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With viruses often having devastating effects on wildlife population fitness and 
wild mammals serving as pathogen reservoirs for potentially zoonotic diseases, 
determining the viral diversity present in wild mammals is both a conservation 
and One Health priority. Additionally, transmission from more abundant hosts 
could increase the extinction risk of threatened sympatric species. We leveraged 
an existing circular DNA enriched metagenomic dataset generated from bobcat 
(Lynx rufus, n = 9) and puma (Puma concolor, n = 13) scat samples non-invasively 
collected from Sonora, Mexico, to characterize fecal DNA viromes of each 
species and determine the extent that viruses are shared between them. Using the 
metaWRAP pipeline to co-assemble viral genomes for comparative metagenomic 
analysis, we  observed diverse circular DNA viruses in both species, including 
circoviruses, genomoviruses, and anelloviruses. We  found that differences in 
DNA virome composition were partly attributed to host species, although there 
was overlap between viruses in bobcats and pumas. Pumas exhibited greater 
levels of alpha diversity, possibly due to bioaccumulation of pathogens in apex 
predators. Shared viral taxa may reflect dietary overlap, shared environmental 
resources, or transmission through host interactions, although we  cannot rule 
out species-specific host-virus coevolution for the taxa detected through co-
assembly. However, our detection of integrated feline foamy virus (FFV) suggests 
Sonoran pumas may interact with domestic cats. Our results contribute to the 
growing baseline knowledge of wild felid viral diversity. Future research including 
samples from additional sources (e.g., prey items, tissues) may help to clarify host 
associations and determine the pathogenicity of detected viruses.
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1. Introduction

Infectious diseases are playing a critical role in wildlife population 
conservation (Lewis et al., 2017). Through reducing the survival and 
reproduction of individuals (Woodroffe, 1999; Deem et  al., 2001), 
parasites and infectious diseases can generate trophic cascades (Frainer 
et al., 2018; Baruzzi et al., 2022), contributing to significant wildlife 
population declines, affecting multiple species in a community 
(Pedersen et al., 2007). Furthermore, the transmission of generalist 
parasites or infectious agents to threatened species can increase the 
extinction risk of wild animals (Daszak et al., 1999; Woodroffe, 1999; 
Lafferty and Gerber, 2002; Pedersen et al., 2007). This is evident in 
carnivores (Woodroffe, 1999; Lafferty and Gerber, 2002; Pedersen et al., 
2007), which appear to be particularly susceptible to long term impacts 
of epizootic diseases at the population-level (Malmberg et al., 2021).

Pathogen surveillance and understanding the viral diversity and 
potential disease threats associated with more abundant host species 
may reveal emerging infectious diseases and help prevent future 
outbreaks and subsequent potential loss of sympatric threatened species. 
More than just a conservation concern, an increased understanding of 
the viral diversity in wildlife and the potential for spillover to other 
species is essential for effectively managing future outbreaks (Olival 
et al., 2017; Carroll et al., 2018) and is a One Health priority (at the 
nexus of human, animal and environmental health; Mazzamuto et al., 
2022).For example, a study on juvenile and adult red foxes (Vulpes 
vulpes) in peri-urban areas in Croatia noted the dominant presence of 
fox picobirnavirus and parvovirus in fecal samples, as well as a novel fox 
circovirus (Lojkić et al., 2016). With red foxes being the most abundant 
carnivore in the Northern Hemisphere and the novel fox circovirus 
being very similar to circoviruses isolated from diseased dogs in USA 
and Italy, it seems possible to posit that red foxes could serve as wildlife 
virus reservoirs (Lojkić et al., 2016). Such virome characterizations of 
carnivores are particularly relevant to advancing One Health priorities, 
with the order Carnivora being ranked among the top five mammalian 
orders as a source of zoonotic pathogens (Keesing and Ostfeld, 2021). 
Monitoring wildlife diseases (and particularly wildlife viromes) using 
non-invasive fecal sample collection is a nascent field (Pannoni et al., 
2022; Mazzamuto et al., 2022; Schilling et al., 2022) and could bridge the 
gap between passive (e.g., voluntary disease reporting) and active 
wildlife disease surveillance (e.g., submission of samples from hunted 
game; Cardoso et al., 2022).

