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Climate change alters the spatial
pattern of plant spectral diversity
across forest types

Yu Peng*, Jiaxun Xin and Nanyi Peng

College of Life and Environmental Sciences, Minzu University of China, Beijing, China
Species distribution, spatial distance, and neighboring interact6ions are among

the most important drivers of global variation in plant species diversity. However,

the effects of climate change on the relationship between spatial interactions and

species diversity remain unknown. Here, we applied 12 machine learning models

to assess the responses of spectral diversity (indicating species diversity) in

forests in seven protected forest areas in China. Changes in 27 climatic

variables during two time periods, 1990–2005 and 2005–2020, were

analyzed. The results indicated that spectral diversity and intraspecific spatial

distance have increased significantly with climate change. These results also

provide insights into the variations in spectral diversity. Particularly, the

contributions of neighboring interactions and plant–plant distances to the

variation in species diversity between 1990 and 2000 were greater than the

contribution of climate change in all forest types. Our analysis revealed that

species diversity, plant–plant interactions, and spatial distance are closely

associated with each other and sharply shifted under climate change. From

this perspective, spatial interaction analysis—to a greater degree than analysis of

community composition—can provide additional insights into the underlying

mechanisms of changes in species diversity under current global-

warming conditions.

KEYWORDS

spectral diversity, forests, spatial distance, macroecology, species diversity,
climate change
1 Introduction

Global climate has been in a state of continuous warming for nearly a century. The

current rate of temperature increase is approximately twice that of the previous century

(Karl et al., 2015), and this increase is most pronounced at high elevations and latitudes

(Peñuelas et al., 2013). Several studies have focused on the effects of climate change on plant

diversity in different regions of the world (Boutin et al., 2017; Harrison et al., 2020). The

species richness of vascular plants has also increased with the rise in temperature and

nitrogen deposition, resulting in notable species-composition shifts (Boutin et al., 2017). In

the Columbia River Gorge National Scenic Area, species richness, annual average
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temperature, and relative humidity were found to be significantly

and positively related to each other (Matos et al., 2017). The higher

the plant species diversity, the lower the impact of climate change

(Li et al., 2018). Globally, regions with warm and wet climates

support more species than those with cold or arid climates. This

broad-scale climatic influence outweighs any other contributor to

plant species diversity (Kreft & Jetz, 2007; Harrison et al., 2020).

Reportedly, taxonomic diversity increases with increasing rainfall or

varies with increasing productivity despite a slight decrease in

temperature (Kreft & Jetz, 2007; Harrison et al., 2020). The

relationship between woody species composition and climate is

highly consistent across spatial scales and organizational levels

(Kreft & Jetz, 2007; Harrison et al., 2020). Based on a very large

dataset of six million trees in more than 180,000 field plots in

central Africa, researchers have shown that sensitivity to climate

change is the highest in endemic species-dominated forests and the

driest forests (Réjou-Méchain et al., 2021). Further, recent studies in

West Africa have shown that dry tropical forests exhibit larger

functional changes compared with moist forests in response to

long-term drought (Aguirre-Gutiérrez et al., 2019) and are likely to

be more sensitive to global warming (Sullivan et al., 2020). In

another study conducted in the Amazon, researchers found a peak

in phylogenetic diversity at an intermediate level of precipitation

(Neves et al., 2020). Conversely, forests dominated by widespread

tree taxa adapted to anthropogenic pressures show relatively low

sensitivity to climate change (Réjou-Méchain et al., 2021). Based on

model predictions (Réjou-Méchain et al., 2021), undisturbed semi-

deciduous and transitional forests appear phylogenetically more

diverse than evergreen forests and demonstrate less sensitivity to

climate change. However, these in-depth studies have mainly

focused on the effects of climate change on plant species diversity

in certain regions. Notably, an overall understanding of the spatial

patterns of species diversity across vegetation types on a large scale

remains lacking.

