
Frontiers in Ecology and Evolution 01 frontiersin.org

Human activities dominant the 
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Kobresia pygmaea is the endemic and one of the most important species in the 
alpine meadow in the Qinghai-Tibet Plateau. It is the key stage in the management of 
degraded grassland, and irreversible degradation will take place after the degradation 
succession phases of the Kobresia pygmaea community. However, knowledge 
about the spatial distribution and driving factors were still unknown. In this study, the 
potential distribution of the Kobresia pygmaea community was determined using the 
BIOMOD niche model. Combine with the reality distribution based on remote sensing 
classification, the driving factors of climate and human activities were identified. The 
findings revealed that: (1) among all environmental factors, the maximum radiation, 
monthly temperature difference, driest period precipitation were the main climate 
influencing factors for the Kobresia pygmaea community distribution, and random 
forest model achieved the highest prediction accuracy and best stability of any niche 
model. (2) The potential distribution area of Kobresia pygmaea community was 
653.25 km2 (account for 3.28% of the study area), and mostly located in northern 
and central of Zeku County, northeast of Henan County, and northeast, central, and 
eastern parts of Maqu County. (3) Climate factors driven 21.12% of Kobresia pygmaea 
community reality distribution, while human activities driven for 79.98%. Our results 
revealed that human activities dominant the reality distribution of Kobresia pygmaea 
community in alpine meadow grassland in the east source region of Yellow River, 
China.
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1. Introduction

Kobresia pygmaea is an endemic and one of the most prominent plants on the Qinghai-Tibet 
Plateau’s (QTP) alpine meadow (Zhang and Noltie, 2010; Miehe et al., 2011). Since the 1980s, alpine 
meadow grassland has degraded to varying degrees owing to the cumulative impacts of climate 
change and human activity, particularly in the Yellow River’s source region (Wang et al., 2015). This 
might limit the sustainable growth of animal husbandry and endanger local ecological security (Liu 
et al., 2018). The degradation succession phases of the alpine meadow grassland community are (I) 
Stipa silena + Festuca ovina + Kobresia humilis, (II) Kobresia humilis, (III) Kobresia pygmaea, and (IV) 
black soil type. The Kobresia pygmaea community, in particular, is a critical stage in the management 
of degraded grassland (Cao and Long, 2009). The original community structure may be swiftly 
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restored in the first two stages by removing any disruption or artificial 
measures (Lin, 2017). Generally, the Kobresia pygmaea community 
builds almost closed, non-specific, golf-course like the lawn with a felty 
root mat (Miehe et al., 2019). This characteristic of mat is benefit for 
against external disturbance, increasing nutrient storage and grassland 
productivity (Miehe et al., 2008). However, with the fragmentation of 
Kobresia pygmaea community turf, the water budget, carbon cycle, and 
soil nutrition have been significantly lost (Miehe et al., 2019). Further 
degradation of the Kobresia pygmaea community will result in 
permanent degradation till the severest stage of black soil type (Li et al., 
2013). Hence, mapping the existing distribution and driving factors of 
Kobresia pygmaea meadow, are crucial for taking mitigation and 
adaptation measures.

Currently, however, the majority of Kobresia pygmaea community 
researches are conducted at the plot scale using manipulative studies 
(Ma et  al., 2017; Li et  al., 2018). The geographical distribution and 
driving factors in the QTP are largely unknown (Zhang and Noltie, 
2010; Miehe et al., 2011, 2019). With the development of remote sensing 
classification methods, satellite images and machine learning were 
successfully applied at the community level (Chen et al., 2018; Su et al., 
2020; Wen et al., 2010). Meng et al. (2021) mapped the Kobresia pygmaea 
community through the random forest (RF) method based on the 
combination of remote sensing, texture and topographic indices (Meng 
et al., 2021). However, the driving factors of climate and human activities 
for its reality distribution are not distinguished. Similar to the Residuals-
Trend model (Wessels et al., 2004, 2007), the potential distribution of 
vegetation community is only controlled by climate factors. Thus, the 
human-induced vegetation variation could be detected after removing 
the climate factors (Li et al., 2018).