The sociality of a species can also affect the spread of infectious 
diseases (Sah et al., 2018). In group living or social species, group size 
was thought to influence disease transmission dynamics (Kappeler 
et al., 2015; Sah et al., 2018), with larger groups and animals living at 
higher population densities having higher parasite prevalence and 
burden (Patterson and Ruckstuhl, 2013; Albery et al., 2020). However, 
recent research suggests that animals can spatially organize their 
groups to minimize infections (Albery et  al., 2020) and that the 
interactions within a social group and not only its size drive the spread 
of infectious diseases (Sah et al., 2018).

Social interactions are not limited to group living, as some 
relatively solitary species have been shown to exhibit complex social 
networks with a variety of social partners and interactions (Sah et al., 
2018). Thus, despite many felids being solitary, the use of shared 
environmental resources, as well as occasional conflict or predation 
within and among felid species, creates opportunities for inter- and 
intra-specific pathogen transmission.

The Sonoran desert is a unique ecoregion home to four species of 
wild solitary felids: two being more common, bobcat (Lynx rufus) and 
puma (Puma concolor), and two listed as endangered, the ocelot 
(Leopardus pardalis) and jaguar (Panthera onca). Currently, little is 
known about the exact disease threats and viral diversity associated with 
these felids. As such, Sonoran desert felids provide both the conservation 
need and a unique opportunity to assess levels of viral diversity present 
within and shared between these populations of closely related 
sympatric host carnivore species. Bobcats and pumas, as the more 
abundant felids, are easier to sample, and surveys of viral diversity in 
these species may serve as a proxy for virome characterization or 
indication of potential viral spillover for the rarer felids.

In this paper, we leveraged a collection of fecal samples of wild 
bobcat and puma from Sonora, Mexico to determine (1) what DNA 
viruses are present in wild felids in Sonora and (2) the similarity of 
fecal DNA viromes between these sympatric species. These data will 
contribute to the growing field of wildlife viromics and to our 
understanding of the viral diversity present in wild mammalian species.

2. Methods

2.1. Sample collection and processing

Bobcat and puma scat samples were collected from Sonora, 
Mexico, between 2012 and 2014 (Figure 1). Scats possibly of felid 
origin, were collected only if determined to be fresh, based on color, 
moisture, smell, and texture. Host DNA was extracted using Qiagen’s 
DNeasy Blood and Tissue Kit, and species identification was 
performed through Sanger sequencing of a region of the mitochondrial 
cytochrome B gene (Verma and Singh, 2002; Naidu et  al., 2011; 
Cassaigne et  al., 2016), as previously described for these samples 
(Payne et al., 2020). Thirteen puma and nine bobcat scat samples were 
randomly selected for DNA virome analysis (Payne et  al., 2020). 
Separate viral DNA extraction from scat cross-sections, circular viral 
DNA amplification, and library preparation followed the protocol in 
Payne et al. (2020). Sequencing libraries were generated using the 
TruSeq Nano DNA Sample Preparation kit and sequenced on an 
Illumina HiSeq 4,000 (2 × 100 bp) at Macrogen Inc. (Korea) in 2018.

2.2. Bioinformatics and analyses

The metaWRAP pipeline v. 1.3.2 (Uritskiy et al., 2018) was used to 
process raw sequencing reads for comparative metagenomic analysis. 
Within the metaWRAP read_qc module, reads were trimmed using 
default parameters with Trim Galore v. 0.5.0 (Krueger, 2022) as a 
wrapper around Cutadapt v. 1.18 (Martin, 2011), human contamination 
was removed with BMTagger v. 3.101 (Rotmistrovsky and Agarwala, 
2011) using the hg38 human genome assembly (GCA_000001405.15), 
and read quality was assessed with FastQC v. 0.11.8 (Andrews, 2010). 
Untrimmed reads with human contamination removed were deposited 
in the Sequence Read Archive. Reads from all samples were 
co-assembled using metaSPAdes v. 3.14.1 (Bankevich et al., 2012; Nurk 
et al., 2017) with default parameters outside of metaWRAP, and the 
scaffolds were then used in the metaWRAP assembly module, allowing 
for assembly of unused reads with MEGAHIT v. 1.1.3 (Li et al., 2015). 
We elected to perform one co-assembly across all samples to achieve 
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better detection of rare taxa and allow for direct comparison of bobcat 
and puma virome composition. The metaWRAP Kraken 2 module was 
used to run Kraken 2 (Wood et al., 2019) and generate Krona plots 
(Ondov et al., 2011) to assess taxonomic composition of contigs in the 
final assembly, reads from individual samples (subset to 1,000,000 
reads), and all pooled reads for each host species, using the premade 
Kraken 2 viral database (v. 9/8/2022 available at https://benlangmead.
github.io/aws-indexes/k2). Contig abundances (in genome copies per 
million reads) were estimated with Salmon v. 0.13.1 (Patro et al., 2017) 
using the metaWRAP quant_bins module, and contig taxonomy was 
assigned using a megablast search against the NCBI nucleotide 
database (available at https://ftp.ncbi.nlm.nih.gov/blast/db/, 
downloaded 10/20/2022) using blast v. 2.13.0 (Altschul et al., 1990) 
outside of metaWRAP for v5 database compatibility, with the output 
further processed by the metaWRAP classify_bins module for pruning 
blast hits and assigning taxonomy with Taxator-tk (Dröge et al., 2015). 
CheckV v. 1.0.1 (Nayfach et al., 2020) was used to assess quality and 
completeness of viral contigs. Contigs assigned as viral (and not 
designated as phages) by classify_bins and which were determined to 
be  complete or high-quality (>90% complete) viral genomes with 
CheckV were retained for community analyses in R. All downstream 
analyses were repeated with a second set of viral contigs (>66.7% 
genome completeness), referred to as our “lower-completeness” set 
(resulting figures in Supplementary Figures S31–S37). The CheckV 

