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Assessing vegetation restoration and degradation trends is important for regional 
ecological conservation and sustainable development, yet few studies have 
examined the characteristics of these trends in natural and artificial vegetation 
in arid zones. In this study, we develop an assessment framework based on two 
common ecological indicators, Net Primary Productivity (NPP) and Water Use 
Efficiency (WUE). We discuss the restoration and degradation trends of natural 
and artificial vegetation in China’s Northwest Arid Region (NAR) and analyze the 
similarities and differences between the changes in the two. Our results reveal 
the following: (1) Both natural vegetation (Nav) NPP and artificial vegetation (Arv) 
NPP in the NAR are dominated by significant growth, with precipitation being 
the most influential factor. Arv NPP changes are greater than Nav NPP. (2) WUE 
and NPP have similar spatial distribution characteristics, with precipitation and 
temperature dominating WUE changes in the Qilian Mountains and s southern 
Xinjiang, respectively. In the near future, Nav WUE is expected to be dominated 
by improvement to degradation, while Arv WUE will continue to improve under 
human intervention. These two indices respond differently to the environmental 
factors that cause their changes. (3) Nav and Arv exhibit similar restoration and 
degradation trends, mainly dominated by early recovery with Nav displaying a 
slightly more prominent restoration trend than Arv. The NPP-WUE assessment 
framework will help to rapidly assess vegetation degradation and restoration at 
large scales, providing new perspectives for research in this field.
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1. Introduction

According to the newly published World Atlas of Desertification, more than 75% of the 
world’s land is already degraded. By 2050, this proportion is predicted to exceed 90% (Ádám 
and Křeček, 2019). As multiple regions across the globe are suffering from the effects of drought, 
degradation and desertification, coping with these issues has become an international flash point 
that will challenge the achievement of the United Nations Sustainable Development Goals 
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(SDGs; Stavi and Lal, 2015; Barbier and Hochard, 2018). To alleviate 
environmental pressures and improve ecosystems, the Chinese 
government started a series of ecological construction projects in the 
late 20th century (Lü et al., 2012; Bryan et al., 2018). The Northwest 
Arid Region (NAR) is one of the most ecologically fragile regions in 
China. In recent years, with the development of oasis agriculture, 
there has been serious vegetation destruction in that zone, making it 
a priority area for ecological construction (Fang et  al., 2001; Li 
et al., 2019).

Artificial vegetation (Arv) is an important component of the 
NAR’s ecosystem. Arv is also an important complement to natural 
ecosystems, so China’s vast Arv region plays a key role in enhancing 
ecosystem services and mitigating climate warming (Peng et al., 2014; 
Tang et  al., 2018). Several studies have attempted to explore the 
structural differences as well as the degradation and restoration 
patterns between Arv and natural vegetation (Nav; Domec et al., 2015; 
Fu et  al., 2017). Recent research suggests that Nav restoration 
significantly improves soil organic carbon storage and inorganic 
nitrogen accumulation in restored areas compared to Arv restoration; 
it also plays an important role in improving soil aggregate stability and 
erosion resistance (Hu et al., 2019; Dou et al., 2020). Over the long 
term, Arv planting is anticipated to cause degradation of vegetation 
when it exceeds the natural carrying capacity, causing the growth of 
Nav to saturate or even decrease (Xu, 2022). These widespread trends 
in vegetation restoration and subsequent degradation have caused 
considerable concern. However, due to the complexity of the processes 
involved, especially in arid areas, there is considerable uncertainty in 
their assessment. Vegetation restoration and degradation in arid zones 
remains poorly studied, which limits our understanding of the change 
mechanisms contributing to the phenomenon.

With the development of remote sensing techniques, ecological 
indicators such as the Normalized Difference Vegetation Index 
(NDVI) and Net Primary Productivity (NPP) are now being widely 
used to characterize vegetation growth trends (Wessels et al., 2012; Le 
et  al., 2016). The most popular method is the simulation of NPP 
estimation based on NDVI and using the Carnegie-Ames-Stanford 
Approach (CASA). However, there is uncertainty in assessing 
desertification processes when relying solely on NPP indicators. 
Furthermore, desertification not only has an impact on vegetation 
quantity, but usually also on the photosynthetic characteristics, species 
composition, and water use efficiency (WUE) of vegetation (Zhao 
et al., 2009; Zheng et al., 2011).

