050 1.253 1.403

Guangxi 0.012 0.013 0.013 0.013 0.013 0.014 0.017 0.020 0.023 0.028 0.031 0.027

Hainan 0.030 0.037 0.032 0.030 0.027 0.032 0.027 0.028 0.030 0.030 0.033 0.041

Chongqing 0.014 0.014 0.015 0.018 0.020 0.035 0.040 0.050 0.073 0.112 0.121 0.142

Sichuan 0.024 0.031 0.032 0.042 0.037 0.060 0.071 0.093 0.105 0.105 0.120 0.129

Guizhou 0.012 0.014 0.014 0.013 0.014 0.015 0.017 0.018 0.019 0.021 0.024 0.026

Yunnan 0.016 0.016 0.015 0.014 0.015 0.017 0.016 0.018 0.019 0.020 0.022 0.026

Shaanxi 0.015 0.017 0.017 0.017 0.019 0.022 0.023 0.025 0.030 0.037 0.046 0.045

Gansu 0.027 0.033 0.031 0.030 0.028 0.032 0.027 0.027 0.028 0.030 0.031 0.036

Ningxia 0.063 0.066 0.065 0.057 0.060 0.069 0.090 0.106 0.099 0.090 0.074 0.072
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TABLE 5 Results of LR tests.

Null hypothesis
(H0)

LR-test
statistics

Critical value
(α = 0.01)

Decision

Cobb–Douglas function
is applicable

418.923 10.501 Reject H0

Among the factors that influence EE (inefficiency), the four
models all showed that the coefficient of IURC is significantly
positive (coefficient values are 0.139, 0.142, 0.143, and 0.135,
respectively), while the coefficient of RD is significantly negative
(coefficient values are −0.650, −0.397, −0.408, and −0.401,
respectively). This shows that IURC can significantly promote
the inefficiency of environmental technology, while RD can
significantly hinder the inefficiency of environmental technology.
That is, IURC has a significant inhibitory effect on the EE of HTM,
while RD has a significant promoting effect on the EE of HTM.

All four models show that the coefficients of MAR, ES, and HC
are significantly negative. This shows that HC, ES, and MAR play

a significant role in promoting the EE of HTM. Model 4 shows
that the effects of GS and FDI on EE are not significant. Model 4
also shows that the coefficient of EAST is not significant, while the
coefficient of CEN is significantly positive. This shows that location
factors also have a significant impact on EE.

To further examine the relationship between IURC and EE,
Table 7 shows the results of adding the interaction terms of
IURC and the R&D investment. Models 5, 6, 7, and 8 were
added control variables by stepwise regression. The variation
coefficients of the four models are all greater than 0.95 and
are significant at a 1% significance level, which shows that the
stochastic frontier model is more accurate than the traditional
production function. At the same time, the test results also show
that the translog production function has good applicability to the
sample data.

Among the factors that influence EE (inefficiency), the four
models show that the coefficient of IURC was significantly positive
(0.157, 0.166, 0.167, and 0.160, respectively), while the coefficient
of RD was significantly negative (−0.719, −0.489, −0.473, and

TABLE 6 Estimates of the direct effect of IURC.

Variables Model 1 Model 2 Model 3 Model 4

Coefficient T-statistic Coefficient T-statistic Coefficient T-statistic Coefficient T-statistic