The measurement of species diversity on a large spatial scale is

expected to be more time- and labor-intensive and expensive than

on a small scale. With the use of remote sensing, it is now possible to

monitor species diversity in large areas over a short period of time

(Rocchini, 2007; Madonsela et al., 2017). Of the many different

spectral vegetation indices that serve as proxy measures of species

diversity, the coefficient of variation in the Normalized Difference

Vegetation Index (CV-NDVI), which indicates the variation in

spectral species within a plot, i.e., alpha diversity, is most widely

used (Peng et al., 2019).

Forests are more appropriate for observing the effects of climate

change than other ecosystems because trees have long growth stages

and are less affected by occasional, short-term, or intravariable

climatic fluctuations (Engler et al., 2009; Zwiener et al., 2018).

Spectral diversity indices extracted from remote sensing imagery are

particularly useful for predicting forest species diversity because the

size of a tree crown usually matches well with the pixel size of

satellite images. Furthermore, the use of protected areas (PAs) in

this type of analysis can minimize non-climate anthropogenic

impacts on plant diversity. An examination of the spatial

distribution of plant species can help us to understand the

mechanism of climate change impacting plant diversity and
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provide a reference for biodiversity conservation in world forests.

In this study, we used spectral diversity (CV-NDVI) to evaluate

plant species diversity. Based on the results of previous studies, we

hypothesized the following: 1) species diversity could increase due

to a rise in global temperature, associated with increased

productivity; 2) increased plant diversity would produce strong

neighboring effects, and plant–plant competition could become

severe; 3) stronger neighboring interactions and plant–plant

competition could lead to a longer spatial distance between

plants, and the clustering community would become diffused; and

4) the changes in spatial distance and neighboring interactions

could produce a feedback effect on species diversity (Figure 1).

Using remote sensing techniques and spatial analysis, we tested our

hypotheses based on the spectral diversity of vegetation in seven

protected forests in China.
2 Study area and methods

2.1 Study area

For the present study, protected forest areas in China were

selected as the data source based on the following criteria: 1) PAs

established before 1980 to guarantee an undisturbed status of plant

diversity in the area; 2) PAs having Landsat images in the growing

seasons in 1990, 2005, and 2020, with a cloud cover of less than

10%; 3) PAs larger than 100 km2, in which a core area with a buffer

zone (larger than 2 km) can be created; and 4) PAs located entirely

within one forest biome and not mixed with other forest types.

These criteria were selected to ensure the quality of Landsat images,

sufficient space for plot sampling, and the reliability of comparisons

across different forest types. Out of all 474 national PAs, seven (with

a median area of 100 km2) (Figure 2), representing a geographically

stratified and broad selection of evergreen broad-leaved, deciduous,

and needle-leaved forests from low to high latitudes (Ricklefs & He,

2016), were selected for this study.
2.2 Plant diversity indices derived from
Landsat images

Prior to calculating the spectral diversity indices, all the Landsat

images were processed. Cloud-free Landsat satellite images (with a

spatial resolution of 30 m) were obtained for the years 1990,

2005, and 2020 from the Global Land Cover Facility

website (http://glcfapp.umiacs.umd.edu). All Landsat images were

radiometrically and atmospherically corrected using Idrisi

GIS (Levin et al., 2007). Thereafter, the images were validated

for shading effects at 30-m resolution caused by topography

u s i n g t h e ASTER g l o b a l d i g i t a l e l e v a t i o n mode l

(http://gdem.ersdac.jspacesystems.or.jp). In order to differentiate

the biological features of forests while minimizing the problems of

image incompatibility due to seasonal or annual differences, images

during the growing seasons were included. Radiance values were

converted to surface reflectance, which helped identify the

differences in exoatmospheric irradiance and solar zenith angles
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(Rocchini, 2007; Duro et al., 2014). All image processing was

performed using ERDAS Imagine software.