The niche model is also known as the species distribution model or 
the habitat model. The model associates species with information on 
environmental factors and geographical attributes of sites where the 
species was present or absent (Elith and Leathwick, 2009). These models 
can be  used to forecast or better understand species distribution 
(Halvorsen, 2012; Xu et al., 2015; Petitpierre et al., 2017; Citores et al., 
2020). In the last 20 to 30 years, niche models have grown fast due to the 
development of empirical models based on statistics or theoretical 
derivation. There are now about 20 species distribution models in use 
(Zhu et al., 2013; Xu et al., 2015). Most specialized models are supported 
by software, such as GARP and Maxent (Stockwell and Peters, 1999; 
Phillips et  al., 2006). Furthermore, various multi-model integrated 
systems, such as openModeller, BIOMOD, dismo, and others, have been 
created in recent years (Thuiller et al., 2009; Muoz et al., 2011). The 
advancement considerably encourages the use of this model in ecology 
and geography. BIOMOD (BIOdiversity MODeling) has been merged 
with hundreds of empirical statistical models, including the maximum 
entropy model (ME), generalized linear model (GLM), and generalized 
additive model (GAM), and its influence on species niche prediction has 
been successfully studied (Thuiller et al., 2009).

To evaluate the species’ prospective range, a large number of 
observation samples of fundamental niche are required (Li and Guo, 
2013). With the advancement of airborne remote sensing technology in 
recent years, unmanned aerial vehicle (UAV) technology has provided 
a novel and practical method for grassland resource monitoring. This 
approach compensates for the shortcomings of satellite remote sensing 
and other traditional monitoring techniques (Yi, 2017). UAVs have been 
widely used in the treatment and analysis of vegetation coverage, 
patches, gravel, pika holes, and grassland plant species and communities 
in a large area of the QTP due to their advantages of efficient mobility, 

ease of operation, and high photo resolution (Yi et al., 2016; Meng et al., 
2018; Sun et al., 2018). At the same time, Yi (2017) created a series of 
UAV aerial photography systems based on the climatic and environment 
features of the QTP. The repeated observation of a large number of 
working sites may be accomplished, providing assistance for the Kobresia 
pygmaea community’s field observation in the research region.

In this study, a UAV is utilized to observe the Kobresia pygmaea 
community, and a portion of alpine meadow in the Yellow River’s source 
region is employed to conduct the following investigations: (1) The main 
climate driving factors and potential distribution of Kobresia pygmaea 
community; (2) Identify the driving factors of climate and human 
activities for Kobresia pygmaea community reality distribution.

2. Data and methods

2.1. Study area

The research area is located on the eastern side of the QTP, east of 
the Yellow River’s source region, and includes Zeku County and Henan 
County in Qinghai Province, as well as Maqu County in Gansu Province 
(Figure 1). It is one of the most significant animal husbandry bases in 
the QTP, as well as an important water supply conservation region in 
China. The coordinates are 33°03′35°33’ N, 100°33′102°33′ E, with 
elevations ranging from 2,871 to 4,850 m. The average annual 
precipitation is 400 ~ 600 mm, the average annual temperature is 
−2.4°C ~ 2.1°C, and it belongs to the continental plateau temperate 
monsoon. The major grassland type in this area is alpine meadow, which 
accounts for 79.67% of the total study area, followed by mountain 
meadow, marsh meadow, and alpine grassland, which account for 13.22, 
1.78, and 1.69%, respectively (Figure 2). The main grassland vegetation 
is Poaceae community and kobresia humilis community in the study 
area, with the dominant species Elymus nutans, Stipa silena, Festuca 

FIGURE 1

Location of study area.
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ovina, and Kobresia humilis. The Kobresia pygmaea is the dominant 
species in Kobresia pygmaea community, with a lower species richness 
than other vegetation communities in alpine meadow grassland. Weeds 
are the dominant species in the black soil type vegetation community. 
Grassland plants have a relatively short growing season, lasting just 
around 150 days from May to September. Grazing is the most common 
technique of grassland usage, while yak and sheep are the most 
common animals.