Water use efficiency refers to the ratio of CO2 assimilation rate to 
transpiration rate or stomatal conductance of leaves and is used to 
reflect the physiological condition of plants (Farquhar and Richards, 
1984; Law et al., 2002). Typically, WUE changes very little, but it does 
change significantly under certain circumstances, such as when plants 
become physiologically adapted to extreme climatic conditions, when 
photosynthesis, transpiration and stomatal conductance of leaves 
change, or when changes in vegetation composition occur (Do and 
Kang, 2014; Huang et al., 2015). In an environment that has turned 

arid, pore conductance preferentially decreases photosynthesis, 
causing transpiration to decrease and plant WUE to increase. In 
contrast, WUE decreases when severe drought occurs (Taylor et al., 
2010; Li et al., 2015).

Vegetation productivity, species composition, and physiological 
characteristics respond differently to environmental stresses during 
the various stages of vegetation degradation. While NPP and WUE 
can characterize some information about changes in vegetation 
production and species composition, respectively, the joint use of 
these two indicators to build a framework can characterize different 
stages of vegetation degradation more effectively than the use of 
individual indicators alone (Ruppert et al., 2012; Horion et al., 2016). 
Based on this approach, the present study uses a joint WUE and NPP 
framework to assess the degradation and restoration trends of natural 
and artificial vegetation in the arid zone of northwest China and to 
analyze the differences between the two trends (Figure 1). The aim in 
conducting this research is to provide a scientific basis for vegetation 
conservation and ecological environment improvement in the NAR.

2. Study area

The Northwest Arid Region (NAR) is located in the interior of 
western China. It covers an area of about 2.11 × 106 square kilometers 
and includes Xinjiang, northern Gansu, and western Inner Mongolia. 
The NAR has a complex and diverse landscape, with undulating 
terrain and a topography that is dominated by plateaus, mountains, 
and basins. The natural landscape constitutes a special geographical 
pattern with the coexistence of three major ecosystems: mountain-
oasis-desert (Figure 2).

Due to the perennial influence of continental climate, the NAR 
has little precipitation and shows a decreasing trend from east to west. 
Evaporation is strong and surface water is insufficient to sustain 
normal vegetation growth, so plants have to rely mainly on 
groundwater. Temperatures vary widely from day to day, season to 
season, and year to year, making the NAR one of the driest areas in the 
world. Of the few lakes that do exist, most are located in the Xinjiang 
Uygur Autonomous Region. Their water is typically brackish and 
saline, and they have large seasonal variations in area and depth. 
Human settlement in the NAR is relatively sparse compared to 
elsewhere in China, with most of the population concentrated in the 
region’s oasis area. Unfortunately, economic development in this arid 
zone has not kept pace with the rest of the country, due primarily to 
the constraints imposed by the harsh environmental conditions and 
low population.

3. Data and methods

3.1. Data

The data used in this study are shown in Table  1. MODIS 
(Moderate-Resolution Imaging Spectroradiometer) is a new 
generation of “atlas-integrated” optical remote sensing instruments. 
Its data products help us to understand in depth the global dynamics 
of land, ocean, and lower atmosphere (Justice et al., 2002). GLDAS 
(Global Land Data Assimilation System) can generate the best land 
surface states and flux fields for global implementation at high 

Abbreviations: CASA, Carnegie-Ames-Stanford Approach; NAR, The Northwest 

Arid Region; Arv, Artificial vegetation; Nav, Natural vegetation; MODIS, Moderate-

resolution Imaging Spectroradiometer; NPP , Net primary production; P, 

Precipitation; T, Temperature; WUE, Water use efficiency; Plt, Plant transpiration; 

Pho, Photosynthesis; Sto, Stomata
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resolution (Rodell et al., 2004). TerraClimate is a monthly climate 
dataset for the global land surface that combines the WorldClim 
dataset with CRU Ts4.0 and JRA55 to create a high spatial resolution 
dataset covering a wider range of time records (Abatzoglou et al., 
2018). The AVHRR evapotranspiration product uses satellite remote 
sensing data combined with atmospheric reanalysis products and 

daily ground-based meteorological data to produce a global terrestrial 
evapotranspiration dataset (Zhang et al., 2010). The SRTM (Shuttle 
Radar Topography Mission) data were jointly measured by NASA and 
the National Mapping Agency (NIMA) of the Department of Defense. 
They used the C-band in the SAR method to collect 80% of the global 
terrestrial topography (Farr et al., 2007). Some of the temperature and 

FIGURE 1

Technical roadmap for the study.