After pre-processing, the CV of the NDVI (CVn) within a

window of 3 × 3 pixels was calculated as the spectral alpha diversity

index of the plot. A series of spectral biodiversity indices (CVn) was

then generated at plot sizes of 3 × 3, 5 × 5, 9 × 9, 17 × 17, and 33 × 33

pixels. After investigating the effects of spatial autocorrelation,

estimation accuracy, and environmental scale, we selected a

window of 33 × 33 pixels as the most convenient size to calculate

spectral diversity, which has also been used in similar studies on

tropical mountain rainforests (Wallis et al., 2017) and savannah

woodlands (Madonsela et al., 2017).
2.3 Spectral–spatial metrics

From the NDVI imagery, we derived three spectral–spatial

measures, namely, spatial distance, spatial aggregation, and

neighboring correlation, as species spatial pattern representatives.

The Euclidean nearest-neighbor distance (ED) represents the

distance (m) from spectral plant a to the nearest neighboring

spectral plant b of the same species, computed from the shortest

pixel–pixel distance. The aggregation index (AI) represents the

number of similar adjacencies involving the corresponding

spectral species divided by the maximum possible number of

similar adjacencies involving the corresponding spectral species

(0 ≦ AI ≦ 100). Given any pi, AI equals 0 when the focal cluster is

maximally disaggregated (i.e., when there are no adjacencies), and

AI equals 100 when the cluster is maximally aggregated into a

single, compact cluster.
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Neighboring interactions can be determined using the

correlation coefficients (COs) of neighboring pixel–pixel pairs

within a moving window (Hall-Beyer, 2017). Image texture

metrics were derived from multiple-scale spectral values using a

gray-level co-occurrence matrix (GLCM) in the ENVI 5.3 program.

A detailed description of image texture measurements can be found

in the ENVI software manual. A 33 × 33-pixel window size was used

to detect the spectral–spatial variability (Kelsey and Neff, 2014), as

this size was consistent with the spatial variability defined by the

semi-variogram analysis in the present study area (Hernández-

Stefanoni et al., 2012). We selected these metrics because they can

successfully derive plant–plant spatial patterns across different

extents (He et al., 2000). ED and AI values were calculated using

Fragstats 4.3.
2.4 Climate data

Temperature and precipitation data for each PA between 1982

and 2020 were obtained from the China Meteorological Data

Service Center. The data were developed using the spatial

interpolation method in ArcGIS, based on more than 2,400

meteorological stations across the country. This method has been

widely applied in the fields of meteorology, climate, ecology, and

environment (Boutin et al., 2017; Harrison et al., 2020). Lastly, 27

groups of climatic data were developed at the annual level (e.g.,

annual maximum temperature (ATmax), annual minimum

temperature (ATmin), and annual precipitation (AP)) and at the

monthly level (e.g., mean monthly temperature (MMT), monthly

maximum temperature (MTmax), and monthly minimum
FIGURE 1

Conceptual illustrations of predicted changes in vegetation spectral diversity under climate warming. Under climate warming, species diversity (CV)
could increase, the abundance of plants could increase, the neighboring interactions (CO) would become stronger, and, consequently, self-thinning
effects will lead to a longer distance (ED) between two plants of the same species. The variation in ED and CO can also work on CV. Different
symbols represent different spectral species; CV, spectral alpha diversity; CO, neighboring correlation; ED, spatial distance.
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temperature (MTmin)). Additionally, we collected data

corresponding to cumulative temperatures ≥5°C and ≥10°C and

precipitation seasonality.
2.5 Trends in plant diversity change

The spectral–spatial metric (CV, CO, ED, and AI) values for

1990, 2005, and 2020 were compared using Duncan’s new multiple

range test (DNMRT). This approach has been widely used to

compare results across different measurements, environmental

conditions, and sampling locations (Wang et al., 2010; He et al.,

2017). The data were tested for normality and equality of variances

and, if necessary, were converted to the square-root value or log-

transformed prior to analysis. Change trends were classified based

on six levels: decrease at p < 0.01, decrease at p < 0.05, insignificant

decrease, insignificant increase, increase at p < 0.05, and increase at

p < 0.01. DNMRT was conducted using the DPS software (http://

www.chinadps.net, Zhejiang University, China).
2.6 Identification of key drivers

Twelve models were analyzed to identify the key influential

factors of spectral–spatial patterns under climate change using the

SPSS modeler (SPSS modeler 18, Statistical Package for the Social

Sciences, Chicago, IL, USA). These 12 models were included with
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four regression models (linear regression, linear assignment (AS),