quality summary, final taxnomic assignment, top blast hit, and 
abundance per sample of each contig in the high and lower 
completeness set can be found in Supplementary Table 1.

The R package vegan v. 2.5-7 (Oksanen et al., 2020) was used to 
conduct viral community ecology analyses on the contigs representing 
high-quality viral genomes. Alpha diversity metrics (species richness, 
Simpson Diversity Index, and Shannon Diversity Index) were calculated 
for each sample, and Wilcoxon rank sum tests were used to determine 
if significant differences in alpha diversity exist between bobcats and 
pumas. Beta diversity metrics were calculated among all pairs of 
samples, both considering contig abundances (Bray–Curtis Dissimilarity 
Index; abundances were in genome copies per million reads, as 
estimated by quant_bins) and considering contig presence/absence 
(Jaccard distance). Kruskal–Wallis rank sum tests were used to 
determine if beta diversity differed significantly between host species 
pairs, and Dunn’s test was used post hoc to determine which comparisons 
differed significantly using the FSA R package v. 0.9.3 (Ogle et al., 2022).

Vegan was also used to conduct ordination analyses non-metric 
multidimensional scaling (NMDS) and principal coordinates analysis 
(PCoA) with both Bray–Curtis and Jaccard distance matrices, and 
visualizations were generated using ggplot2 (Wickham, 2016) and ggord 
(Beck, 2022). To further assess differences in virome composition due to 
host species, permutational multivariate analyses of variance 
(PERMANOVA) and analyses of similarity (ANOSIM) were conducted 

FIGURE 1

Map of bobcat and puma scat sampling sites in Sonora, Mexico. Camera trap photo insets show a bobcat and puma photographed at the same site in 
Sonora in 2011 (Photos: Primero Conservation and Jesús Moreno from the Management Unit for the Conservation of Wildlife (UMA) “Refugio Privado 
de Jaguares Silvestres”). Shapefiles: “States of Mexico”. Downloaded from http://tapiquen-sig.jimdo.com. Carlos Efraín Porto Tapiquén. Orogénesis 
Soluciones Geográficas. Porlamar, Venezuela 2015.
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using Bray–Curtis and Jaccard distance matrices with vegan’s adonis2 
function and anosim function, respectively. To assess correlations between 
geographic Euclidean distance and beta diversity, separate Mantel tests 
were performed using Bray–Curtis and Jaccard distance matrices.

