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Introduction: E�orts to collect ecological data have intensified over the last

decade. This is especially true for freshwater habitats, which are among the most

impacted by human activity and yet lagging behind in terms of data availability.

Now, to support conservation programmes and management decisions, these

data need to be analyzed and interpreted; a process that can be complex and

time consuming. The South African Biodiversity Data Pipeline for Wetlands and

Waterbirds (BIRDIE) aims to help fast and e�cient information uptake, bridging

the gap between raw ecological datasets and the information final users need.

Methods: BIRDIE is a full data pipeline that takes up raw data, and estimates

indicators related to waterbird populations, while keeping track of their associated

uncertainty. At present, we focus on the assessment of species abundance and

distribution in South Africa using two citizen-science bird monitoring datasets,

namely: the African Bird Atlas Project and the Coordinated Waterbird Counts.

These data are analyzed with occupancy and state-space models, respectively. In

addition, a suite of environmental layers help contextualize waterbird population

indicators, and link these to the ecological condition of the supporting wetlands.

Both data and estimated indicators are accessible to end users through an online

portal and web services.

Results and discussion: We have designed a modular system that includes

tasks, such as: data cleaning, statistical analysis, diagnostics, and computation of

indicators. Envisioned users of BIRDIE include government o�cials, conservation

managers, researchers and the general public, all of whom have been engaged

throughout the project. Acknowledging that conservation programmes run at

multiple spatial and temporal scales, we have developed a granular framework in

which indicators are estimated at small scales, and then these are aggregated to

compute similar indicators at broader scales. Thus, the online portal is designed

to provide spatial and temporal visualization of the indicators using maps, time

series and pre-compiled reports for species, sites and conservation programmes.

In the future, we aim to expand the geographical coverage of the pipeline to other

African countries, and developmore indicators specific to the ecological structure

and function of wetlands.
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1. Introduction

Freshwater ecosystems are among the most productive,

biodiverse, and efficient at capturing and storing carbon

(Convention on Wetlands, 2021). Unfortunately, they are

also among the most impacted by human activity (Skowno et al.,

2019; Convention on Wetlands, 2021), and climate change will

likely exacerbate the pressure on freshwater resources. This is

particularly true for the African continent, home to some of the

largest wetlands, which not only host a wealth of freshwater species,

but are also key in supporting human communities (Stephenson

et al., 2020). Such critical issues have fueled unprecedented efforts

to collect and mobilize freshwater biodiversity data (Wetzel et al.,

2015; Dallas et al., 2021).

While we must strive to keep monitoring programmes that

deliver data funded and alive, it is clear that data on their own

are not enough (MacFadyen et al., 2022). If we are to take effective

action to stop ecosystem degradation, it is important that data are

analyzed to extract indicators that are meaningful for decision-

and policy-making (Harebottle and Underhill, 2016; Stephenson

et al., 2017b; Jetz et al., 2019). Furthermore, with continuous data

collection, we need to implement workflows that update indicators

and support decisions in a timely fashion (Yenni et al., 2019;

MacFadyen et al., 2022). Automated data pipelines allow us to

keep datasets updated and free of errors (Yenni et al., 2019), make

model-based forecasts, and evaluate previous forecasts in light

of new data (White et al., 2019). These modern and automated

data workflows require multidisciplinary skills in ecology, statistics,

data science, and software development, but their end products

should ideally be free, accessible and easy to interpret (Stephenson

et al., 2017b). It would also be desirable that they integrate

multiple datasets and environmental layers to produce a holistic

understanding of biodiversity structure and function (MacFadyen

et al., 2022).

South Africa is leading the African continent in terms

of biodiversity data availability (Barnard et al., 2017), with

successful citizen-science programmes such as the Southern

African Bird Atlas Project (Brooks et al., 2022), and biodiversity

data platforms, such as the Biodiversity Advisor [South African

National Biodiversity Institute (SANBI), 2023] or the Freshwater

Biodiversity Information System (FBIS, Dallas et al., 2021). In

contrast, dashboards and tools that facilitate the timely uptake of

information and unlock the utility of current data are still limited.

There is also an imbalance in data availability across taxonomic

groups and habitats. Regular monitoring of the status, distribution,

and condition of wetlands ecosystems is urgently required to

understand environmental pressures on wetland habitats, but

challenges associated with limited human and budget capacity

hamper the collection of the necessary data. Conversely, available

waterbird species data are rich in detail and coverage, and could

provide a stronger basis for both adaptive management and

reporting at priority wetland sites.

Here, we describe a data pipeline that implements a workflow

of wetland- and waterbird-related biodiversity data, the South

African Biodiversity Data Pipeline for Wetlands and Waterbirds

(BIRDIE). At present, most of BIRDIE’s functionality focuses

on computing indicators related to waterbird distribution and

abundance, which are considered the minimum set of variables

necessary to study changes in species populations (Pereira et al.,

2013; Jetz et al., 2019). BIRDIE utilizes two long-term citizen-

science programmes that have collected waterbird data in South

Africa for more than two decades, and are still active: the Southern

African Bird Atlas Project (SABAP; Brooks et al., 2022) and the

Coordinated Waterbird Counts (CWAC; FIAO, 2022). Apart from

waterbird data, BIRDIE uses and serves ancillary environmental

data for contextualizing the aforementioned waterbird population

variables, and also for describing the state of the wetlands that

support them. In a next phase, we plan to expand the functionality

of the pipeline to provide indicators of wetland ecosystem structure

and function.