FIGURE 2

Study area. NO.: GS (2019)1822. ARV covered about 6.5% of the study area and NAV covered about 29.86%.
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precipitation data are downscaled over China using the Delta Spatial 
Downscaling scheme based on the global 0.5° climate dataset 
published by CRU and the global high-resolution climate dataset 
published by WorldClim (Ding and Peng, 2020).

3.2. Methods

3.2.1. WUE calculation
The water use efficiency of an ecosystem is equal to the ratio of net 

primary productivity (NPP) of vegetation to evapotranspiration (ET) 
and is calculated as:

 
WUE

NPP

ET
=

 
(1)

where WUE indicates water use efficiency (g C·mm−1·a−2), NPP 
denotes the net primary productivity of vegetation (g C·m−2·a−1), and 
ET is evapotranspiration (mm·a).

3.2.2. NPP calculation
The CASA (Carnegie-Ames-Stanford Approach) model is a 

typical representative of light energy utilization. In this study, the NPP 
was simulated using the CASA model optimized by Zhu et al. (2006). 
Photosynthetically active radiation (APAR) and light energy 

utilization are the main parameters in this model. Their calculation 
equations are as follows:

 
NPP , APAR , ,x t x t x t( ) = ( )× ( )ε

 
(2)

In the formula, APRP indicates the radiation on an image (x) in 
month t that is beneficial to plant photosynthesis, i.e., 
photosynthetically active radiation (MJ·m−2), and ε denotes the degree 
of light energy utilization in an image (x) in month t, i.e., light energy 
utilization (gC·MJ−1).

To estimate the photosynthetically active radiation absorbed by 
vegetation, remote sensing data can be used for the analysis. Our 
analysis of the determinants of light and effective radiation absorbed 
by vegetation shows that it is determined by the utilization of total 
solar radiation and photosynthetically-effective radiation. The 
expressions can be formulated as:

 
APAR , SOL , FPAR ,x t x t x t( ) = ( )× ( )× 0 5.  

(3)

where SOL(x, t) represents the total solar radiation (MJ·m−2) 
contained in an image element (x) in month t, and FPAR(x, t) indicates 
the ratio of radiation absorbed by vegetation to incident radiation.

The photosynthesis of plants is influenced by factors such as 
temperature, precipitation, and atmospheric water-air pressure 

TABLE 1 Data product type and source.

Model/
Chapter

Product Type Temporal 
resolution

Spatial 
resolution

Source URL Time series

CASA MOD13A3 NDVI 30 days 1 km https://modis.gsfc.nasa.gov/ 2001–2018

[Accessed on 2 August 2022]

MOD17A3H NPP 4 days 500 m https://modis.gsfc.nasa.gov/ 2001–2018

[Accessed on 2 August 2022]

T3H(GLDAS) Temperature 3 h 0.25° http://ldas.gsfc.nasa.gov/ 2001–2018

[Accessed on 13 April 2021]

TerraClimate Precipitation monthly 1/24° ~ 4 km https://www.ecmwf.int 2001–2018

[Accessed on 13 April 2021]

TerraClimate SOL (Total solar 

radiation)

monthly 1/24° ~ 4 km https://www.ecmwf.int 2001–2018

[Accessed on 13 April 2021]

MCD12Q1 Landcover 96 days 500 m https://modis.gsfc.nasa.gov/ 2001–2018

(IGBP) [Accessed on 2 August 2022]

Chapter AVHRR ET 8 days 0.05° http://www.glass.umd.edu/download.html 2001–2018

[Accessed on 13 April 2021]

CRU-Worldclim Temperature monthly 1 km http://data.tpdc.ac.cn/zh-hans/ 2001–2018

[Accessed on 13 April 2021]

CRU-Worldclim Precipitation monthly 1 km http://data.tpdc.ac.cn/zh-hans/ 2001–2018

[Accessed on 13 April 2021]

SRTM DEM — 30 m https://www.usgs.gov/ —

[Accessed on 13 April 2021]

Land use type of 

CAS

Vegetation type — 1 km https://www.resdc.cn/ —

[Accessed on 2 August 2022]
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difference, which further affects the NPP of vegetation. Therefore, in 
the model, these factors regulate NPP through the maximum light 
energy use efficiency. The formula to describe this relation can 
be calculated as follows:

 
ε εε ε εx t T x t T x t x t, , , W ,( ) = ( )× ( )× ( )×1 2 max  

(4)

where T x t T x tε ε1 2, and ,( ) ( )  indicate the stress on ε when the 
temperature is too high or too low ;W x,tµ( )  represents the effect of 
moisture on µ ; and εmax  is the maximum µ(gC· MJ−1) of vegetation. 
In this study, the value of ( εmax ) is based on the calculation results of 
Zhu et al. (2006).