2.2. Materials and methods

2.2.1. Field observation and preprocess of aerial 
photos

The field observations of the Kobresia pygmaea community in this 
study were obtained from photographs collected by UAVs (Phantom 3 
professional and Mavic 2 zoom Quad-Rotor intelligent UAVs). The 
observation sites were selected based on grassland growth state and 
spatial representativeness, and the flight path was developed with four 
paths in each site. One Grid flight mode and three Belt types are 
included (Figure 3A). The flight paths of UAVs were designed using 
FragMAP (Yi et  al., 2016). A Phantom 3 professional was used to 
perform the Grid mode (within the 200 m × 200 m area) at a height of 
20 m (red dot in Figures 3A,B), and a Mavic 2 zoom was used to perform 
the Belt mode (within the 40 m × 40 m area) at a height of 2 m (yellow 
dot in Figures 3A,C). Sixteen grassland images were then shot vertically 
downhill in each mode; the photograph resolution of Grid and Belt is 
1 cm and 0.09 cm, respectively, and their coverage is 26 m × 35 m and 
3.43 m × 2.57 m.

The photographs were verified individually and assigned to the 
presence or absence of Kobresia pygmaea community sites based on the 
primary species of grass flora, grassland coverage, textural aspects of 
plant development, and plateau pika activity (Figure 4). In comparison 
to other grass communities, the Kobresia pygmaea community displays 
distinct morphological and textural features, including closed and 
monospecific structures (Figure  4A), polygonal crack patterns 
(Figure 4B), and a felty root mat (Figure 4C; Cao and Long, 2009). 
Furthermore, when cracking and collapse intensified, pika and noxious 
plants proliferate. From 2015 to 2019, 751 sample plots were observed 
in the pinnacle of grassland expansion (Figure  1). All observation 
locations were labeled as having or not having a Kobresia pygmaea 
community, which was subsequently utilized in the BIOMOD 
prediction input.

2.2.2. Acquisition and processing of remote 
sensing and environmental data

The MOD13Q1 NDVI remote sensing data utilized in this 
investigation was obtained from the National Aeronautics and Space 
Administration in the United States (USGS). The total number of photos 
downloaded was 23, the spatial resolution is 250 m, and the orbit 
number is H26V05. The primary preprocessing steps are: (1) picture 
projection was changed using MODIS Projection Tool (MRT) and 
defined as WGS1984; (2) resampling of the image resolution into 250 m 
in ArcMap and defined projection as Albers; (3) cell statistics tool was 
used to determine the maximum, minimum, average, and variation 
range of NDVI in 2019. Climate, soil, and terrain are the three most 
critical environmental factors. Climate data were obtained from the 
Institute of Tibetan Plateau, Chinese Academy of Sciences (Yang et al., 
2010; Chen et  al., 2011). These datasets include yearly average 
temperatures, precipitation, and humidity, as well as seasonal indices 
such as wettest season, driest season, hottest season, and coldest season, 
with a total of 33 grid layers. The soil dataset was obtained from the cold 
and dry regions science data center, Northwest institute of ecological 
environment and resources, Chinese Academy of Science.1 Including the 
sand and clay concentrations of the surface soil (0–30 cm; represented 
as clay1 and sand1) and the bottom soil (30–60 cm; represented as clay2 
and sand2); The DEM data used in this study were 90 m shuttle radar 
topography mission (SRTM) images (version V004) in Geo-TIFF 
format2 resampled to 250 m. Based on the DEM, the slope, topographic 
position index (TPI), and aspect were determined. All of the above 
environmental parameters were evenly projected as Albers with a spatial 
resolution of 250 m and utilized as input to BIOMOD.