BIRDIE is embedded into the South African National

Biodiversity Institute (SANBI) biodiversity informatics

infrastructure and it was conceived as a tool to inform

environmental strategies, identify priorities for the protection

and sustainable use of biodiversity, and to guide land-use

management. Because such policy-linked objectives require

updated and timely information, the pipeline was designed to

run periodically (yearly in principle), and automatically (but

supervised). Currently, BIRDIE provides indicators for South

Africa only, but in the future we expect to expand its coverage to

other African countries. In what follows we describe BIRDIE’s data

pipeline workflow from data acquisition to display of final outputs

(Figure 1), as well as the technologies we have used and the general

modeling frameworks adopted.

2. Framework and target users

The main objective of BIRDIE is to provide information to

support authorities that need to report on the state of wetlands or

waterbird populations at multiple levels: (1) as required by national

and international programmes and agreements, (2) provincial

authorities, site managers and other stakeholders who need to

make a range of decisions specific to certain wetlands, and (3)

the general public could make use of BIRDIE’s freely available

outputs for a variety of reasons, including recreation and local

conservation initiatives.

Indicators on the state of biodiversity have been adopted

by a range of multilateral environmental agreements including

the United Nations Convention on Biological Diversity (CBD,

2022) and Sustainable Development Goals (SDGs; United Nations,

2022). New indicators are under development and established

processes, such as the International Union for the Conservation

of Nature (IUCN, 2022) species red-listing efforts, are receiving

renewed attention (Han et al., 2017). With these indicators come

various global and national initiatives and targets for reducing

rates of biodiversity loss (Mace et al., 2018). Essential Biodiversity

Variables (EBVs) have been conceptualized and developed to

help standardize and improve interoperability of biodiversity data

and monitoring (Pereira et al., 2013). Within this framework,

BIRDIE gives support to both national and international programs

contributing information about the state of waterbird populations

in South Africa, with a view to expand to the Southern Africa
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region. We focus primarily on species population EBVs, with the

assessment of waterbird abundance, distribution and diversity, and

changes of these over time (Kissling et al., 2018; Jetz et al., 2019).

At an international scale, the BIRDIE team has engaged

in conversation with two strategic partners from the project

outset: the Ramsar Convention Secretariat and the Technical

Committee of the Agreement on the Conservation of African-

Eurasian Migratory Waterbirds. South Africa is signatory to the

Ramsar Convention (Convention on Wetlands, 2021), hosts 28

Wetlands of International Importance, and needs to produce

reports on the state of these sites every 3 years. National reports

must also be compiled for the Agreement on the Conservation of

African-Eurasian Migratory Waterbirds (AEWA; United Nations

Environmental Programme, 2022), an international agreement,

framed under the Convention on Migratory Species, and

focused on protecting migratory waterbirds and their habitats.The

Ramsar Convention and AEWA both require information on

changes in overall abundance and distribution of waterbirds,

with AWEA focusing on migratory species. Both conventions

also report on indicators such as change in wetland extent

and condition. Engagement with the South African national

government bodies for both of these conventions ensures the

reporting component of the BIRDIE project responds directly to

their needs.

At the national level, South Africa produces a National

Biodiversity Assessment every 4 years, which constitutes the

main reporting tool of the state of biodiversity in the country,

and informs policy and conservation strategies (Skowno et al.,

2019). At the same time, there are regular efforts to address the

conservation status of South African species within the IUCN

Red-List framework. Changes in abundance and distribution of

species are key in these assessments to track and report on

population trends, and shifts in species ranges and community

diversity. BIRDIE is embedded within SANBI, which is the

organization mandated to report on the state of biodiversity in

South Africa. As such, the outputs produced by the pipeline have

a direct connection to needs specified for National Biodiversity

Assessments, the Freshwater Biodiversity Programme and other

national decision processes regarding freshwater ecosystems

and species.

Keeping these main reporting channels in mind, BIRDIE also

intends to support local management actions and basic research.

Site-scale wetland monitoring is severely limited in South Africa,

lagging far behind monitoring of other aquatic ecosystems such as

rivers and estuaries. Managers ideally need to report on the state of

the wetland (e.g., wetland condition, flux in surface water extent)

as well as the species that the wetland supports, including species

of special concern. Local waterbird and wetland information can

facilitate the development of site-specific management actions and

management plans, and support permitting decisions. At the same

time, linking the local manager inputs and feedback into the data

pipeline closes the gap between large-scale assessments and local

data collection. In this sense, throughout the development of the

pipeline, we have engaged with stakeholders at a pilot site, the

Barberspan Nature Reserve. These conversations were enormously

insightful to understand the variety of questions that may arise

when working at a local level. One key take-away message from

these engagements was that we should favor a flexible online portal,

where users can customize their queries, over a rich but fixed set

of outputs.

Finally, we hope that the data pipeline will also allow citizen

scientists to more actively interact with the data they have collected,

and to see it taken up into the statistical analyses and data

visualizations. The general public could also benefit from a flexible

wetland and waterbird portal, with the right information to aid

their interpretation.