We validated the estimation results using MOD17A3H data. As 
shown in Figure  3, the simulated NPP values have a good linear 
correlation with MODIS17A3H values (R2 = 0.81). This indicates that 
the simulated NPP values of the improved CASA model can truly 
reflect the variations in NPP in the NAR. Therefore, the improved 
CASA model is applicable to the study of NPP estimation in the 
study area.

3.2.3. Hurst index
The Hurst index is often used to predict the persistence of time 

series. In this paper, the index is obtained based on the R/S calculation 
method. The calculation formula is:

 

R

S
CT

T
T
H( )

( )
=

 
(5)

 
R X X t TT t T t T t T( ) ≤ ≤ ( ) ≤ ≤= − ( )max min1 1, ,

 
(6)

 
S

TT
t

T

t T( )
=

( ) ( )= −( )











∑1
1

2

1

2

NPP NPP

 
(7)

where X t T,( )  represents the cumulative deviation; R t( )  denotes 
the extreme deviation; S T( )  stands for the standard deviation; and H 
indicates the Hurst index, whose value is between 0 and 1. When 
H = 0.5, the future trend of the series does not have long-term 
correlation with the past trend; when 0 ≤ H < 0.5, the series has inverse 
persistence, and the future trend is opposite to the past one; and when 
0.5 < H ≤ 1, the series has persistence, and the future trend is consistent 
with the past one.

3.2.4. Partial correlation analysis
In multivariate systems, partial correlation allows the study of the 

correlation of one element to another, while eliminating the effect of 
one or more confounding factors. When the number of control 
variables is one, the partial correlation coefficient is called the first-
order partial correlation coefficient. When the number of control 
variables is n, the partial correlation coefficient is called the nth-order 
correlation coefficient. When the number of control variables is zero, 
the partial correlation coefficient is called the zero-order partial 
correlation coefficient, which is also known as the correlation 

coefficient. The formula for calculating the partial correlation 
coefficient is as follows:

 

R R R R

R R
ab c

ab ac bc

ac bc
·( ) =

− ×

−( ) −( )1 1
2 2

 

(8)

 

R
a a b b

a a b b
ab

i
n

i i

i
n

i i
n

i
( )

=

= − =

=
−( ) −( )





( ) −( )
∑

∑ ∑
1

1

2

1

2

 

(9)

where ( )⋅ab cR indicates the first-order partial correlation 
coefficient between ab with constant c, applicable to the analysis of the 
relationship between three variables; and R ab( )  indicates the 
correlation coefficient between ab, applicable to the analysis of the 
relationship between two variables.

The t-test is generally used to test statistics, using the formula:

 

12,34
2

12,32

1
1

= − −
−

m

m

r
t n m

r





，，

，，  

(10)

where 12,34 mr
，，  represents the bias correlation coefficient, n 

indicates the number of samples, and m denotes the number of 
independent variables. For the present study, p ≤ 0.05 is considered 
statistically significant.

3.2.5. Sen + Mann-Kendall trend analysis
Theil-Sen median trend analysis (also known as Sen trend analysis 

or Sen’s slope) is a robust nonparametric statistical approach to trend 
calculation. Compared to linear regression trend analysis, Sen trend 
analysis circumvents the effects of missing data and data distribution 
patterns in the time series and eliminates the interference of outliers 
in the time series. Its calculation formula is:

 
β =

−
−









 ∀ >Median

A A
j i

ij i
j,

 
(11)

where Aj  and Ai  are the values of year i and j in A time series 
data; Median is the median taking function; and β  is the median of 
the slope of all data pairs, which is the Sen slope of the time series. 
When β>0, the time series has an increasing trend, whereas when β<0, 
the time series has a decreasing trend.