Production function

Constant 1.264*** 3.313 0.721*** 3.439 0.746*** 3.090 0.613** 2.565

t −0.124** −2.162 −0.054 −1.577 −0.068* −1.878 −0.044 −1.115

lnK −0.451 −1.575 −0.695*** −3.417 −0.624*** −3.193 −0.709*** −2.981

lnL −1.102*** −4.960 −0.777*** −5.117 −0.823*** −5.624 −0.730*** −3.972

0.5t2 0.001 0.255 0.005*** 2.910 0.004*** 2.692 0.005*** 3.001

0.5(lnK)2
−0.012 −0.115 0.147** 2.287 0.129** 1.984 0.164** 2.130

0.5(lnL)2 0.132*** 2.629 0.193*** 6.423 0.189*** 6.320 0.200*** 5.458

t× lnK 0.020 0.573 −0.032* −1.759 −0.026 −1.368 −0.038* −1.799

t× lnL 0.013 0.621 0.046*** 3.906 0.045*** 3.782 0.050*** 3.608

lnK× lnL 0.084 0.585 −0.134 −1.549 −0.118 −1.363 −0.160 −1.500

Explanation for inefficiency

Constant 4.543*** 19.922 3.210*** 19.294 3.073*** 16.642 3.075*** 17.699

IURC 0.139*** 4.328 0.142*** 7.639 0.143*** 7.025 0.135*** 6.218

RD −0.650*** −10.589 −0.397*** −14.988 −0.408*** −15.798 −0.401*** −15.472

MAR −0.023*** −13.340 −0.014*** −11.170 −0.012*** −7.575 −0.013*** −9.206

ES −0.272*** −7.526 −0.271*** −6.716 −0.239*** −5.582

HC −0.591*** −16.434 −0.583*** −5.766 −0.566*** −9.224

GS 0.004** 2.152 0.004 1.543

FDI 0.001 0.450 −0.001 −0.188

EAST 0.078 1.129

CEN 0.119** 2.451

Model diagnostics

σ2 0.113*** 0.065*** 0.066*** 0.063***

γ 1.000*** 0.964*** 0.986*** 0.960***

Log likelihood −68.261 41.912 44.527 48.127

LR test 285.759 506.105 511.334 518.534

The symbols *, **, and *** represent the significance at 10%, 5%, and 1% levels, respectively.
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TABLE 7 Estimates of the dual effects of IURC.

Variables Model 5 Model 6 Model 7 Model 8

Coefficient T-statistic Coefficient T-statistic Coefficient T-statistic Coefficient T-statistic

Production function

Constant 0.260 0.987 0.616*** 18.182 0.429* 1.796 0.469** 2.000

t −0.067 −1.448 −0.009 −0.798 −0.063* −1.939 −0.051 −1.311

lnK −0.178 −0.766 −0.874*** −3.123 −0.500** −2.399 −0.583*** −2.695

lnL −1.147*** −6.499 −0.615*** −2.877 −0.841*** −5.521 −0.789*** −5.149

0.5t2 0.004*** 2.668 0.008*** 6.103 0.005*** 2.897 0.005*** 3.091

0.5(lnK)2
−0.005 −0.073 0.223*** 10.201 0.112 1.616 0.141** 2.050

0.5(lnL)2 0.117*** 4.620 0.219*** 8.892 0.180*** 5.568 0.193*** 6.389

t× lnK −0.013 −0.708 −0.059*** −14.117 −0.029 −1.482 −0.036* −1.794

t× lnL 0.027*** 3.159 0.057*** 15.547 0.045*** 3.533 0.050*** 4.035

lnK× lnL 0.088 1.128 −0.224** −2.569 −0.100 −1.060 −0.137 −1.543

Explanation for inefficiency

Constant 4.359*** 28.987 3.379*** 24.014 3.089*** 17.953 3.161*** 17.068

IURC 0.157*** 4.568 0.166*** 10.322 0.167*** 8.293 0.160*** 7.611

RD −0.719*** −31.412 −0.489*** −14.034 −0.473*** −15.247 −0.481*** −13.320

IURC× RD −0.068*** −6.647 −0.039*** −2.778 −0.032*** −4.039 −0.030*** −3.711

MAR −0.022*** −15.529 −0.014*** −12.628 −0.012*** −8.548 −0.013*** −8.535

ES −0.243*** −20.662 −0.283*** −7.490 −0.257*** −6.550

HC −0.500*** −9.187 −0.431*** −6.455 −0.419*** −6.074

GS 0.004** 2.035 0.004* 1.955

FDI −0.002 −0.878 −0.005 −1.282

EAST 0.107 1.583

CEN 0.078* 1.694

Model diagnostics

σ2 0.101*** 0.085*** 0.064*** 0.062***

γ 1.000*** 0.964*** 0.985*** 0.977***

Log likelihood −39.913 36.351 52.769 55.118

LR test 342.455 494.981 527.817 532.517

The symbols *, **, and *** represent the significance at 10%, 5%, and 1% levels, respectively.

−0.481, respectively). This shows that IURC hinders the EE
of HTM, while RD significantly promotes the EE of HTM. In
these four models, the interaction terms of IURC and R&D
investment are significantly negative (−0.068,−0.039,−0.032, and
−0.030, respectively). This shows that there is a complementary
effect between IURC and R&D investment, which significantly
promotes HTM’s EE.