3. Input data

In South Africa, we have a number of long-running

citizen science projects that help monitor waterbird populations

throughout the country. At its core, BIRDIE leverages two bird-

related datasets: the Coordinated Waterbird Counts (CWAC,

FIAO, 2022) and the second phase of the South African Bird

Atlas Project (SABAP2, Brooks et al., 2022), which is part of the

larger African Bird Atlas Project (ABAP). These datasets have well-

established citizen scientist support and offer information about:

(1) bird abundance, with waterbird counts taken twice a year at

731 water bodies across Southern Africa (mostly South Africa)

since 1992, and (2) species occurrence, with visits to a grid of

pentads (5′ × 5′ grid cells) initiated in 2007 and covering several

African countries.

The Coordinated Waterbird Counts project provides regular

counts of all waterbirds at just over 700 sites throughout South

Africa. Counts are predominantly conducted by field observers

from a set of observation points defined for each site, and that are

visited twice a year; although in some sites other types of counts,

such as count by boat, are also used (FIAO, 2022). The project was

launched in 1992 and since then, it has accumulated a long time

series for many sites. However, not all sites have been monitored

since the start of the project, some regions are better represented

than others, and not all sites have been monitored continuously

(Figure 2). Waterbird species have diverse habitat requirements

and life histories; some use the same sites year-round, whereas

others are migratory or undergo local movements. To capture this

diversity, CWAC counts are carried out twice per year: once in

mid-summer and once inmid-winter. Although counts incorporate

errors due to imperfect waterbird detection by observers, with

appropriate statistical analyses, they can reveal long-term temporal

trends and seasonal fluctuations in waterbird populations.

ABAP offers occurrence, rather than abundance data. In

ABAP, volunteers collect checklists of all birds observed over a

grid of pentads (5’ × 5’ minute grid) covering different African

countries (Brooks et al., 2022). We are currently restricting our

analysis to South Africa, and therefore we are using the SABAP2

component of ABAP (Figure 3). However, we plan to expand

BIRDIE’s functionality to cover other countries contributing

data to ABAP, such as Kenya or Nigeria. Under the SABAP2

protocol, which started in 2007, observers need to spend at

least 2 h of intensive birding at a pentad and are asked to

visit as many habitats within it as possible. They can add

new species for up to 5 days. SABAP2 currently has ca. 17

million records, and >2 million records are added per year.

The structured sampling protocol, together with the spatial and

temporal extent of SABAP2 allow us to examine how bird
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FIGURE 1

Basic workflow of the BIRDIE pipeline covering all steps from data collection, to analysis and presentation of digested, decision-ready indicators.

Note that this is not a detailed sequence of all steps data go through, but rather a simplified view of the main processes.

FIGURE 2

The graph (A) shows, the number of CWAC sites active (purple dots and line), number of sites firstly counted each year (green bars) and number of

sites last counted each year (orange bars), between 1991 and 2021. Note that some of the sites that were last counted before 2021, might be

counted again in the future, so orange bars do not represent sites removed from the programme. In map (B), we show the spatial distribution of

CWAC sites in South Africa. The color gradient represent the duration of the period the site was counted for. To aid visualization, we show di�erent

shapes for di�erent duration categories.

distributions are changing over time, although statistical modeling

is required to account for imperfect detection and spatial sampling

biases (Figure 3).

There are a variety of other data sources that BIRDIE uses for

adding environmental information into its analytical workflows.

Most of these data sources are conveniently accessed through

Google Earth Engine, such as TerraClimate (Abatzoglou et al.,

2018), the JRC surface water dataset (Pekel et al., 2016), MODIS

Vegetation Indices (Didan, 2015), and Digital Elevation Models

(DEM, Yamazaki et al., 2017). Other data not yet available on

Google Earth Engine, such as the National Wetland Map (van

Deventer et al., 2020) are managed independently.

Frontiers in Ecology andEvolution 04 frontiersin.org

https://doi.org/10.3389/fevo.2023.1131120
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Cervantes et al. 10.3389/fevo.2023.1131120

FIGURE 3

Number of SABAP2 cards recorded for the South African pentads

between 2008 and 2021, in logarithmic scale. We can see how areas

close to large cities in the Western Cape and Gauteng provinces,

accumulate larger e�orts. We can also appreciate sampling biased

toward roads, particularly in the northwest of the country.

4. Indicators and statistical methods

Capturing good quality raw data is a fundamental first

step to monitor the state of biodiversity. However, raw data

reflect not only the biological signal of interest but also the

sampling process, which is typically spatially biased and subject

to imperfect detection (Yoccoz et al., 2001). Therefore, some

level of statistical analysis is required to estimate the state of the

system of interest, and separate it from observational artifacts

introduced by the observation process used for capturing the

data (Yoccoz et al., 2001; Gimenez et al., 2014; King, 2014). The

BIRDIE pipeline broadly uses two types of models: (1) occupancy

models (MacKenzie et al., 2002; Altwegg and Nichols, 2019) to

estimate the probability of a species being present at the different

SABAP2 pentads, and (2) state-space models (Buckland et al., 2004;

Newman et al., 2014) to estimate the number of individuals at

the sites monitored by the CWAC programme. Contrary to raw

observations (counts and detection/non-detection of a species),

model-based estimates (abundance and occupancy probabilities)

allow us to quantify uncertainty.