The Mann-Kendall (MK) test is typically used in conjunction with 
Sen trend analysis. It is a nonparametric statistical test that is not 
affected by missing values and outliers, nor does it require the sample 
data to follow a certain distribution. Its formula can be expressed as:

 

Z

S
S

S

S
S

S
S

=

−

( )
>( )

=( )

( )
<( )















1
0

0 0

1
0
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(12)
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S sign A A
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(15)

where Aj  and Ai  are A time series data; sign is the sign function; 
S is the test statistic; Z is the standardized test statistic; and n is the 
amount of data. NPP trends were classified into five categories 
according to the significance levels of Sen-MK trend analysis |Z| > 1. 
96 (p < 0.05) and |Z| > 2. 58 (p < 0.01; Table 2).

3.2.6. WUE and NPP assessment of vegetation 
degradation and restoration

Vegetation degradation is usually accompanied by the occurrence 
of reduced biomass, decreased vegetation cover, increased drought-
tolerant plants, and increased area of bare soil patches. NPP and WUE 
are used to characterize these changes. In the early degradation stage, 
NPP declines and plants can close stomata for physiological regulation 
or establish a survival advantage by increasing the area of drought-
tolerant vegetation, which increases the WUE and slows the rate of 
NPP decline (Chen et al., 2004). In the later degradation stage, with 
the aggravation of further drought and anthropogenic disturbance 
stress, vegetation NPP decreases substantially, bare soil patches begin 
to appear and expand, WUE decreases, and finally a desert landscape 

appears (Horion et al., 2016). Based on this, we used NPP and WUE 
to assess land degradation and restoration, assuming that the path of 
vegetation restoration is the opposite of degradation (Gang 
et al., 2016).

3.2.7. Division of natural vegetation and artificial 
vegetation

Based on the spatial distribution data of 1 million vegetation types 
in China, downloaded from the Resource and Environmental Science 
and Data Center of the Chinese Academy of Sciences,1 this study 
defines cultivated vegetation (including farmland, economic forests, 
and orchards) as artificial vegetation (Arv), while vegetation other 
than cultivated vegetation is defined as natural vegetation (Nav).

4. Results

4.1. NPP changes in Nav and Arv

From 2001 to 2018, the annual average NPP of vegetation in the 
NAR largely showed a spatial pattern of high in the north, low in the 
south, high in the west, and low in the east. The Ili Valley, Tianshan 
Mountains, Altay Mountains, and Qilian Mountains were the high 
value areas of Nav NPP, with values ranging from 343.09 to 711.29 g 
C·m−2·a−1. The Arv high value areas were relatively small in distribution 
and were located mainly in the Ili Valley and Qilian Mountains, with 
Arv NPP values ranging from 300 to 542.02 g C·m−2·a−1. The southern 
part of the NAR was the low value area of Nav NPP, with NPP values 
mainly in the range of 40 g C·m−2·a−1. Arv NPP low value areas were 

1 https://www.resdc.cn/

FIGURE 3

Correlation analysis between simulated annual total NPP and total annual MODIS17A3H in China’s NAR, 2001–2018.
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primarily in the desert-oasis transition zone in southern Xinjiang, with 
NPP values mostly below 42.51 g C·m−2·a−1 (Figure 4A).

The areas of significant increase in NPP were widely distributed, 
with Arv clustered around oases and Nav occurring in mountainous 
areas (Figure 4B). In contrast, the mountain-oasis interface and the 
oasis-desert transition zone were the main areas of decrease in Nav 
and Arv, respectively. Climate change can explain 36.38 and 25.70% 
of the variations in NPP of natural and natural vegetation in the NAR, 
respectively. Meanwhile, precipitation was the dominant climate factor 
affecting variations in vegetation NPP, whereas temperature played a 
major role only in 4.04% (Nav) and 5.89% (Nav) of the area, 
respectively (Figure 4C).

To better understand the future trends of vegetation NPP in the 
NAR, this study conducted an overlay analysis of the vegetation NPP 
Hurst index and interannual variation trends, which were divided into 
five classes (Figure 4D). Except for areas with insignificant changes, 
continuous improvement and improvement to degradation were 
distributed throughout the study area and had the largest area share. 
The areas of continuous degradation and degradation to improvement 
as well as their distributions were roughly equivalent, but the 
distribution of degradation to improvement was more concentrated 
in the northern border. In general, the development trend of the Nav 
improvement area in the NAR is consistent with that of Arv, mainly 
improvement to degradation. However, the degraded area in the 
future period is expected to be mainly degradation to improvement in 
Nav and continuous degradation in Arv (Tables 3 and 4).

