AUTHOR=Bottero Irene , Dominik Christophe , Schweiger Olivier , Albrecht Matthias , Attridge Eleanor , Brown Mark J. F. , Cini Elena , Costa Cecilia , De la Rúa Pilar , de Miranda Joachim R. , Di Prisco Gennaro , Dzul Uuh Daniel , Hodge Simon , Ivarsson Kjell , Knauer Anina C. , Klein Alexandra-Maria , Mänd Marika , Martínez-López Vicente , Medrzycki Piotr , Pereira-Peixoto Helena , Potts Simon , Raimets Risto , Rundlöf Maj , Schwarz Janine M. , Senapathi Deepa , Tamburini Giovanni , Talaván Estefanía Tobajas , Stout Jane C. TITLE=Impact of landscape configuration and composition on pollinator communities across different European biogeographic regions JOURNAL=Frontiers in Ecology and Evolution VOLUME=11 YEAR=2023 URL=https://www.frontiersin.org/journals/ecology-and-evolution/articles/10.3389/fevo.2023.1128228 DOI=10.3389/fevo.2023.1128228 ISSN=2296-701X ABSTRACT=Introduction

Heterogeneity in composition and spatial configuration of landscape elements support diversity and abundance of flower-visiting insects, but this is likely dependent on taxonomic group, spatial scale, weather and climatic conditions, and is particularly impacted by agricultural intensification. Here, we analyzed the impacts of both aspects of landscape heterogeneity and the role of climatic and weather conditions on pollinating insect communities in two economically important mass-flowering crops across Europe.

Methods

Using a standardized approach, we collected data on the abundance of five insect groups (honey bees, bumble bees, other bees, hover flies and butterflies) in eight oilseed rape and eight apple orchard sites (in crops and adjacent crop margins), across eight European countries (128 sites in total) encompassing four biogeographic regions, and quantified habitat heterogeneity by calculating relevant landscape metrics for composition (proportion and diversity of land-use types) and configuration (the aggregation and isolation of land-use patches).

Results

We found that flower-visiting insects responded to landscape and climate parameters in taxon- and crop-specific ways. For example, landscape diversity was positively correlated with honey bee and solitary bee abundance in oilseed rape fields, and hover fly abundance in apple orchards. In apple sites, the total abundance of all pollinators, and particularly bumble bees and solitary bees, decreased with an increasing proportion of orchards in the surrounding landscape. In oilseed rape sites, less-intensively managed habitats (i.e., woodland, grassland, meadows, and hedgerows) positively influenced all pollinators, particularly bumble bees and butterflies. Additionally, our data showed that daily and annual temperature, as well as annual precipitation and precipitation seasonality, affects the abundance of flower-visiting insects, although, again, these impacts appeared to be taxon- or crop-specific.

Discussion

Thus, in the context of global change, our findings emphasize the importance of understanding the role of taxon-specific responses to both changes in land use and climate, to ensure continued delivery of pollination services to pollinator-dependent crops.