The variety of end-user needs requires a pipeline that provides

waterbird population indicators at multiple spatial and temporal

scales. Therefore, in addition to estimating basic occupancy

and abundance at small scales (i.e., individual site/pentad), the

BIRDIE pipeline produces other high-level indicators obtained by

aggregation (Table 1). The idea is to follow a process whereby

raw data are used to inform models that estimate indicators at

the smallest temporal and spatial scales possible, and then to

aggregate these estimates at larger scales, as required. For example,

species abundance can be estimated for a set of regularly monitored

wetlands in South Africa, and these site-specific estimates can then

be combined to calculate an abundance index for all sites as a

group. We can follow this procedure to estimate abundance and

occupancy probabilities at national, regional and local levels, as well

as for specific groups of wetlands (e.g., designated Ramsar sites,

estuaries, or artificial sites).

The main indicators computed by the BIRDIE pipeline for

waterbird species are:

• Abundance: estimated for CWAC sites in two seasons per year.

For each species, only those wetlands with at least a 10-year

coverage between 1997 and 2021 are analyzed statistically.

• Occurrence: estimated for ABAP pentads on an annual basis.

• Diversity: the simplest and most easily understood metric is

species richness. Species richness can be calculated based on

the occupancy analysis, by summing occupancy probabilities

of all species potentially present in each pentad, to estimate

the expected number of species present.

• Important records: sightings of rarities, invasive species.

Although this information does not require any statistical

processing, it does make particular records more visible.

In addition to estimates of static indicators, the pipeline also

estimates their associated dynamics, such as: changes in abundance,

occupancy probabilities and diversity. The temporal reference for

these dynamics can also vary ranging from a single season to

multiple years (typically ca. 5 years, for short-term changes, and ca.

15 years for long-term changes).

It is important that uncertainty is correctly propagated when

aggregating, and also when estimating dynamic indicators. We

work in a Bayesian framework and use the posterior distribution of

occupancy probabilities and species abundance to define indicators

at the various scales. Working with full posterior distributions

allows us to conveniently keep track of the uncertainty in the

estimates used as building blocks for other derived indicators.

4.1. Delineating species distributions

Occupancy models are fitted to detection/non-detection data

from SABAP2 to delineate the distribution of waterbird species and

its dynamics over time. Within the SABAP2 framework, observers

visit pentads and make a list of the bird species detected during

the visit. We assume that observers identify species correctly and

only list species observed (the rigorous vetting process of SABAP2

data justifies this assumption), but non-detections may be caused

by either species not being present in the pentad or by observers

not being able to detect them, when present. Therefore, occupancy

models describe two processes simultaneously: (i) the underlying

occupancy of the sites (pentads), and (ii) the observation process

whereby species present might or might not be observed.

More precisely, we define zjt to be the true occupancy of site j

in year t, which can be 1 (if species present) or 0 (if species absent)

and has distribution:

zjt|ψjt ∼ Bernoulli(ψjt)

where ψjt is the occupancy probability at site j and year t. The

logit transformation of ψjt can be modeled as a linear combination
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TABLE 1 Main indicators produced by the BIRDIE pipeline for waterbird species.

Indicator Input Model Spatial scale Temporal scale

Abundance CWAC SSM CWAC site 2 seasons/year

Diversity ABAP Occupancy Pentad Annual

Extent of occurrence Occurrence Aggregated National Annual

Area of occupancy Occurrence Aggregated National Annual

Population size Abundance Aggregated National 2 seasons/year

Pop. proportion on site Abundance Aggregated CWAC site/national 2 seasons/year

Waterbird Conservation Value Abundance Aggregated CWAC site/national 2 seasons/year

Number of sites Abu./occur. Aggregated National Annual

For each indicator, we show: “Input”, which can be databases (CWAC, Coordinated Waterbird Counts; ABAP, African Bird Atlas Project), or other indicators; “Model” used to estimate the

indicator (SSM, state-space model; Occupancy, occupancy model) or whether it was computed by aggregating lower-level indicators; the smallest “Spatial scale” of assessment; and the smallest

“Temporal scale” of assessment. Indicators are: “Abundance”, number or individuals; “Diversity”, number of species; “Extent of occurrence”, area of minimum complex polygon enclosing sites

with species presence; “Area of occupancy”, area of sites (SABAP2 pentads) with species presence, “Population size”, number of individuals in South Africa; “Population proportion on site”,

percentage of the population present on each site; “Waterbird Conservation Value”, index based on Harebottle and Underhill (2016); “Number of sites”, number of CWAC sites where the

species is present. Annual changes in all of these indicators are also computed, and other indicators will be added over time as needed.

of covariates and smooth functions of covariates, such that:

logit(ψjt) = x
⊺

jtβ +

K∑

k=1

fk(ujk)

where fk(ujk) is a smooth function of the covariate uk, which is

defined as

fk(ujk) =

L∑

l=1

Bl(ujkl)γjkl

where the smooth function f is represented by a set of L basis

functions Bl evaluated at the value of the covariates associated with

site j at year t (Wood, 2006).