The four models all show that the coefficients of MAR, ES,
and HC are significantly negative. This confirms that HC, ES,
and MAR all promote the EE of HTM. Both Models 7 and 8
show that the influence of GS was significant and positive, while
that of FDI was not significant. Model 8 also shows that location
factors have a significant impact on EE. When comparing the
estimated results of the factors affecting EE in Tables 3, 4, it is
found that the sign and significance of the coefficient values of
the explanatory variables are consistent. This also shows that the
estimation of the links between IURC and the EE of HTM is
robust.

4.3. EE of China’s HTM

Since both government support and regional differences have
significant impacts on the EE of HTM, and IURC and R&D
investment have significant complementary effects, the analysis
result of Model 8 on the EE of HTM is more accurate. The
EE results of China’s HTM based on Model 8 are shown in
Table 8.

As can be seen in Table 8, the EE of China’s HTM is on the low
side from 2006 to 2017. The average EE of the whole country is only
0.346, while that of the eastern area is 0.595, and that of the central
and western areas are 0.199 and 0.171, respectively. In the eastern
area, the HTM’s EE in Guangdong is the highest, which is much
higher than that in other provinces. However, the EE of HTM in
Hebei and Hainan is much lower than that of other provinces in
the eastern area, and lower than the average value of the western
and central areas. In west and central China, most provinces except
Sichuan and Chongqing have low EE values. This also shows that
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TABLE 8 Environmental efficiency of China’s HTM.

Area Mean Rank Area Mean Rank

Eastern region 0.595 Anhui 0.231 15

Guangdong 0.965 1 Jiangxi 0.180 16

Shanghai 0.898 2 Jilin 0.143 19

Jiangsu 0.888 3 Shanxi 0.129 20

Beijing 0.804 4 Heilongjiang 0.102 25

Tianjin 0.709 5 Western region 0.171

Shandong 0.678 6 Sichuan 0.387 9

Fujian 0.593 7 Chongqing 0.338 10

Zhejiang 0.544 8 Shaanxi 0.177 17

Liaoning 0.239 14 Guangxi 0.126 21

Hebei 0.151 18 Ningxia 0.125 22

Hainan 0.076 28 Gansu 0.123 23

The central region 0.199 Guizhou 0.105 24

Henan 0.292 11 Yunnan 0.080 26

Hubei 0.273 12 Inner Mongolia 0.078 27

Hunan 0.246 13 Overall 0.346

TABLE 9 Results of the robustness test of the direct effect of IURC.

Variables Model 9 Model 10 Model 11 Model 12

Coefficient T-statistic Coefficient T-statistic Coefficient T-statistic Coefficient T-statistic

Production function

Constant 0.626** 2.504 0.510** 2.131 0.513** 2.212 0.408 1.574

lnK −0.590*** −3.230 −0.712*** −5.009 −0.816*** −4.937 −0.780*** −4.510

lnL −0.973*** −6.912 −0.789*** −6.963 −0.695*** −5.854 −0.705*** −5.757

0.5(lnK)2 0.014 0.355 0.043 1.463 0.075** 2.218 0.070* 1.953

0.5(lnL)2 0.077*** 2.894 0.081*** 3.602 0.096*** 4.684 0.092*** 3.813

lnK× lnL 0.152** 2.393 0.106** 2.187 0.061 1.225 0.068 1.223

Explanation for inefficiency

Constant 4.091*** 26.348 2.973*** 14.662 2.773*** 14.863 2.816*** 14.631

IURC 0.111*** 4.576 0.145*** 7.616 0.128*** 6.335 0.120*** 5.844

RD −0.542*** −22.752 −0.383*** −13.538 −0.362*** −15.180 −0.365*** −13.742

MAR −0.021*** −17.216 −0.014*** −10.731 −0.011*** −7.435 −0.012*** −8.078

ES −0.315*** −8.277 −0.278*** −7.106 −0.241*** −6.648

HC −0.377*** −8.244 −0.461*** −8.646 −0.444*** −7.131

GS 0.004* 1.805 0.003* 1.742

FDI −0.001 −0.511 −0.003 −0.691

EAST 0.088 1.345

CEN 0.123*** 2.731

Model diagnostics

σ2 0.108*** 0.059*** 0.064*** 0.062***

γ 0.882*** 0.502*** 0.615*** 0.608***

log likelihood −81.936 3.554 12.692 17.142

LR test 336.205 507.186 525.462 534.361

The symbols *, **, and *** represent the significance at 10%, 5%, and 1% levels, respectively.
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TABLE 10 Results of the robustness test of the dual effects of IURC.