3. Results

3.1. MetaWRAP

We obtained 4,044 contigs of 1,000 to 164,510 nts in length after 
co-assembly (prior to identification of viral sequences), and Krona plots 
generated by the Kraken 2 module show the viral taxa represented in the 
assembly (Supplementary Figure S1), bobcat reads 
(Supplementary Figure S2), puma reads (Supplementary Figure S3), and 
individual sample reads (Supplementary Figures S4–S25). Of the portion 
of the final assembly matching the Kraken 2 viral database (with contig 
taxonomy weighted by contig length and coverage), 48% represented 
viruses within Monodnaviria, with 28% identified as belonging to 
circoviruses (Figure  2). Viruses within the family Anelloviridae 
comprised 16% of the viral portion of the assembly, and phages within 
the class Caudoviricetes comprised 33%, reflecting viruses likely 
associated with enteric bacteria of the felids. When reads from each 
sample of the same host species were pooled (Figure 2), 96% of bobcat 
viral reads matched to those of the viruses in the family Circoviridae, 
while puma viral reads largely represented viruses in the families 
Genomoviridae (51%), Retroviridae (felispumavirus, 14%), Anelloviridae 
(8%), and class Caudoviricetes (25%). The computational analysis 
identified 38 complete genomes and 16 additional high-quality viral 
contigs (using CheckV and classify_bins taxonomy results, not including 
phages), which were used for downstream analyses. We included an 
additional 34 medium-quality contigs in our “lower-completeness” set.

3.2. Alpha and beta diversity

Species richness, Shannon Diversity Index, and Simpson Diversity 
Index were the alpha diversity metrics calculated for all samples. 

We  observed a wider range of species richness values for pumas 
(Figure 3A), and pumas had higher median values for each of these 
metrics (Supplementary Figures S26, S27), although differences in 
alpha diversity metrics among bobcats and pumas were not significant 
(richness: p = 0.1677; Shannon: p = 0.1264; Simpson: p = 0.1264). 
However, using our “lower-completeness” set of viral contigs, 
we found richness differed significantly between pumas and bobcats 
(p < 0.05; Figure  3C). Median beta diversity values were greatest 
between pumas and bobcats and lowest among pumas (Figure 3B and 
Supplementary Figure S28), and both Bray–Curtis and Jaccard 
distances were significantly different among different host species 
pairings (p < 0.01 for both distances), with significant differences 
among puma–puma pairings and other host species pairings 
(p-adj < 0.05 and p-adj < 0.01 with Bray–Curtis and Jaccard distances, 
respectively, for puma–bobcat pairings and p-adj < 0.05 with both 
distances for bobcat–bobcat pairings). However, using our “lower-
completeness” set of contigs and Jaccard distance (Figure  3D), 
significant differences among host species pairs were explained by 
puma–bobcat pairings having significantly higher beta diversity than 
puma–puma (p-adj < 0.01) and bobcat–bobcat pairings (p-adj < 0.05).

3.3. Effect of host species and geographic 
distance

The NMDS and PCoA plots reveal an extensive overlap between 
bobcat and puma viral communities (Figure  4 and 
Supplementary Figures S29, S30), although pumas and bobcats with 
the highest richness levels tended to cluster separately in the NMDS 
based on Bray–Curtis distances (stress = 0.155), and both PCoA and 
NMDS (stress = 0.211) based on Jaccard distances revealed puma 
samples outlying the region of overlap between the two species 
clusters. The PERMANOVAs revealed a significant effect of host 
species on community composition using Jaccard distances (p < 0.05, 
R2 = 0.09418), but not Bray–Curtis distances (p = 0.497, R2 = 0.04395). 
ANOSIM revealed significant differences between host species using 
both Jaccard (p < 0.05, R = 0.1901) and Bray–Curtis distances (p < 0.05, 
R = 0.1441). Differences between host species remained significant 
using the more complex “lower-completeness” set using Jaccard 
distances (PERMANOVA: p < 0.01, R2 = 0.12081; ANOSIM: p < 0.01, 
R = 0.2639) and ANOSIM with Bray–Curtis distances (p < 0.05, 
R = 0.1513; PERMANOVA: p = 0.649, R2 = 0.0398). Mantel tests did not 
reveal significant correlations between geographic distance and beta 
diversity for either Bray–Curtis (p = 0.813, r = −0.1011) or Jaccard 
distances (p = 0.165, r = 0.1191).