We can then write the likelihood of observation yij as:

yij|zjt , pij ∼ Bernoulli(zjtpij)

The probability of detection of a species that is present in site

j on visit i is denoted by pij. Following the same logic as for the

probability of occupancy, the logit transformation of p is modeled

as a linear combination of covariates and smooth functions:

logit(pij) = w
⊺

ijα +

H∑

h=1

fh(vih),

Spatial, spatio-temporal, and unstructured random effects

can be specified for either occupancy or detection probabilities

to account for variation across sites, observers and visits, not

accounted for by the covariates incorporated in the models.

Each checklist is treated as an independent survey, but

occupancy is assessed on a yearly basis. This means that if a species

is detected in any one survey it is considered present that year.

Therefore, missing a species because it left the site is considered

part of the observation process and not the occupancy process.

Migratory birds, for example, are considered present at a site even

if they are only there for part of the year.

We are fitting single-season occupancy models without spatial

random effects to most species. However, all models incorporate

random effects to account for pentad- and observer-specific

detection probabilities. If model diagnostics indicate poor model fit

(see Section 4.3 below), we assessmodels individually to understand

the reasons, and if necessary we add spatial random effects

for occupancy probabilities with an exponential decay function.

Currently, we fit the models in R (R Core Team, 2022), in a

Bayesian framework using the package spOccupancy (Doser et al.,

2022), and running three MCMC chains for 20,000 iterations, with

a thinning interval of 20. We use non-informative priors for all

parameters when no information from other years is available,

but we incorporate information obtained from other model fits if

available, by centering the priors on the closest model’s posterior

means. However, it is important noticing that modeling details

may differ among species and may be updated in future versions

of BIRDIE.

4.2. Estimating abundance and population
trends

State-space models (Buckland et al., 2004; Newman et al., 2014)

are used to describe and understand dynamic systems that may

not be perfectly observed. Within this framework, we consider

waterbird abundance to be a process that evolves over time,

and which we observe during visits to CWAC sites. However,

counts conducted by observers are distorted by imperfect detection

that translates into counting errors. By counting repeatedly

over time, and assuming that abundance evolves smoothly over

time compared to observation error, we can disentangle these

two processes.

We consider that the observed counts (yi) at sampling occasion

i (generally there were two sampling occasions per year, one inmid-

summer and one in mid-winter), at any given site, arise from a

Poisson (λi) distribution

yi ∼ Poisson(λi)
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And we model the log of the intensity λi as:

log (λi) ∼ N(µi, σ
2)

where µiis the mean abundance of waterbirds present at a site

on sampling occasion i and σ 2 is the corresponding variance of the

observers counting error, both in the log scale. Therefore, counts

depend both on the number of waterbirds present on site, and on

errors in the counts of these birds.

To model changes in waterbird abundance between the two-

seasons of year t, we define st to be the summer abundance and

wt the winter abundance. Note that there might be multiple counts

in a single year and season, but the underlying true abundance is

considered to stay constant in any given year and season (for clarity,

note also that while sampling occasions were indexed by i, years are

indexed by t). Thus, the expected (log) abundance for any given

count can be written as

µi = stsummer+ wtwinter

where “summer” is an indicator variable that takes on the value

1 in summer and 0 in winter, and “winter” is the opposite. We then

define abundance dynamics as:

st = st−1 + βt

wt = st + ξt

where βt corresponds to the change in summer abundance

from year t − 1 to year t, and ξt is the difference between

summer and winter abundance, both in the log scale. If

exponentiated, these parameters can be interpreted as the rate of

change in the population and the winter-to-summer ratio of the

population, respectively.

We impose relatively smooth changes in abundance by defining

autocorrelation in βt and ξt terms over time. In addition, we

define relationships between the rate of change in the population

βt and environmental covariates. These relationships facilitate the

estimation of abundance for those years in which counts are

missing, and it is particularly useful to contain uncertainty in long

periods with missing data between counts. Thus, we set

βt = φβt−1 + ηt−1 + ζt−1

ξt = ξt−1 + ǫt−1

where φ lies between zero and one, and it defines an

autoregressive term on βt−1; ηt captures the effect of covariates in

the expected change in abundance, and can be expanded to γ ⊺U,

where U is amatrix of covariate values and γ a vector of coefficients;

ζt and ǫt are random variables that represent change in abundance

change, and change in winter to summer ratio, respectively.

We mentioned at the beginning that this model applies

to each monitored site. However, we have multiple sites, and

counts are often missing for some seasons or even full years. To

facilitate the estimation of abundance with missing data, we borrow

information from sites with counts, by defining a hierarchical

structure such that:

ζtj ∼ N(0, σ 2
ζ t)

ǫtj ∼ N(0, σ 2
ǫt)

Therefore, random changes at any site and year come from a

common distribution of changes across all sites for that year. We

thus ensure that variation is contained within similar values inmost

sites. These distributions are normal with variances σ 2
ζ t and σ

2
ǫt for

changes in abundance and winter to summer ratio, respectively.

We fit these models in R (R Core Team, 2022) with the

additional functionality provided by JAGS (Plummer, 2003) using

the package jagsUI (Kellner, 2021). We work on a Bayesian

framework, using non-informative priors, and running three chains

for 10,000 iterations each. Similar to the occupancy models, these

are the details of the models we are working with at the time of

writing, and they are intended to give an idea of the type of model

we are using. The modular nature of BIRDIE allows us to update

these models when necessary and the updated modeling details will

be published on the BIRDIE website.