2.3. Biodiversity modeling niche model 
simulation

2.3.1. Biodiversity modeling contrustion
In this study, BIOMOD2 was utilized to simulate the possible 

distribution of the Kobresia pygmaea community, which was then used 
to reflect the prospective dispersion of the community (Thuiller et al., 
2009). There are 10 niche models available, including the generalized 
linear model (GLM), generalized enhanced regression model (GBM), 

1 http://westdc.Westgis.ac.cn/data/

2 http://srtm.csi.cgiar.org/

FIGURE 2

Grassland types of study area.
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generalized additive model (GAM), classification tree analysis (CAT), 
artificial neural network (ANN), surface range envelope (SRE), flexible 
discriminant analysis (FDA), multiple Adaptive regression Splines 
(MARS), random forest (RF), and maximum entropy model (MaxEnt). 
The presence and absence of Kobresia pygmaea community data, as well 
as the corresponding environmental parameters, are fed into the niche 
model, and the output is the likelihood of Kobresia pygmaea community 
presence in space. To limit the impact of information redundancy on 
niche model performance, the “Importance index” and cumulative 
contribution were utilized to select the primary impacting elements. To 
examine the importance of each environmental factor, the leave-one-out 
cross-validation (LOOCV) approach (Meng et al., 2020) was utilized. 
The correlation coefficient (CV) between the predicted results based on 
variables of total environment factors and one deleted environment 
factor was determined for each occasion. The Importance values are 

then derived by subtracting 1 from this correlation coefficient. The 
Importance Index formula is as follows:

 
Importance cor pred ref,pred shuffled= − ( )1 _ _

 
(1)

where all gathered environmental factors are defined as the reference 
dataset, and elements deleted from all are defined as the shuffled dataset. 
Prediction results based on all environmental factors are represented by 
pred ref., whereas prediction results based on factors removed from all 
are represented by pred shuffled. The results are used to compute the 
correlation (cor). Then, using equation (2), the primary influencing 
elements were chosen based on the cumulative contribution (more than 
85%), determined according to Importance value from high to low. The 
contribution formula is:

A

B

C

FIGURE 3

Strategy of field observation and data collection, (A) is the strategy of observation sites, (B) and (C) are Phantom 3 professional and Mavic 2 zoom Quad-
Rotor intelligent UAVs.

FIGURE 4

Aerial photographs of Kobresia pygmaea community, (A) the patch characteristics of Kobresia pygmaea community observed at height of 20 m, (B) the 
phenomenon of cracking and collapse in Kobresia pygmaea community observed at height of 2 m, and (C) the felty root mat of Kobresia pygmaea 
community observed at height of 2 m with double wide-angle zoom lenses.
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Contributioni  represent contribution for i-th factor, Importancei  

represent Importance for i-th factor, and 
i
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1

Importance  represent total 

of all factors Importance value.

2.3.2. The accuracy evaluation of niche model
True skill statistics (TSS) and AUC [area under the operating 

characteristic curve (ROC)] were employed in this study to assess the 
accuracy of niche model prediction. The TSS considers the likelihood of 
success of the random conjecture by taking omission average error into 
account. TSS has a value between 0 and 1, and the closer the number is 
to 1, the better the model’s performance. The ROC curve is a composite 
indicator that measures the sensitivity and specificity of continuous 
variables, with each point on the curve representing the sensitivity to 
signal stimuli. AUC values vary from 0.5 to 1. The closer to one, the 
better the model forecast; conversely, the closer to 0.5, the closer the 
model prediction is to a random guess.

 TSS Sensitivity Specificity TRP FRP= + − = −1  (3)

where TPR represent true positive rate, FPR represent false positive rate.

2.4. The driving factors of Kobresia pygmaea 
community

In this study, the reality distribution of Kobresia pygmaea 
community was obtained from remote sensing classification, produced 
by Meng et al. (2021) at the same space and time range (Meng et al., 
2021). We predicted these potential distribution by transforming the 
probabilities of presence into binary data (suitable/unsuitable; Liu et al., 
2013; Ma et al., 2021). The potential distribution of Kobresia pygmaea 
community was calculated by the optimal niche model (region with 
existence probability higher than 50%). The spatial overlay analysis was 
used to distinguish the driving factors of Kobresia pygmaea community 
distribution in ArcMap 10.2 software. For example, the overlap between 
potential and reality distribution is believed to be driven by climate 
factors, otherwise, driven by human activities.