Variables Model 13 Model 14 Model 15 Model 16

Coefficient T-statistic Coefficient T-statistic Coefficient T-statistic Coefficient T-statistic

Production function

Constant −0.035 −0.134 0.342 1.498 0.074 0.288 0.263 1.106

lnK −0.239 −1.340 −0.703*** −4.415 −0.520*** −3.088 −0.690*** −4.629

lnL −1.097*** −8.429 −0.713*** −6.119 −0.831*** −7.010 −0.715*** −6.668

0.5(lnK)2
−0.034 −0.931 0.054* 1.719 0.021 0.589 0.059* 1.958

0.5(lnL)2 0.070*** 2.984 0.087*** 4.299 0.076*** 3.008 0.093*** 4.768

lnK× lnL 0.185*** 3.296 0.080* 1.693 0.121** 2.101 0.069 1.545

Explanation for inefficiency

Constant 4.101*** 27.418 2.950*** 19.239 2.764*** 11.537 2.911*** 15.083

IURC 0.151*** 6.094 0.150*** 7.288 0.140*** 7.370 0.148*** 6.644

RD −0.679*** −19.825 −0.417*** −15.868 −0.434*** −11.199 −0.441*** −13.051

IURC× RD −0.067*** −5.694 −0.025*** −3.784 −0.036*** −3.281 −0.028*** −4.030

MAR −0.020*** −16.850 −0.013*** −10.719 −0.011*** −5.893 −0.012*** −8.526

ES −0.306*** −7.889 −0.276*** −6.042 −0.266*** −6.861

HC −0.388*** −7.109 −0.347*** −3.830 −0.318*** −4.629

GS 0.004 1.441 0.003* 1.756

FDI −0.003 −0.972 −0.007* −1.810

EAST 0.116* 1.885

CEN 0.086** 2.025

Model diagnostics

σ2 0.102*** 11.912 0.065*** 12.905 0.066*** 11.093 0.061*** 13.585

γ 0.816*** 10.367 0.679*** 27.911 0.780*** 23.006 0.652*** 13.236

Log likelihood −65.363 17.602 18.218 23.588

LR test 369.353 535.282 536.514 547.253

The symbols *, **, and *** represent the significance at 10%, 5%, and 1% levels, respectively.

improving EE is particularly urgent for sustainable development in
Chinese HTM.

4.4. Robustness test

Do different forms of production functions lead to inconsistent
estimates? To this end, we change the form of the production
function, that is, excluding the time variable t from Equation 9, and
then reanalyze the impact of IURC on the EE of HTM. Table 9
shows the results of the robustness test for the direct effect of
IURC. All four models show that IURC is significantly positively
correlated with the environmental technology inefficiency of HTM,
indicating that the direct effect of IURC on the EE of HTM is
significantly negative.

Table 10 shows the results of the robustness test for the dual
effects of IURC. All four models show that although IURC has a
negative direct impact on the EE of HTM, IURC has a positive
indirect effect on the EE of HTM through its complementary
effect with RD. In addition, the same conclusion is obtained by
using the Cobb–Douglas production function to estimate. Thus, the
estimated result will not change due to the change in the form of the
function. Therefore, the estimated results of this article are robust.

It should be noted that the LR test of the time variable t shows
that Equation 9 containing the time variable t is more applicable to
the sample data. We take the estimated results of excluding the time
variable t as a supplement to clarify whether the change in the form
of the function will lead to the deviation of the estimated results. It
shows that the estimated results are consistent regardless of whether
the time variable t is considered.

4.5. Discussion

Compared with traditional pollution-intensive industries, there
are relatively few literatures on the EE of HTM. The results of
this article show that IURC significantly inhibits the EE of Chinese
HTM, while R&D investment has a significant positive effect on the
EE of China’s HTM. This is analogous to the research conclusion of
Peng et al. (2022).

The direct effect of IURC on HTM’s EE is significantly negative.
The possible reason is that, overall, the environmental technology
obtained through IURC is not at the forefront of technology.
At the same time, these technologies are easy to be replaced by
foreign technologies (Peng et al., 2018). From the point of view
of cost and benefit, backward enterprises will not actively purchase
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environmental technology from domestic universities and scientific
research institutions, while domestic technology leading enterprises
are reluctant to transfer their own environmental technology
to other enterprises for maintaining their own technological
advantages. All these things make it difficult for IURC to have a
direct and positive effect on the EE of HTM.