general linear model, and partial least square regression), one

classification model (k-nearest neighbors), and seven machine

learning models (support vector machine (SVM), linear SVM,

random tree, tree AS, classification and regression tree analysis,

artificial neural network, and chi-squared automatic interaction

detector). Model performance was assessed using three indicators:

the coefficient of determination (R2, calculated as the squared

Pearson’s correlation coefficient), root mean square error (RMSE),

and significance level (p). The models with the highest R2 and

lowest RMSE (p < 0.01) were considered the best fit (Fassnacht

et al., 2014). The climate variables in the best models with the most

important values were regarded as key influencing variables and

were further analyzed to determine their contributions to the

variation in spectral–spatial matrices from 1990 to 2020. A total

of 168 models were analyzed. The reliability and appropriateness of

the 12 models for modeling and predicting spectral CV for climate

change are described in the Supplementary Material.

To explore the relationships between the selected key climate

variables, a redundancy analysis (RDA) was conducted using

Canoco software 5.0. Partition analysis of the RDA-related

variation was used to analyze the relative contributions of the

three groups of explanatory variables (climate, spatial distance

(ED), and neighboring interaction (CO)) to the variance of the

response variable (CV). RDA-related ordination and variation

partitioning analyses were conducted using Canoco 5.0 (Leps ̌ and
Šmilauer, 2003).
FIGURE 2

Study area. Seven protected forest areas across a latitudinal gradient. Forest types are indicated by colored areas.
frontiersin.org

http://www.chinadps.net
http://www.chinadps.net
https://doi.org/10.3389/fevo.2023.1137111
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Peng et al. 10.3389/fevo.2023.1137111
3 Results

3.1 Spectral CV variation

From 1990 to 2020, ED significantly (p < 0.05) increased as AI

decreased (Figure 3). In contrast, CO did not vary significantly

during the different periods. The regional spectral CVs in 2020 were

higher than those in 1990 (p < 0.05). In addition, the CV values in
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cold-temperate climates increased more than the corresponding

values in subtropical and tropical climates.

From low to high latitudinal gradient, CV values showed a

significant v-curve (r2 = 0.22), ED significantly (r2 = 0.33)

decreased, and AI (r2 = 0.90) significantly increased (Figure 4). In

turn, CO exhibited the least change. When annual precipitation

increased from 900 to 1,900 mm, the values of CV increased

significantly (r2 = 0.33), and AI decreased significantly (r2 = 0.23),
A

B

D

E

F

G

C

FIGURE 3

Values of CV, CO, ED, and AI in 1990, 2005, and 2020 for seven forest PAs. Lines in boxes represent medians, and box ends represent quartiles;
whiskers mark the 95th percentiles, and circles represent outliers. Box width is proportional to the square root of the number of data points in each
category. CV, spectral alpha diversity; CO, neighboring correlation; ED, spatial distance; AI, aggregation index; PAs, protected areas. (A) hz; (B) kns;
(C) qls; (D) wl; (E) slj; (F) phs; (G) hls.
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whereas no significant (r2 = 0.18) increase in ED (r2 = 0.18)

was observed.
3.2 Identification of key influential factors

Among the 12 models, the chi‐squared automatic interaction

detector (CHAID) model yielded the most accurate predictions

for all response variables across the seven PAs under study

(average R2 = 0.66), generalized linear modeling (GLM) (average

R2 = 0.61), and artificial neural network (ANN) (average R2 =

0.56) (Figure 5). CHAID is based on multi‐way splits and adjusted

significance testing (Bonferroni testing, p < 0.05). In every step,

the predictor variable with the strongest interaction with the

dependent variable was selected for the split. Default values of

100 iterations were used, with a minimum change of 0.05 in the
Frontiers in Ecology and Evolution 06
expected cell frequencies. Our CHAID model yielded an out-of-

sample predictive accuracy of 78%–98%. Therefore, five key

influential climate variables were extracted based on the best

model for each PA.