4.2. WUE changes in Nav and Arv

During the study period, vegetation WUE and NPP exhibited 
similar spatial distributions. The mountainous regions of northern 
Xinjiang were the high value areas of Nav WUE, with multi-year mean 
WUE values generally above 1.29 g C·mm−1·a−2. The low value areas 
were mainly distributed around the Kunlun Mountains, with multi-year 
mean WUE values mostly below 0.40 g C·mm-1·a−2. The oasis center was 
the high value area of Arv WUE, while the low value area was mainly 
located at the desert edge, showing a multi-year mean WUE value below 
0.35 g C·mm−1·a−2 (Figure  5A). The long-term trend of Nav WUE 
change compared to Nav NPP shows some similarities. Areas of 
insignificant change in Nav NPP were the predominant type and the 
largest area (59.23%), while areas of increase and decrease in Nav WUE 
were 39 and 1.77%, respectively. Arv WUE and Arv NPP changed in the 
same direction with the largest area of growth covering 47.96%, followed 
by areas of insignificant change and decrease covering 47.90 and 4.14%, 
respectively. Overall, WUE changes were similar to NPP changes in 

northern and southern NAR, but there were some regions with different 
spatial trends. Nav WUE in northeastern NAR and northern Tarim 
Basin showed a more pronounced upward and downward trend than 
NPP, while WUE changes in the Qilian Mountains were not as 
pronounced as NPP changes in the eastern NAR region (Nav NPP). The 
trends in WUE and NPP suggest that the two indices respond differently 
to the environmental factors that cause them to change (Figure 5B).

Whether in reference to Nav WUE or Arv WUE, climate change 
explains less of the change in WUE dynamics than does 
NPP. Precipitation was the dominant climatic factor affecting the 
change in vegetation WUE in the NAR (Nav: 17.37%, Arv: 13.91%). 
Furthermore, the dominant role of precipitation is obvious in the 
Qilian Mountains. Meanwhile, temperature had less influence on 
vegetation WUE in the NAR (Nav. 5.89%, Arv: 2.09%), but dominated 
the change in WUE in southern Xinjiang (Figure 5C). Future trends 
in WUE are more pronounced than for NPP, but future trends in Nav 
WUE are consistent with those for Nav NPP. Arv WUE shows the 
opposite trend, with areas of improved Arv WUE dominated by 
sustained improvement (41.83%) and degraded areas dominated by 
sustained degradation (10.66%; Figure 5D).

4.3. Spatial dynamics of NPP and WUE in 
Nav and Arv

From the spatial dynamics of NPP-WUE, the Nav degradation 
phase of the NAR was dominated by late degradation, while the 
restoration phase was dominated by early restoration. It is worth 
noting that the area of early restoration was much larger than that of 
late degradation (Figure 6). Grasslands, shrubs, and forests showed the 
same trend, with late degradation and early restoration as their main 
contributors. Meanwhile, the percentage of early degradation and late 
restoration was small. Unlike other vegetation types, the restoration 
phase was evident in wetlands, especially the late restoration phase. 
Compared to Nav, Arv showed a similar trend of predominant 
restoration, but with a larger area of late degradation (Figure 7).

In terms of spatial distribution, the Nav restoration area was 
widely distributed, mainly in the central, southern, and northeastern 
parts of the NAR, but there was relatively concentrated distribution in 
the mountainous areas. Degraded areas, on the other hand, were 
sporadically distributed and occurred mostly in the mountain-oasis 
interface. The degradation phenomenon was most prominent in the 
Ili Valley. Meanwhile, the oasis located in the northern and southern 
portions of the Tianshan Mountains was the main restoration area of 
Arv, with degraded areas distributed in the oasis-desert transition 
zone in a dotted pattern. Interestingly, the oasis areas with high 
anthropogenic disturbance were not only the main areas of vegetation 
restoration, but also hot spots for serious vegetation degradation. The 
degradation may be related to human negligence in management and/
or the cultivation area exceeding the local resource carrying capacity.