Research and development investment has significantly
improved the EE of China’s HTM. R&D investment increases the
environmental technology accumulation of HTM enterprises in
the production process and urges these enterprises to launch more
environmentally friendly new products and technologies (Chen
et al., 2020), which has a significant positive impact on the EE
of HTM.

In addition, both Models 5, 6, 7, and 8 show that
there is a significant complementary effect between IURC and
R&D investment, and this complementary effect significantly
promotes the EE of HTM. As the environmental technology
gap between Chinese high-tech enterprises is relatively small,
R&D investment has enhanced the absorptive capacity of HTM
enterprises to indigenous technology (Spithoven et al., 2010;
Aldieri et al., 2018). These not only make the purchased
indigenous technology easy to be digested and absorbed by
the receiver, but also enable the technology receiver to develop
more environmentally friendly technologies based on absorbing
indigenous technology. As a result, the receiver improves
EE in the process of absorbing and improving the acquired
indigenous technology.

The results also indicate that in developing countries,
external technology does not necessarily contribute to efficiency
improvement, but the complementary effect of external technology
and R&D has a positive impact on efficiency. Similar studies,
Danquah (2018) confirmed that although import has an obstructive
effect on the efficiency of sub-Saharan African countries, the
complementary effect of import and R&D promotes its efficiency
(Danquah, 2018). Barasa et al. (2019) found that although foreign
technology has a negative impact on the technical efficiency of
African manufacturing enterprises, the complementary effect of
foreign technology and R&D investment is very important to
improve efficiency (Barasa et al., 2019).

However, different from Peng et al. (2022), this article focuses
on the direct and indirect effects of IURC on the EE of HTM. This
article found that although IURC cannot directly improve EE, it has
a positive impact on the EE of HTM through its complementary
effect with R&D investment. This means that ignoring the indirect
effect will exaggerate the adverse impact of IURC on HTM’s EE.
In addition, Peng et al. (2022) used the SBM-Tobit model to
analyze the influencing factors of EE of HTM, which did not
consider the impact of random factors, while the PP-SFA model
proposed in this study further improved the reliability of the
analytical results.

5. Conclusion and policy
implications

In this study, a translog stochastic frontier model considering
undesirable outputs was proposed by combining the PP model

with the SFA. Based on the interprovincial data of Chinese HTM
from 2006 to 2017, this study analyzed the links between IURC
and HTM’s EE. The results show that IURC has both a significant
negative direct effect and a significant positive indirect effect on the
EE of HTM. On the surface, IURC suppresses the improvement of
EE. However, there is a significant complementary effect between
IURC and R&D investment, which has a significant positive impact
on the EE of HTM. The results also confirm that there are
significant regional differences in HTM’s EE in China. In general,
there is much room for improvement in the EE of China’s HTM.

Although IURC has a direct inhibitory effect on the EE
of HTM, there is a significant complementary effect between
IURC and R&D investment. Therefore, in the process of actively
promoting the green development of HTM, we should not only
pay attention to increasing R&D investment in environmental
technology, but also pay attention to promoting IURC. In the
process of facilitating HTM enterprises to introduce indigenous
technology from universities and scientific research institutions,
decision-makers should pay more attention to improving the
institutional environment of IURC. All of these can have a positive
impact on the EE of China’s HTM. With the transfer of HTM
from eastern China to other regions, the green development of
eastern HTM will depend more on R&D investment. In the process
of undertaking the transfer of HTM, the central and western
provinces should combine the local industrial foundation and
the technological capacity of enterprises and introduce suitable
indigenous technology to improve the technological process, to
promote the transformation of HTM to green development. At
the same time, the central and western regions should also
learn from the experience of IURC in the eastern region to
improve the market-oriented management level of their technology
transfer institutions.

There are also some shortcomings in this study. China’s
HTM includes computer manufacturing, medical equipment
manufacturing, and other subsectors, which have different
environmental pollution status and environmental technology
level. It is necessary to deeply analyze the EE of HTM and
its influencing factors in specific subsectors. In addition, the
differences in industrial base and environmental policies between
the three areas of China will also affect decision-making on IURC
and R&D investment. However, we reckoned without these factors
in this article, which will be the next focus of research.
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