4.3. Data and model diagnostics

The pipeline needs to run for a multitude of species, with

different ecological requirements and geographical distributions.

Therefore, finding a model that suits all species is challenging. Not

only may a model not be a good fit for a particular species, but the

algorithms used for fitting the model may fail to converge due to

characteristics of the data.

In a first control stage, we have defined the minimum

requirements that the data should meet to enter the model-fitting

process. Species that have been observed in five or less pentads

in a year are considered to not have enough data to inform an

occupancy model. Similarly, we chose only those CWAC sites

where the species of interest has been counted at least ten times

between 1993 and 2021, to fit state-space models. Otherwise, data

tend to be too sparse to assess trends in abundance reliably. These

thresholds are based on our own experiences working with these

data, and they are considered to be the minimum requirements

for models to converge successfully. However, meeting these

requirements does not guarantee model convergence or a good fit.

To keep track of potential issues arising duringmodel fitting, and to

improve the algorithms of the pipeline, each time the pipeline runs

it generates several reports that are later examined.

To decide whether any occupancy or state-space model

converges, we calculate the Gelman-Rubin (Rhat) diagnostic

(Gelman et al., 2014) for each estimated parameter. These

diagnostics are then tabulated and stored for future revision. Any

Rhat value above 1.1 or below 0.9 is considered to represent

lack of convergence. Distinctive characteristics of the models with

convergence issues are explored and addressed on a case by case

basis, after the pipeline has finished running.

In addition to convergence, we assess goodness of fit using

posterior predictive checks (Gelman et al., 2014; Doser et al., 2022).

This procedure compares some quantity of interest calculated

using pseudo-data simulated from themodel posterior distribution,

with that same quantity calculated from the observed data. In

a well-fitting model we would expect real and synthetic data

to produce similar values. For occupancy models, we produce

simulated detection/non-detection data for each site, species and

year and compute the expected number of detections out of as
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many visits as there were in the data. We compare the results of

the simulations with the observed number of detections recorded in

the data using Chi-square tests (Doser et al., 2022). For state-space

models we follow a similar procedure, but instead of simulating

detection/non-detection data for 1 year, we simulate count data for

summer and winter, and aggregate these in a single annual count.

Results from the goodness of fit Chi-square tests are also tabulated

and stored for revision. Significant deviations detected with these

tests are addressed for each case individually.

Due to the computational burden of the pipeline, it is not

possible to run multiple models for each species, site and year, to

perform model selection. Therefore, model selection is performed

on a sample of species, selected to have representation of common

and scarce taxa, but that are otherwise selected arbitrarily. Our

general approach has been to include a rich set of variables that

we believe can explain the main environmental gradients within

our geographical range, without paying too much attention to

multi-collinearity and overfitting. We are therefore cautious about

making causal inference or predictions outside of the range of the

data, and so should be other users.

5. Systems and technology

In this section, we describe the technology that underpins the

flow of data along the pipeline until it is transformed into indicators

that are presented to the BIRDIE user. BIRDIE’s data, code and

outputs are stored and run on three main systems (Figure 4): the

Africa Bird Data servers, and the two BIRDIE servers (servers A

and B).

The Africa Bird Data servers are hosted at the FitzPatrick

Institute for African Ornithology, University of Cape Town, and

contain the CWAC and ABAP databases. They also serve these data

through an Application Programming Interface (API).

BIRDIE’s server A is the access point of the final user to

the information generated by the pipeline. This information is

stored in a data mart, which in essence, is a MySQL database

(version 8.0.27), a widely used, open source, relational database

management system. Its main objective is to store the outputs

of BIRDIE’s data analyses and provide easy and flexible access

to the final user. At the same time, the structure of the

database ensures that inputs and outputs conform to a given

standard, and creates security back-ups for the stored data. The

main mechanism BIRDIE uses to present data to the user is

through OpenAPI web services (OpenAPI Specification, Version

3.1.0), which was designed to provide a standard interface

for documenting and exposing APIs. The public web services

offered by the OpenAPI give users the flexibility to access and

download data from the database without being constrained by

the specific functionality of a web application. This technology

facilitates the integration of BIRDIE’s outputs into other workflows.

However, for the user that is interested in readily accessing

the information through a dashboard, we have deployed a web

application, written in HTML5, CSS, and the most common

and popular JavaScript libraries, including OpenLayers (https://

openlayers.org/) and Plotly (https://plotly.com/). Among other

elements (see Section 6), the web application features a map viewer,

based on mviewer (https://mviewer.netlify.app/en/), a free and

open-source cartographic application, that has an easy-to-use and

intuitive interface.

If we thought of server A as being the face of the pipeline, server

B would be the brain. All the functionality in this server revolves

around statistical modeling. This server connects with the Africa

Bird Data servers to obtain CWAC and ABAP data, and with other

external systems, such as Google Earth Engine or SANBI servers to

obtain environmental information. It then runs the main analytical

modules of the pipeline, where occupancy and state-space models

are fitted. At the time of writing, the analytical workflows were

supported by an Intel Xeon Dual 8 core, with 64 GB RAM and an

8 TB hard drive. The model outputs are made available to server A,

where they are incorporated into the data mart, used to compute

derived high-level indicators by aggregation (see Section 4), and

prepared to be presented to the final users.