3. Results

3.1. Spatial heterogeneity of observed 
Kobresia pygmaea community

The spatial distribution of observation sites for Kobresia pygmaea 
community presence/absence was shown in Figure 5. Maqu County has 
the largest percentage of Kobresia pygmaea community presence sites 
among the 751 observed sites, with 68 observed sites accounting for 
19.82% of total observed sites. Zeku and Henan County come next, with 
37 and 22 presence observation sites, respectively, accounting for 16.74 
and 11.76% of total observed sites. Overall, the number of Kobresia 
pygmaea community presence sites among all observed sites is limited, 
representing only 16.91% of total observed sites.

3.2. Model construction and accuracy 
evaluation

Table 1 showed the Importance and Contribution value results based 
on LOOCV and 9 specialized models (except for GAM, test run failed). 
The maximum radiation, monthly temperature range, precipitation in the 
driest period, warmest season radiation, precipitation in the driest season, 
maximum NDVI in the growing season, and annual mean radiation all had 
higher Importance values than others, with values more than 0.20. 
Furthermore, the maximal radiation had the greatest Importance, with a 
value of 0.30. Temperature seasonality, average humidity, maximum 
humidity, humidity in the wettest, driest, warmest and coolest season had 
a poor influence on the Kobresia pygmaea community, with Importance 
values close to zero. There are 22 environmental factors with a cumulative 
contribution of more than 85% (Table 1).

Table 2 displays the TSS and AUC of nine models obtained by taking 
the average of multiple runs. Among all models, the RF model had the 
best predictive performance, with an average TSS and AUC of 0.74 and 
0.92, respectively. Because the model’s SD and CV values for TSS and 
AUC are minimal (TSS, 0.09 and 0.12; AUC, 0.03 and 0.03), it had 
excellent prediction accuracy and stability. The GBM model came in 
second place, with average TSS and AUC values of 0.72 and 0.90, 
respectively. SD and CV of TSS are 0.08 and 0.12, respectively, whereas 
the SD and CV of the AUC are 0.03 and 0.04, respectively. The SRE and 
MAENT models performed poorly in terms of accuracy and stability, 
with average TSS of 0.25 and 0.29, and AUC of 0.63 and 0.68, 
respectively. The models’ prediction results were closest to random 
(AUC = 0.5). As a result, it could be stated that the prediction accuracy 

FIGURE 5

Distribution of presence probability of Kobresia pygmaea community.
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of these two models for the presence of the Kobresia pygmaea population 
in the studied region is poor.

3.3. The presence probability of Kobresia 
pygmaea community in the study area

The RF model with the best accuracy in numerous runs (TSS and 
AUC are 0.86 and 0.97, respectively) was selected to estimate the possible 
geographical distribution of the Kobresia pygmaea community in the 
research region, based on the results of the niche model accuracy 
evaluation in 2.3. The results revealed that the probability of Kobresia 
pygmaea community existence in most of the research region is less than 
10% (accounting for 72.45% of the whole study area). The probability 
range of 10% ~ 50% accounted for 24.28% of the whole study area. Only 
3.07% of the total research area had a probability of more than 50%, 
whereas 0.75% had a probability greater than 80%. The regions with a high 
probability of Kobresia pygmaea community existence are mostly located 
in Zeku County’s northern and central regions, Henan County’s northeast, 
and Maqu County’s northeast, central, and eastern parts (Figure 5).