Nearly 10 climate variables (Figure 5) emerged as important in

the overall models, explaining 89.82% of the variation in the

response matrix of spectral CV between 1990 and 2005 and

87.22% of the variation between 2005 and 2020. Both cumulative

temperature values of ≥5°C and ≥10°C were important in these

models, particularly in April, June, September, and October (T10-6,

T5-04, T10-04, T10-09, and T5-10), as was the average temperature in

March and November (m03 and m11). Of all 140 selected climate

variables in the 168 models, 27.86% were accounted for.

The most influential climatic factors also varied from low to

high latitudinal gradients (Figure 6). For boreal forests (hz), the

highest temperature in December contributed the most to the
A B DC

A B DC

FIGURE 4

Patterns of CV, CO, ED, and AI with latitude and annual precipitation (×0.1 mm) gradients in 1990, 2005, and 2020. Forest spectral parameters and
the environmental variables demonstrated a significant (p < 0.001) association, except those of CO. CV, spectral alpha diversity; CO, neighboring
correlation; ED, spatial distance; AI, aggregation index. (A) CV; (B) CO; (C) ED; (D) AI.
FIGURE 5

Model selection for regional vegetation spectral variation responses under climate change for core zones in seven protected forest areas. Vegetation
spectral responses include differences between 1990–2005 (CV9005) (Left) and 2005–2020 (CV0520) (Right). Seven predictive models are shown
and ranked by R2 and RMSE. ANN, artificial neural network; C&R, classification and regression tree analysis; CHAID, chi-squared automatic
interaction detector; GLM, generalized linear model; LR, linear regression; MSLR, multiple stepwise linear regression; SVM, support vector machine.
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variation in the value of spectral CV (IV > 0.29). Cumulative and

lowest temperatures in April (spring) were among the top

predictors (IVs > 0.14) of changes in spectral CV in temperate

forests (qls). The lowest temperature in winter was the key factor for

changes in the spectral CV in subtropical forests (slj and phs). In the

case of rainforests (hls), the key climatic factors were the highest

and lowest temperatures in winter and cumulative temperatures in

the spring and autumn (Figure 6).
Frontiers in Ecology and Evolution 07
3.3 RDA ordination: relationships among
key climate variables

As per RDA ordination, the two axes explained 14.0% of the

vegetation variation in the PA of hz, 18.55% of qls, 31.11% of wl,

13.49% of slj, 64.48% of phs, and 25.39% of hls (Figure 7). In PAs

with cold temperate conditions, CV values were negatively related

to AI, low08 (the lowest temperature in August, the following is
A B D E F GC

FIGURE 6

The 10 key climate variables that contributed the most to the variation in regional spectral CV from 1990 to 2005. m, mean temperature; h, highest
temperature; low, lowest temperature; 01–12 indicate January to December; Tfive, cumulative temperature of ≥5°C; Tten, cumulative temperature
of ≥10°C; 900502 indicates the difference in February between 1990s (1980–1990) and 2005s (1995–2005). (A) hz; (B) kns; (C) qls; (D) wl; (E) slj;
(F) phs; (G) hls.
A B
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F G
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FIGURE 7

RDA ordinations between the regional spectral CV, ED, AI, CO, and environmental variables in seven forest PAs (A–G). EDc, Euclidean distance (m);
Coc, neighboring correlation; m, average temperature during a period (×0.1°C; low, lowest temperature during a period; h, highest temperature
during a period; T5, cumulative temperature ≥ 5°C during a period; T10, cumulative temperature ≥10°C during a period). RDA, redundancy analysis;
CV, spectral alpha diversity; ED, spatial distance; AI, aggregation index; CO, neighboring correlation; PAs, protected areas.
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same), and h11 and positively related to m05 and m012. The

performances of kns and qls were similar in that CV and CO

values were positively associated. With respect to wl, T10-5 and

T10-6 were negatively correlated with the CV. In sjl, low11 was

positively and negatively correlated with CV and m03, respectively.