In terms of code structure, the BIRDIE data pipeline consists

of several fundamental building blocks or modules. The first

module, which we call the data source layer (Figure 4) hosts

and curates the raw data. The second module, the analysis layer,

analyses the data and estimates the fundamental quantities of

interest, like abundance and occurrence of each species at each

wetland or pentad. The third module consists of the data mart

where the outputs of the analyses are stored and indicators are

aggregated or disaggregated to multiple scales. The final module

serves the information to the user via APIs, web services and a

web application. The modular structure of BIRDIE enables us to

maintain and update individual parts independently. For example,

we could replace the current statistical routines with more efficient

ones without changing the other parts of the pipeline. Or we could

add new indicators to the datamart layer without needing to change

the statistical routines that produce the underlying components.

6. Web application

To cater for different user needs, BIRDIE’s web application

offers four main menus that provide access to the pipeline outputs

in different ways (see Figure 5):

1. An exploration map. Through this menu the user can explore

the different indicators BIRDIE computes on a map. This spatial

framework can be configured to display information layers,

such as occupancy probabilities for ABAP pentads or waterbird

abundance at CWAC sites. Users can also zoom in and out to

find the scale that best fits their needs. In addition to this, there

are also environmental layers that can be overlaid to provide

context and generate hypotheses on what might be driving the

observed indicators.

2. Site and species summaries, are detailed reports elaborated for

users focused on some sites or species in particular, rather than

in general exploration. At the moment, site summaries are only

available for those sites that have sufficient CWAC data to be

included in BIRDIE’s data analysis step. These reports contain a

description of the site/species, links to other resources of interest

(e.g., to criteria motivating declaration of Ramsar site or IUCN

conservation status) and summaries prepared from BIRDIE’s

indicators. These reports can be exported as a document, and

BIRDIE’s data used for generating the reports can be accessed
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FIGURE 4

Overview of BIRDIE’s server architecture. Data flows from CWAC, ABAP, and other external servers into BIRDIE server B to be processed and analyzed

by the R modules, then these outputs move into the data mart in BIRDIE server A, which is the gateway for the dashboard and the final users (figure

produced with www.diagrams.net).

through the data mart and downloaded in common formats

such as .json or .csv.

3. Reporting tools. We mentioned in Section 2 that BIRDIE was

developed to support reports for national and international

conservation programmes. In this menu, users interested in

elaborating, or accessing the information underpinning these

reports, will find this information conveniently packed in

programme-specific summaries. Similar to site and species
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FIGURE 5

Basic elements of the BIRDIE web application: (A) the web services API o�ers a flexible framework to access the database, facilitating integration with

other workflows and platforms, (B) bespoke reports for species, sites and conservation programmes and agreements such as Ramsar or AEWA, and

(C) a map viewer that allows flexible exploration of the di�erent BIRDIE indicators.
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summaries, reports for conservation programmes can also be

printed, and the data used to compute statistics and create plots

can be downloaded.

4. Web services. Through this menu users can access BIRDIE’s API

and retrieve its outputs in the most flexible way. It is through

BIRDIE’s API that all maps and plots in the web application

are produced. By accessing this functionality directly, users can

download the data themselves and incorporate them into their

own workflows.

7. Discussion

Data on biodiversity and related environmental drivers are

collected at increasingly faster rates. Although these data can be

accessed to support decisions at various levels, it can be difficult for

decision makers to extract relevant information in a timely fashion

(Stephenson et al., 2017b; MacFadyen et al., 2022). Apart from data

availability and accessibility, obstacles for using biodiversity data

in decision-making include (Stephenson et al., 2017a; MacFadyen

et al., 2022): lack of analysis and interpretation, lack of technical

accessibility with excessive use of jargon, and timely use of data.

Here, we introduce BIRDIE, the South African Biodiversity Data

Pipeline for Wetlands and Waterbirds; a data pipeline that aims

to provide the information needed for making evidence-based

decisions on wetlands and waterbirds in southern Africa. Target

users of BIRDIE include government and public entities that need

to report on the status of wetlands and waterbirds, as well as site

managers, and the general public (e.g., birdwatchers).

BIRDIE is the first African full biodiversity data pipeline (from

raw data to indicators) that we are aware of at the time of writing.

Although biodiversity data portals are proliferating (Saran et al.,

2022), examples of fully operational workflows for computing and

displaying biodiversity indicators are still scarce (but see Brlik et al.,

2021; Boyd et al., 2022). Compared to other richer countries, long-

term datasets from biodiversity monitoring programmes are still

scarce in many African countries (Proença et al., 2017; Stephenson

et al., 2017a). In South Africa we are lucky to have two good bird

monitoring programmes that provide data on waterbirds. However,

even these well established programmes can be hampered by lack

of funds and qualified personnel in remote locations, as we can see

by the decreasing coverage of the CWAC project in the last decade

(Figure 2). Critical data on the location, structure and dynamics

of freshwater ecosystems are still scarce and highly local. Thus,

BIRDIE relies heavily on citizen science projects such as ABAP and

CWAC, which poses clear challenges in terms of uneven efforts

and imperfect detection, but also adds the advantage of having

the support of a large community of observers that provides a

continuous and steady flow of data. These data inputs allow us to

run the pipeline periodically to keep the indicators updated and

timely. Although we would like to update our indicators more

often, at the time of writing we only update once per year due

to the computational requirements of the pipeline, and certain

characteristics of the data (e.g., CWAC counts are conducted only

twice a year).