3.4. Driving factors of Kobresia pygmaea 
community

According to the reality distribution of Kobresia pygmaea 
community acquired by remote sensing classification (Meng et  al., 
2021), the driving force of climate and human activities was identified. 
As Figure  6 shows, The potential distribution of Kobresia pygmaea 

community was mainly located in the north and around the county 
urban area of Zeku County (around the town of Zequ and Qiakeri), with 
an area of 262.44 km2 (2.78% of Zeku County); the northeast of Henan 
County (east of county urban area and towns of Tuoyema), with an area 
of 62 km2 (0.95% Henan County); the part of county urban area, towns 
of Awancang, and east of Manrima in Maqu County, with an area of 
328.81 km2 (8.33% of Maqu County). As a whole, the potential 
distribution of Kobresia pygmaea community reached 653.25 km2, and 
accounted for 3.28% of the study area.

The results of driving factors were shown in Figure 6. The region 
where the Kobresia pygmaea community potential distribution and reality 
distribution overlapped, was located in the north and around the county 
urban area in Zeku County, east of county urban area in Henna, and the 
part of county urban area, towns of Awancang in Maqu. The area of 
overlapping region was 302.94 km2 (1.52% of the study area), accounting 
for 45.55% of potential distribution and 21.12% of reality distribution. In 
other words, about 21.12% of Kobresia pygmaea community was derived 
by climate factors, and human activities are the main factor leading to the 
formation of Kobresia pygmaea community in the study area.

4. Discussion

4.1. The influencing factors on the 
distribution of Kobresia pygmaea 
community

In general, grassland Kobresia pygmaea communities could be found in 
the northwest of the QTP at altitudes ranging from 4,400–4,800 m. The 

TABLE 1 Influencing factors for Kobresia pygmaea community.

No. Environmental factors Important value Cumulative contribution (%)

1 Maximum radiation 0.3004 6.61

2 Monthly temperature range 0.2726 12.61

3 Precipitation in the driest period 0.2616 18.37

4 Warmest season radiation 0.2329 23.50

5 Precipitation in the driest season 0.2304 28.57

6 Maximum NDVI in growth season 0.2151 33.30

7 Annual mean radiation 0.2010 37.72

8 Annual precipitation 0.1831 41.75

9 Average of driest season 0.1810 45.74

10 Precipitation in the wettest period 0.1782 49.66

11 Annual temperature range 0.1733 53.47

12 Minimum temperature 0.1718 57.25

13 Precipitation in the coldest season 0.1673 60.94

14 Minimum NDVI in growth season 0.1579 64.41

15 Precipitation in the warmest season 0.1488 67.69

16 Mean NDVI in growth season 0.1453 70.88

17 Range of NDVI in growth season 0.1375 73.91

18 Precipitation in the wettest season 0.1270 76.70

19 Average of warmest season 0.1141 79.22

20 Average of wettest season 0.1108 81.65

21 Wettest season radiation 0.1057 83.98

22 Elevation 0.1042 86.27
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primary limiting factors for their growth are precipitation and nutrition (the 
soil quality is poor, and the annual precipitation is less than 450 mm with 
frequent seasonal drought; Li J. M. et al., 2016; Li R. et al., 2016). During the 
long process of natural selection, the Kobresia pygmaea community formed 
a compact and well-developed root system that not only protects soils from 
grazer trampling but also helps to cope with nutrient limitations by enabling 
medium-term nutrient storage and increasing productivity and competitive 
ability of roots against leaching and other losses (Miehe et al., 2019). Aside 
from climatic conditions, human activities have an impact on the Kobresia 
pygmaea community. Although the intensity of human activity on the 

Tibetan Plateau is low, the growth during the last two decades has been 
significantly greater than in other parts of the world (Li et al., 2017, 2018). 
Since 1960, with the shift of management strategies such as pastures, 
destocking, sedentarization, privatization, and fencing, overgrazing has 
been the key factor influencing the spatial distribution of the Kobresia 
pygmaea community (Gao and Li, 2016; Qiu, 2016). Overgrazing is another 
major cause of grassland deterioration in the QTP (Bai et al., 2002; Zhou 
et al., 2005; Li et al., 2010; Wang et al., 2012; Zhang et al., 2015).