4. Discussion

Determining the viral diversity present in wildlife is essential for 
the management and control of emerging infectious diseases. Owing 
to the large potential for zoonotic spillover, characterizing mammalian 
viromes is vital to achieving One Health priorities. In non-invasively 
collected scat samples from wild pumas and bobcats, we observed 
diverse circular DNA viruses, including circoviruses, genomoviruses, 
and anelloviruses. Given that rolling circle amplification (RCA) was 
performed prior to sequencing, we expected to find a high proportion 
of circular DNA viruses present (although non-circular DNA is not 

FIGURE 2

Bar plots showing taxonomy of reads matching viral database from 
bobcat and puma samples, as well as taxonomy of contigs matching 
viral database. Contigs are from the final assembly generated by 
metaSPAdes and MEGAHIT, and metaWRAP weights taxonomy 
results of contigs based on length and coverage.
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excluded from sequencing). Specifically, one of the complete viral 
genomes, with particularly high prevalence in two bobcat samples, 
was identified as Sonfela circovirus 1, the genome of which was 
originally identified in these two samples (Payne et  al., 2020). 
Additionally, the high proportion of contigs with homology to 
anelloviruses was also expected, as the diversity of anellovirus 
genomes isolated from these samples has been previously 
characterized (Kraberger et al., 2021).

Interestingly, we documented the presence of feline foamy virus 
(FFV) within our dataset as a 4.4 kb contig primarily derived from one 
puma sample (72% of the reads). This suggests that this is an integrated 
FFV and was detected through carry-over of host DNA. FFV, a 
contact-dependent, multi-host adapted retrovirus, is known to cause 
lifelong infection in both domestic and wild felid species (Linial, 2000; 
Dannemiller et al., 2020), including pumas and domestic cats (Felis 
catus; Kechejian et al., 2019; Kraberger et  al., 2020). Most studies 
document prevalence in domestic cats, with comparatively few 
detecting the presence of FFV in wild felids (Dannemiller et al., 2020). 

Pumas have shown a high prevalence of FFV and a high frequency of 
intraspecies transmission in other studies (Kechejian et  al., 2019; 
Dannemiller et al., 2020; Kraberger et al., 2020). Additionally, frequent 
cross-species spillover of FFV has been documented from domestic 
cats to pumas due to depredation events (Kraberger et al., 2020), and 
the presence of the virus in a Sonoran puma may indicate that 
interactions between wild and domestic felids have occurred. 
However, it is also possible that this was a result of social spillover 
from another puma. While FFV is generally considered apathogenic, 
clinically silent infection has been associated with histopathological 
changes in domestic cats (German et al., 2008; Ledesma-Feliciano 
et al., 2019), and further research is needed to clarify implications for 
feline health.

Our analyses also indicate extensive overlap between bobcat and 
puma DNA viral communities. The broader diversity of viruses 
observed in pumas may result from exposure to a wider variety of prey 
species. Pumas have been observed to predate a broad range of taxa, 
including ungulates, mesocarnivores, and small mammals (Cassaigne 

A B

C D

FIGURE 3

Violin plots showing alpha and beta diversity. (A) Species richness of bobcats and pumas, using contigs representing high-quality or complete viral 
genomes. (B) Jaccard distances between bobcats, between pumas and bobcats, and between pumas, using contigs representing high-quality or 
complete viral genomes. Mean Jaccard distance differed significantly between puma–puma pairings and other groups (p-adj < 0.01 for puma–bobcat 
pairings and p-adj < 0.05 for bobcat–bobcat pairings). (C) Species richness of bobcats and pumas, using viral contigs in the “lower-completeness” set. 
Mean species richness differed significantly between bobcats and pumas (p < 0.05). (D) Jaccard distance between bobcats, between pumas and 
bobcats, and between pumas, using viral contigs in the “lower-completeness” set. Mean Jaccard distance differed significantly between puma and 
bobcat pairings and other groups (p-adj < 0.01 for puma–puma pairings and p-adj < 0.05 for bobcat–bobcat pairings).
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et  al., 2016; Meyer et  al., 2020), whereas bobcats are known to 
primarily specialize on rodents and lagomorphs (Hass, 2009; López-
Vidal et al., 2014; Meyer et al., 2020). Furthermore, apex predators are 
known to experience greater bioaccumulation of viruses (Malmberg 
et al., 2021). Pumas are also known to occasionally prey upon smaller 
felids such as bobcats (Hass, 2009; Prude and Cain III, 2021), and 
previous studies have documented pathogen transmission from 
bobcat to puma, putatively through competitive contact or 
depredation (Franklin et al., 2007; Lee et al., 2017; Malmberg et al., 
2021). While such interactions may facilitate viral transmission to 
Sonoran pumas, the presence of shared viral taxa in bobcats and 
pumas does not necessarily indicate cross-species transmission. As 
both pumas and bobcats are known to prey on small mammals, and 
bobcats have been known to predate deer on occasion (Leopold and 
Krausman, 1986; McKinney and Smith, 2007), shared viral taxa may 
instead reflect dietary overlap or shared environmental resources, 
such as water sources. For example, we  identified complete viral 
genomes matching the rodent anelloviruses Neotofec virus 
NeonRodL2_5 and Neotofec virus NeonRodL2_6 in bobcats and a 
partial genome matching Dipodfec virus NeonRodF1_131 (within the 
phylum Cressdnaviricota) in pumas. These viruses were first isolated 
from white-throated woodrats (Neotoma albigula) and Merriam’s 
kangaroo rat (Dipodomys merriami), respectively, which could 
be  suitable prey items for both felid species (Meyer et  al., 2020). 
Alternatively, shared taxa that infect these felids may be co-evolved 
within each species. However, we were unable to determine the strains 
present within each sample (and species) since contigs were generated 
by co-assembly. Future research including samples from other sources 
(e.g., prey items, tissue samples) might help to clarify such 
host associations.