5. Discussion

5.1. Mechanism of WUE and NPP changes

The factors affecting plant WUE are somewhat complex, with the 
primary influences comprising the photosynthesis of leaves, 

TABLE 2 Criteria for grading change trends.

Trends Sen slope (β) MK test (Z)

Extremely significant 

increase

β>0 Z > 2.58

Significant increase β>0 1.96 < Z ≤ 2.58

No significant trend ∀β −1.96 ≤ Z ≤ 1.96

Significant decrease β<0 −2. 8 ≤ Z < −1.96

Extremely significant 

decrease

β<0 Z < −2.58
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transpiration, and plant stomatal conductance. These factors are also 
related to the direct effects of species, life type, and intrinsic plant 
mechanisms, as well as the indirect effects of factors such as the 
external plant environment (climate, soil, etc.).

Plant transpiration (Plt) and photosynthesis (Pho) form the basis 
for changes in WUE. Stomata (Sto) usually act as a special channel 
that controls the exchange of water between air and plant body. Sto 
also regulate the rate of plant water consumption and carbon 
assimilation, which in turn has an effect on plant photosynthesis and 
transpiration, causing additional changes in WUE. When drought 
occurs, stomatal closure preferentially decreases photosynthesis, which 
reduces transpiration and contributes to higher plant WUE. Leaf 
water potential, root system, leaf nutrients (nitrogen content, etc.), 
specific leaf area, plant genes, and chromosome ploidy influence 
vegetation WUE as well (Cernusak et al., 2011; Fang et al., 2017).

WUE also varies among habitats and species. The current results 
of plant WUE response to climatic environment exhibit unevenness 
(Li et al., 2017; Du et al., 2021). As the research progresses and more 

plant species are studied, the main climatic factors derived vary; in 
some cases, the results of the same climatic environment even show 
opposite conclusions. Therefore, when considering the influence of 
climatic environment on plant WUE, the compound effect of multiple 
environments should be considered (Farquhar et al., 1982; Wang et al., 
2010, 2019).

Factors affecting vegetation biomass and productivity can simply 
be divided into two categories: biotic and abiotic factors. Biotic factors 
include species composition and species density, while abiotic factors 
are those such as light, temperature, water, CO2, and soil (Kamali et al., 
2020; Koju et  al., 2020). For different ecosystems, biomass and 
productivity will vary due to differences in their plant species, species 
density, etc. Site conditions include elevation, slope, slope orientation, 
slope position, soil thickness and soil type, which usually act 
synergistically with meteorological factors to influence the growth and 
development of vegetation and thus biomass and productivity. 
Anthropogenic factors are also a non-negligible aspect and have two 
sides to vegetation growth (Cao et al., 2020; Yang et al., 2021). Overall, 
while these studies have improved our understanding of vegetation 
NPP changes, they also reveal that these changes are the result of a 
combination of multiple factors (Figure 8).

5.2. Degradation and restoration patterns 
in the NAR

The NAR is an ecologically fragile yet important construction area 
for soil and water conservation in China. Given its noted vulnerability, 

FIGURE 4

Net primary productivity (NPP) of vegetation in the NAR from 2001 to 2018: (A) period-mean NPP; (B) long-term trend of NPP (1. Extremely significant 
decrease, 2. Significant decrease, 3. No significant change, 4. Significant rise, 5. Extremely significant rise); (C) primary factors regulating interannual 
variations of NPP; (D) future variation trend of NPP (1. Sustained improvement, 2. Improvement to degradation, 3. Degradation to improvement, 4. 
Sustained degradation, 5. Insignificant).

TABLE 3 Assumptions of NPP and WUE trends in various stages of 
vegetation degradation and restoration.

Trends Degradation and 
rehabilitation stage

NPP (−); WUE (+) Early degradation stage

NPP (−); WUE (−) Late degradation stage

NPP (+); WUE (+) Early rehabilitation stage

NPP (+); WUE (−) Late rehabilitation stage
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the NAR has historically received extensive research attention. From 
2001 to 2018, the region was dominated by the restoration of 
mountains (natural vegetation) and oases (artificial vegetation), which 
is consistent with the results from other studies that focused on the 
Tianshan Mountains (Zheng et al., 2011), Altai Mountains, and oasis 
areas (He et  al., 2021). Additionally, the vegetation restoration 
observed in the Qilian Mountains (Zuo et  al., 2022) is in good 
agreement. This is also consistent with the increasing trend of WUE 
in the NAR (Yang et al., 2022). In contrast, vegetation degradation was 
found in the transition zone around the oasis (Wei et al., 2018).