In this study, precipitation in the driest period was discovered to 
be critically important in the east of the Yellow River’s source region, in 
addition to the hottest season, the yearly average and maximum 
radiation, and the monthly temperature range (Table  1, with 
Importance values greater than 0.20). The growth season for alpine 
grassland in the Yellow River’s source region is from May to September, 
with rain and high-temperature dominating (Meng et  al., 2018). 
Extreme weather conditions (such as drought and high temperatures) 
hinder plant development during this time period (Miehe and Miehe, 
2005). However, the distinctive structure of the Kobresia pygmaea 
community root may successfully withstand these occurrences (Li 
J. M. et al., 2016; Li R. et al., 2016; Miehe et al., 2019), which is also 
consistent with the results of environmental variables in our study.

The mean elevation of eastern edge of this study area is lower than 
4,000 m, and mean annual precipitation is ≥450 mm. Poaceae 
community (Elymus nutans + Stipa silena + Festuca ovina) is widely 
distributed, overgrazing is the main inducing factor for grassland 
vegetation community variation (Zhou et al., 2005; Cao and Long, 
2009; Miehe et al., 2019). Our result showed that the area of Kobresia 
pygmaea community potential distribution was 302.94 km2, 
accounting for 21.12% of reality distribution in study area. Results of 
this study have shown that nearly 80% of the reality Kobresia pygmaea 
community is without climate driving (Figure 6). In other words, 
we demonstrate that the existence of Kobresia pygmaea community is 
mainly generated by human activities (for example, grazing) in the 
east source region of Yellow River. The Kobresia pygmaea community 
is the key stage in the management of degraded grassland. Further 
degradation of Kobresia pygmaea community will cause irreversible 
degradation (Cao and Long, 2009; Li et al., 2013). Our study might 
offer a scientific foundation for managing alpine meadow erosion in 
the Yellow River’s source region.

4.2. Limitation for optimal niche model

Ten niche models were evaluated and examined in this study for 
their application to predict the spatial distribution of the Kobresia 

TABLE 2 Performance of each niche model.

Index Model

GLM GBM CTA ANN SRE FDA MARS RF MAXENT

TSS Mean 0.62 0.72 0.47 0.39 0.25 0.65 0.63 0.74 0.29

SD 0.09 0.08 0.14 0.15 0.08 0.22 0.07 0.09 0.05

CV 0.15 0.12 0.30 0.38 0.32 0.33 0.11 0.12 0.19

AUC Mean 0.86 0.90 0.75 0.72 0.63 0.87 0.86 0.92 0.68

SD 0.05 0.03 0.08 0.23 0.04 0.28 0.04 0.03 0.04

CV 0.06 0.04 0.11 0.32 0.06 0.32 0.05 0.03 0.07

GLM is the generalized linear model, GBM is the generalized enhanced regression model, GAM is the generalized additive model, CAT is the classification tree analysis, ANN is the artificial neural network, 
SRE is the surface range envelope, FDA is the flexible discriminant analysis, MARS is the multiple Adaptive regression Splines, RF is the random forest and MaxEnt is the maximum entropy model, TSS is the 
true skill statistics, AUC is the area under the operating characteristic curve, SD depicts standard deviation, and CV depicts coefficient of variation. Bold values means the best accuracy.

FIGURE 6

Reality and potential spatial distribution of Kobresia pygmaea 
community.
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pygmaea community. GLM, GBM, GAM, CTA, MARS, MaxEnt, SRE, 
and FDA were statistically or rules-based models, whereas ANN and RF 
were machine-learning algorithm-based models (Breiman, 1996; 
Phillips et al., 2006; Zhu et al., 2013). In this study, the RF model had 
superior prediction accuracy (with TSS and AUC of 0.74 and 0.92) and 
stability (CV of TSS and AUC of 0.12 and 0.03). There are, however, 
inevitable variables that impact model accuracy. Firstly, as compared to 
other models, the RF model is data-driven, which can automatically 
obtain and understand data, and has a flexible methodology. Expectedly, 
as the size of the input data set grows, so the model’s estimation will 
be  improved correspondingly (Han, 2001; He, 2008; Verrelst et  al., 
2015). It is made up of a big sample decision tree that is developed using 
high-dimensional data and has a high tolerance for data inaccuracy 
(Breiman, 1996, 2001). However, training an RF model with a limited 
sample size is complex, as it needs a substantial amount of tagged data 
and ground observed data (Verrelst et  al., 2015; Ali et  al., 2016). 
Furthermore, this type of model contains numerous elements, some of 
which (such as the climate) have high spatial quantization errors. As a 
result, the model continues to have some limits and uncertainties 
(Lehnert et al., 2015; Gao et al., 2013; Meng et al., 2020).