Lastly, in the case of tropical and subtropical climate PAs (phs and

hls), AI was negatively related to CV and differed from the values

obtained in the other PAs.
3.4 Variation partitioning

Interestingly, spatial distance metrics (b; ED and AI) explained

most (>10%) of the regional spectral variation of CV values in all

seven PAs (Figure 8), and climate variables (a) explained a negligible

proportion of CV variation (major in 0%–5%). Moreover, a greater

proportion of the CV variation was explained by distance metrics

(23.8%) in cold climate areas than in other areas. On average, the

portion of neighbor correlation (c; Cor, 3.7%) was larger than that of

climate variables (a; 2.3%). In tropical areas (hls), the interaction

between climatic conditions and neighboring correlations (f) showed

10.8% of the spectral CV variation, whereas in cold areas (hz), this

interaction accounted for only 0.6%.
4 Discussion

This study is the first attempt to link climate change,

neighboring interactions, and spatial distance to species richness

and evenness. Using high-accuracy modern machine learning

models, we identified the key influencing factors that contributed

to the variation in spectral diversity on a large scale using 27

climatic variables. Furthermore, we evaluated the contribution of

climate, neighboring interactions, and spatial distance to the

variation in spectral CV across forest types.
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Consistent with previous studies (Zhang et al., 2017), our results

indicated that spectral diversity has increased with climate

warming. A recent study found that species richness increased on

mountain summits in boreal-temperate forests in Europe (Pauli

et al., 2012). Over 30 years of succession, species richness and

phylogenetic diversity of plantation trees have increased

monotonically (Yu et al., 2019). An increase in spectral species

richness is closely associated with an increase in the NDVI, effective

cumulative temperature, and seasonal variation in moisture

availability (Harrison et al., 2015). In heterogeneous grasslands in

California (USA), livestock grazing, fire, succession, nitrogen

deposition, and exotic species did not contribute to fluctuations

in plant diversity (Harrison et al., 2015). In this study, monthly

cumulative temperature, rather than annual average temperature,

contributed the most to the increase in spectral CV from 1990

to 2020.

We found that neighboring interactions and plant–plant spatial

distance increased with increasing species diversity, presumably due

to an increase in tree productivity and tree abundance resulting

from ecological complementarity. A previously published global

meta-analysis demonstrated that diversity effects are prevalent in

the most productive environments, whereas abundance effects

became dominant under the most limiting conditions (Madrigal-

González et al., 2020). Therefore, a higher abundance will definitely

affect plant–plant interactions (i.e., neighboring interactions), and

the consequences of this may be either positive or negative,

depending on species traits, economics, and environmental

conditions (Madrigal-González et al., 2020). A meta-analysis

showed that larger positive effects favored sapling emergence and

survival, whereas smaller negative effects act on plant growth and

density (Gómez-Aparicio, 2009). The life form of the interacting

species largely influences the outcome of the interaction; for

example, herbaceous plants have strong negative effects, especially

on other herbaceous species, whereas shrubs have strong supportive

effects, especially on trees (Gómez-Aparicio, 2009). Semiarid and
A B D

E F G H

C

FIGURE 8

RDA ordination-based regional spectral CV variation partitioning in seven protected forest areas by selecting “Var-part-3groups-conditional-effects-
tested.” a, climate (ten climate variables selected); b, spatial distance (ED and AI); c, neighbor interaction (CO); d = a + b, e = b + c, f = a + c, and g =
d + e + f. (A) hz; (B) kns; (C) qls; (D) wl; (E) slj; (F) phs; (G) hls; (H) components of variation partitioning. RDA, redundancy analysis; CV, spectral alpha
diversity; ED, spatial distance; AI, aggregation index; CO, neighboring correlation.
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tropical ecosystems, but particularly temperate ecosystems, show

more positive neighbor effects than wetlands (Gómez-Aparicio,

2009). Biotic interactions are thought to be relatively more

important in shaping biodiversity at tropical than at temperate

latitudes (Roslin et al., 2017). Ignoring biotic interactions affects the

estimate of climatic niche limits that determine the responses of

plant diversity to climate change in models (Newbold et al., 2020).

The results of the current study underscore the need to include

biotic interactions in climate change modeling.