All data used by BIRDIE are freely available, so one of the

main contributions of BIRDIE is to facilitate information uptake

by statistically analyzing these data and filtering out observational

artifacts introduced during data collection. Uneven sampling

efforts, imperfect detection and missing data are all examples

of how data collection methods can affect data (Yoccoz et al.,

2001), and if undealt with, mislead decision making. Furthermore,

statistical models also provide measures of uncertainty in their

estimates, which must be clearly communicated to the stakeholders

(Kissling et al., 2018). With all their benefits, these statistical

analyses require technical knowledge and are time-consuming.

Therefore, having their outputs pre-computed and readily available

could dramatically increase the impact of the data. In this context,

one of our main challenges was running models automatically and

periodically for multiple species, which requires pre-defining and

using similar models for all species. Therefore we faced a trade-off

between having accurate models for individual species and having

a pipeline that works reasonably well for all species in general.

Users should keep in mind this compromise, and think of BIRDIE’s

outputs as useful approximations rather than accurate estimates.

We recommend designing bespoke models for those species for

which accuracy is required. Similarly, rare species are likely to

appear too sparsely in datasets designed for monitoring common

species for models to work well (Bellingham et al., 2020). For these

species, we should designmonitoring protocols andmodels that are

tailored for them. Setting up feedback channels whereby users can

suggest model improvements (e.g., relevant covariates) for certain

species is a possible avenue for development in BIRDIE. However,

in this first phase, the idea is to create a baseline pipeline in which

the model structure is similar to all sites and species.

In addition, model structure was not designed for making

causal inference and therefore confounders could mislead the user

to believe that certain variables are driving emerging patterns,

when there is only a correlation (Stewart et al., 2022). To

avoid misinterpretation by the casual user, we favored displaying

environmental layers that can overlay with model state estimations,

rather than presenting marginal covariate effects estimated by

the model. In future versions of BIRDIE, we might consider

presenting this type of information in specific sections with

extensive explanations on how to interpret it. The current version

of BIRDIE has a portal that presents indicators that are easily

accessed, visualized and interpreted, avoiding unnecessary jargon.

At the same time, and for the interested user, we have allocated

some space for clearly explaining the analytical routines used in

all the analyses in dedicated sections. In BIRDIE, we followed

the Findable, Accessible, Interoperable, Reusable (FAIR) principles

(Wilkinson et al., 2016), making all processes reproducible and

transparent. All the code used by the pipeline is public, freely

available (https://github.com/AfricaBirdData) and based on open-

source software.

In BIRDIE we envision several avenues for further

development. Integration of multiple EBVs into a common

assessment has important advantages for understanding drivers

of change and designing conservation interventions (Bellingham

et al., 2020). In the next phase, we intend to develop more

profound links between waterbird population indicators and

wetlands. Waterbirds are often regarded as good indicators of

wetland biodiversity and condition. However, this assumption is

rarely proven empirically, and it is apparent that it needs careful

consideration on a case by case basis (Amat and Green, 2010).

With advances in the accessibility to biodiversity data, we are

Frontiers in Ecology andEvolution 11 frontiersin.org

https://doi.org/10.3389/fevo.2023.1131120
https://github.com/AfricaBirdData
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Cervantes et al. 10.3389/fevo.2023.1131120

now in a better position to investigate whether these claims hold,

and if so, under which conditions. Data portals such as GBIF.org

and in South Africa, the Freshwater Biodiversity Information

System (FBIS), and SANBI’s biodiversity data portal, could help us

understand how waterbird occurrence, abundance and diversity

relates to the general ecological condition of the hosting wetlands.

However, we are aware that the integration of opportunistic

data with different sampling schemes and scales poses additional

challenges that we will need to carefully address (Kissling et al.,

2018; Boyd et al., 2022).

We will also extend BIRDIE’s functionality to cover other

African countries with similar available data, such as Kenya and

Nigeria that also use the ABAP protocol. There is also a wealth

of information that BIRDIE has not yet used, such as eBird

or iNaturalist, that could improve the outputs of the pipeline.

While integrating data sources with different sampling designs,

coverages and biases is not trivial, the modular design of BIRDIE

allows us to update the modeling step as new statistical methods

are being developed. Data integration is a very active topic in

the field of statistical ecology (Isaac et al., 2020). Approaches to

combining data range from pooling multiple data sources together

disregarding their different assumptions and biases, to much more

accurate integrated models in which characteristics of each data

source are explicitly accounted for (Fletcher et al., 2019). Although

at the expense of increased model complexity, with the application

of newly-developed statistical methods for data integration, we can

now explore how different species interrelate, and inform more

effective and efficient conservation actions.

We wish BIRDIE can contribute to closing the existing gap

between data providers and decision makers, facilitating effective

conservation action. We also hope it will provide a feedback

channel to SABAP, CWAC, SANBI’s Freshwater Biodiversity

Programme and other data providers. Not only serving as a

platform to analyse the data collected, but also to investigate

coverage deficiencies and potential new priorities. Finally, we

would like to see that BIRDIE exposes the importance of existing

monitoring programmes, and that it helps prioritize new data-

driven initiatives to understand and protect freshwater biodiversity.
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