4.3. Unmanned aerial vehicle technology 
enables large-scale monitoring on the 
Kobresia pygmaea community

Kobresia pygmaea community distribution has received increasing 
attention in recent years as a key species of alpine meadow grassland 
on the QTP. However, its geographical distribution on the plateau is 
unknown (Zhang and Noltie, 2010; Miehe et al., 2011), and only a few 
scattered investigations at the sample plot level have been conducted 
(Dickore, 1995; Zhang and Noltie, 2010; Cao and Long, 2009). A large 
number of observation sites should be supplied before predicting the 
possible geographical distribution of the Kobresia pygmaea community 
(Li and Guo, 2013). However, utilizing the standard artificial 
observation approach makes large-scale observation impossible 
(Miehe et al., 2019).

In this work, the UAV aerial photography system FragMap was 
employed to acquire grass community observations, resulting in large-
scale, fixed point, and repetitive observation of the Kobresia pygmaea 
community (Yi, 2017; Meng et al., 2018). The images taken by the UAV’s 
Grid and Belt modes have a high resolution (1 cm and 0.09 cm for Grid 
and Belt mode, respectively) and a vast spatial representative range (1 
photograph can represent a traditional observation site). And the 
resolution is sufficient to discern the Kobresia pygmaea community in 
the alpine meadow (Figure 4; Sun et al., 2018).

As a result, it is a remarkable novelty for this study to successfully 
employ a UAV aerial photography system to acquire observation sites 
for the existence or absence of the Kobresia pygmaea community in the 
Yellow River’s source region. On the one hand, it saves a significant 
amount of people and material resources as well as economic input; on 
the other hand, it improves observation efficiency and enables large-
scale fixed repetitive observation (Yi et  al., 2016). However, the 
vegetation pieces and grassland communities were acquired by visual 
interpretation, and it requires good knowledge of plant taxonomy and 
time-consuming. Hence, the automatic identification of vegetation 
pieces and grassland communities based on aerial photographs and the 
deep-learning algorithm requires further exploration (Lv et al., 2022).

5. Conclusion

The forecast accuracy of 10 niche models was assessed in 
BIOMOD based on UAV observations of the Kobresia pygmaea 
community and its associated environmental parameters in the 
eastern section of the Yellow River’s Source basin. The preliminary 
distribution of the Kobresia pygmaea community was predicted, and 
the following findings were reached: (1) Six of the 44 tested 
environmental factors (maximum radiation, monthly temperature 
difference, precipitation in the driest period, radiation in the 
warmest season, precipitation in the driest season, and annual 
average radiation) have high Importance values (>0.20), and there 
are 22 influencing factors in the study area with a cumulative 
contribution of more than 85%. (2) The RF model had the highest 
accuracy and stability in predicting the spatial distribution of the 
Kobresia pygmaea community, with TSS, AUC of 0.74 and 0.92, 
respectively; (3) the regions with a probability of Kobresia pygmaea 
community presence greater than 50% are primarily located in 
northern and central areas of Zeku County, northeastern and central 
areas of Henan County, and northeast, central, and eastern areas of 
Maqu County; (4) About 21.12% of Kobresia pygmaea community 
was derived by climate factors, and nearly 80% was derived by 
human activities. Human activities are the main factor leading to the 
formation of Kobresia pygmaea community in the east source region 
of Yellow River.
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