Neighboring species may demonstrate strong positive or

negative correlations. However, when both types of correlation

exist, the total neighboring interaction in the region may become

null or weak, given that positive and negative values counteract each

other (Dray et al., 2012). Weak or null values of neighboring

interactions may result when both positive and negative

correlations shape species spatial distributions (Wagner, 2013;

Biswas et al., 2016). In the present study, warming on a regional

scale increased plant species richness (spectral CV), creating a

stronger spatial correlation between neighboring species, whereas

competition on a plant–plant scale created a negative spatial

correlation (Biswas et al., 2017). Although neighboring

interactions were weak, they still highly contributed to variation

in plant species diversity (spectral CV) in our study.

Considering these results, it is reasonable to expect that stronger

neighboring interactions will enhance plant–plant competition,

thereby producing a negative effect on intraspecific associations.

Conclusively, only species distributed over large distances will

survive. Therefore, climate warming leads to a large plant–plant

distance. Hypotheses 2 and 3 were confirmed by our data.

Specifically, we found that the spatial distance between the same

spectral species increased with increasing spectral CV under climate

change. The spatial patterns of communities are shaped by

env i ronmenta l fi l t e r ing and bio log ica l compet i t ion .

Environmental filtering produces a spatially aggregated pattern,

whereas competition produces a spatially segregated pattern (He &

Biswas, 2019). Possibly, intraspecies competition played a stronger

role than environmental filtering in structuring the communities

studied from 1990 to 2020, likely because the soil properties,

landforms, and slope remained unchanged during this period,

whereas plant diversity (spectral CV) increased. To a certain

extent, higher plant abundance and species numbers might have

confounded the positive effects of climate warming at a local scale.

Moreover, our results confirmed that the contribution of plant–

plant distance to species diversity was higher than that of climate

variables for all forest types (hypothesis 1). Consistent with these

findings, a previously published field experiment has shown that

biotic interactions have a strong effect on plant fitness and

eventually override the effects of climate (Tomiolo et al., 2015).

The patterns of spectral metrics in response to climate change

were the same as those in the field survey. Consequently, we

determined that spectral metrics are reliable proxy measures of

plant species parameters. Several dissimilarity measurements have

been introduced to quantify the overall heterogeneity in plant species

composition on a few or multiple sites. However, pairwise

dissimilarities do not account for patterns of co-occurrence at more
Frontiers in Ecology and Evolution 09
than two sites (Baselga, 2013). Consequently, the average of the

pairwise dissimilarities may not accurately reflect the overall

compositional heterogeneity at multiple sites (Baselga, 2013). Within

a highly diverse plant community, many plant species lived together or

were associated with higher stem abundance. In remote sensing

images, the former demonstrates a cluster with high heterogeneity,

while the latter demonstrates similar neighboring pixels. A dataset

based on remote sensing is reliable for analyzing both the spectral

diversity and spatial patterns of plant species in forests.

In the current study, we found that geophysical factors

including soil pH and clay content tended to have higher effects

on tree species diversity. Although climate is changing rapidly,

geophysical factors are relatively fixed and are not likely to change

significantly over the timescales considered in this analysis.

Consequently, geophysical variables were not included in the

models. In addition, evolutionary and biogeographic histories,

including past diversification processes and environmental

changes, influence the distribution of tree diversity, and such

factors should be considered in future studies on the spatial

patterns of plant diversity.
5 Conclusions

Our results indicated that climate warming has increased

species diversity, which in turn has increased neighboring

interactions, ultimately leading to a longer plant–plant distance.

However, we found that climate change contributed less to species

diversity than neighboring interactions and spatial distance.

Conclusively, we did not detect a significant change in the overall

neighboring correlation on a regional scale under climate warming,

although we did observe an increase in the spatial distance across

spectral species. In future studies, the relevant biotic and abiotic

factors should be quantified, and an assessment of the relative

contribution of abiotic factors to the spatial pattern of species

diversity should be performed. The general effects of neighboring

interactions on plant diversity should be considered at the global

scale, considering all vegetation types under the conditions of

ongoing climate change.
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