Precipitation plays a key role in regulating changes in natural NPP 
and WUE. Accordingly, the different responses of vegetation to NPP 
and WUE are related to the pattern of gradually decreasing 
precipitation in the mountain range-oasis-desert system. Air 
temperature appears to be a major factor only in the western Qilian 
and Kunlun Mountains and the eastern part of the northern border. 
The increase in air temperature and precipitation well explains the 
restoration of vegetation in the eastern portion of Northern Xinjiang 
(Shen et al., 2013). Moreover, the warming trend in the super-arid 
region and the high intensity of anthropogenic disturbance explain 
the degradation trend at the edge of the oasis (Meng et al., 2020).

The restoration of artificial vegetation can be attributed to active 
vegetation restoration activities and advances in sustainable 
agricultural techniques, with arable land expansion being the main 
manifestation. Although there is an increasing trend in oasis cover, 
anthropogenic-induced water redistribution has also caused local 
degradation of oases in the northern region. Despite bringing positive 
ecological benefits for a short period, artificial vegetation saturates and 
fuels the expansion of artificial oases, causing the degradation of 
natural oases (Zhang et al., 2020). Therefore, to improve oasis stability, 
relevant management authorities should further control oasis size and 
agricultural area.

Based on the evaluation framework of NPP and WUE, this study 
analyzed the restoration and degradation trends of natural vegetation 
and artificial vegetation in the arid area of northwest China, and 
deepened the understanding of its change mechanism. However, there 
is no entry analysis of their influencing factors. In future studies, 
breakthroughs should be made in identifying the anthropogenic and 
natural factors affecting vegetation recovery and degradation and their 
respective weights, and in-depth studies and researches should 
be conducted on the attribution factors affecting vegetation recovery 
and degradation.

TABLE 4 Table of future trends of vegetation in the NAR, 2001–2018.

Sustained 
improvement

Improvement to 
degradation

Sustained 
degradation

Degradation to 
improvement

Insignificant

Nav 24.18% 38.27% 3.74% 5.43% 28.39%

Arv 6.79% 8.28% 2.78% 2.44% 79.71%

FIGURE 5

Water use efficiency of natural vegetation in China’s arid northwest region from 2001 to 2018: (A) period-mean WUE; (B) long-term trend of WUE (1. 
Extremely significant decrease, 2. Significant decrease, 3. No significant change, 4. Significant rise, 5. Extremely significant rise); (C) primary factors 
regulating interannual variations of WUE; (D) future variation trend of WUE (1. Sustained improvement, 2. Improvement to degradation, 3. Degradation 
to improvement, 4. Sustained degradation, 5. Insignificant).
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FIGURE 6

Spatial pattern of land degradation and restoration in the NAR.

FIGURE 7

Percentage contribution of each vegetation type at different stages of degradation and restoration.
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6. Conclusion

This study evaluated the degradation and restoration trends of 
Nav and Arv in the arid zone of northwest China, using NPP and 
WUE as indicators. The research also analyzed the differences 
between the two. Overall, the NPP and WUE trends revealed 
the following:

 1) Nav NPP and Arv NPP in the NAR were both dominated by 
significant increases, with precipitation being the main 
climatic factor causing their changes. Due to human 
activities, Arv NPP changed more than Nav NPP, and 
mountainous and oasis areas saw significant increases in Nav 
NPP and Arv NPP, respectively. Meanwhile, the relative 
expansion of oasis to mountains and deserts caused a 
decrease in Nav and Arv.

 2) WUE and NPP exhibited similar spatial distributions, but 
climate change explained less of the dynamic changes in 
WUE than did NPP. Precipitation and temperature 
dominated the WUE changes in the Qilian Mountains and 
Southern Xinjiang, respectively. In the near future, Nav 
WUE is expected to dominate by improvement to 
degradation, while Arv WUE will continue to improve under 
human intervention.

 3) Nav in the NAR is dominated by early restoration and late 
degradation, making the recovered area larger than the 
degraded area. Arv shows a similar trend, but the area of late 
degradation is larger than that of Nav. Early recovery and late 
degradation are the main trends in grassland, shrub, and 

forest change, while the recovery phase is more pronounced 
in wetlands.
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