We found that geographic distance among scat samples did not 
have a significant effect on DNA virome composition at this spatial 
scale. Our results support previous findings of low levels of spatial 
autocorrelation of pathogen exposure in pumas and bobcats in 

Florida, Colorado, and California (Gilbertson et al., 2016). Instead, 
DNA virome composition appears to be shaped by a combination 
of host species dependent and independent factors, with extensive 
virome composition overlap observed between host species using 
ordination analyses, while PERMANOVA and ANOSIM revealed 
small yet significant effects of host species. Although 
pseudoreplication is not suspected, the possibility of some 
individuals being represented by more than one sample may 
contribute to the observed effect of host species on DNA 
virome composition.

Despite providing insight into the possible interactions between 
host and viral communities, further research is needed to clarify the 
implications of these results for Sonoran felid health. Fecal virome 
characterization of non-invasively collected scat samples includes 
many novel and known viruses derived from the scat depositors as 
well as prey species and environmental contacts, so the host 
associations and pathogenicity of each virus in the metagenome is 
unknown. Of the major viral taxa identified here, viruses in the family 
Circoviridae may be of most interest in terms of bobcat and puma 
health. Circoviruses are known as the smallest animal pathogens that 
replicate autonomously (Fisher et  al., 2020). They are found in a 
number of species [freshwater fish, birds, bats, chimpanzees, minks, 
elk, and humans (Rosario et al., 2017; Fisher et al., 2020)], although 
their presence is often subclinical (Fisher et al., 2020). In some birds, 
circoviruses are considered potentially immunosuppressive (Todd, 
2000), suggesting that concurrent co-infections could increase the 
symptoms and severity of disease (Fisher et  al., 2020). Some 
circoviruses are known to cause clinical disease such as hemorrhagic 
gastroenteritis in dogs (Anderson et al., 2017; Kotsias et al., 2019), 
often fatal postweaning multisystemic wasting syndrome in pigs 
(Chae, 2005; Segalés et al., 2005) and virus (BFDV) in birds [beak and 
feather disease virus (Todd, 2000)]. The identification of potentially 
disease-causing circoviruses in bobcats and pumas is of concern for 
both wild felid population health and conservation. With their 

A B

FIGURE 4

NMDS plots generated using (A) Bray–Curtis dissimilarity (stress = 0.155) and (B) Jaccard distance (stress = 0.211), using contigs representing high-quality 
or complete viral genomes. Each point represents the viral community composition within a specific sample. Points are colored by host species, and 
point size is proportional to species richness of each sample. Ellipses corresponding to the two host species groups are shown at the 95% confidence 
level. Axes (MDS1 and MDS2) correspond to the two axes of variation.
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propensity for displaying tissue tropism (Todd, 2000), transmission of 
these circoviruses from more abundant/common species to threatened 
wild felids could result in catastrophic population declines, particularly 
if these felids are already immunocompromised from co-infections. 
Furthermore, the high abundance of Sonfela circovirus 1 reads in two 
bobcat samples may suggest an active infection. However, with these 
viruses being identified from non-invasively collected scat samples, 
further study is needed to clarify host associations and consequences 
for feline health. Although important feline pathogens present in the 
scats may have been missed through analysis of the circular viral DNA 
enriched dataset, these results contribute to the documentation of 
viral diversity in wild felids. Future studies coupling the 
characterization of broader virome composition and disease dynamics 
across sympatric populations of wild mammals could help with the 
identification of viral threats to wildlife, as well as potentially to 
humans and domestic animals.
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