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Introduction: Species inventories based on various data sources have been 
widely used in biodiversity research, conservation policy formulation, reserve 
designation and biodiversity resource management. In this paper, we explored the 
relationships of species inventories obtained from different sources and whether 
they would affect the inference of biodiversity patterns and their environmental 
drivers.

Methods: We compiled the species inventories from different data sources 
(observational data including large amounts of citizen-based observational 
records and digitalized specimens, and avifauna data extracted from avifaunas 
which mainly integrated professional-based species surveys, expert knowledge 
and documentary records) at the prefectural level in China. Then we explored the 
relationships of different inventories and compared the correlations between the 
taxonomic, phylogenetic, functional diversity calculated from different datasets 
and the environmental factors.

Results and Discussion: The results showed that the avifauna datasets contributed 
more additional species to the combined species inventories when the species 
richness was relatively low and vice versa. Species inventories integrated from 
two different data sources formed complementary relationship rather than nested 
or totally different relationships. In addition, the species inventories based on 
observational data had no obvious disadvantage or were even better at inferring 
the biodiversity patterns than those based on avifauna data. The stepwise multiple 
regression analyses showed that the best models were the ones using the species 
inventories combined by observational and avifauna dataset, and the best models 
built with different datasets included inconsistent environmental variables. Thus, 
the species inventories from different data sources will indeed affect the inference 
of the correlations between taxonomic diversity, phylogenetic diversity, functional 
diversity and environmental factors. Moreover, although it may be more reliable 
to use a combined species inventory to analyze the relationship between diversity 
indices and environmental factors, individualized improvement schemes should 
be proposed for different data sources to fill the data gaps.
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1. Introduction

Fully understanding the biodiversity patterns and drivers at 
different scales is of persistent research interest in macroecology and 
biogeography (Soroye et  al., 2018). Therefore, obtaining a reliable 
species inventory within the concerned group and geographical scope, 
locally to globally, is key to get credible results and correct answers to 
the field questions (Qian et al., 2018). An incomplete species inventory, 
whether at a broad- or local-scale, poses a barrier to further 
applications (Vale et al., 2018). First, the incomplete species inventory 
will affect the correct inference of the biogeographical patterns and 
their drivers, or the conclusions may even be contrary to reality (Qian 
et al., 2018). Second, because of the different rarity of each species 
within a certain range, it is more likely that the rare or endemic 
species, which should be given higher priority for protection, will not 
be included in the species inventory. The “pseudoabsence” of these 
species will affect conservation policies (Vale et al., 2018). In addition, 
the incomplete species inventories between different temporal periods 
make it difficult to infer changes in the biodiversity patterns (Boakes 
et al., 2010).

Regardless of the completeness, a species inventory is usually 
obtained from sampling survey reports, comprehensive species 
atlases, and scientific literature, depending on the target group and 
the scope of the study. However, species inventories compiled by 
these methods tend to underestimate or overestimate species 
richness within a certain range (McPherson and Jetz, 2007; 
Rotenberry and Balasubramaniam, 2020). In addition, it is 
sometimes difficult to obtain these raw data (Davis et al., 2014). Two 
other methods are relatively suitable for extracting local-range 
species inventories for larger-scale biodiversity studies. The first data 
source is fauna and flora compiled for a specific area, which integrate 
species surveys, expert knowledge, and documentary records. These 
fauna and flora retain basic information for native species, and they 
have been used for many biodiversity studies (Feng et  al., 2020; 
Wang et  al., 2020; Yang et  al., 2021). The other data source is 
observational data (digital accessible knowledge, Sousa-Baena et al., 
2014), including citizen-based observational records and digitized 
specimens, which have been developing in recent years and gradually 
used by scholars, conservation stakeholders, and policy makers more 
frequently (Hu et al., 2017, 2020; Shipley et al., 2018; Long et al., 
2019). Although many studies have shown that there are sampling 
biases in various dimensions, these kinds of data are generated in 
real time and in huge quantities (Peterson et al., 2018), and have 
been widely recognized as data sources for biological conservation 
(Young et al., 2019).

Studies over the past 2 decades have explored the biodiversity 
patterns and their drivers at the global-to-regional scales by 
consolidating one or several data types mentioned above (Ding et al., 
2006; Jetz et al., 2012; Wang et al., 2020). However, confirming the 
reliability of these studies is a very difficult but interesting problem. 
The most commonly method used to obtain relatively reliable results 
is integrating species inventories from as many data sources as possible 
(Qian et al., 2018). To the best of our knowledge, little work has been 
devoted to comparing the results analyzed from different sources (but 
see Qian et al., 2018). No studies have assessed whether the species 
inventories compiled from different sources result in different 
associations between taxonomic, phylogenetic, functional diversity, 
and environmental variables.

With a vast territory and high environmental diversity, China is 
one of the countries with the most biodiversity in the world (Fan et al., 
2020; Mi et al., 2021). At present, 1,445 bird species and over 33,000 
vascular plant species have been identified in China (Feng et al., 2016; 
The Biodiversity Committee of Chinese Academy of Sciences, 2020; 
Mi et al., 2021). Over the decades of field surveys and continuous 
expert studies, numerous faunas and floras at national, regional, 
provincial, and municipal scales have been published, which can 
provide detailed classical fauna-based (or flora) species inventories. In 
addition, biodiversity informatics is booming in China, and a large 
amount of publicly accessible observational data being generated. For 
instance, the National Species Information Infrastructure (NSII, 
http://www.nsii.org.cn) is the main source of digitalized specimen 
data in China at present (Huang et al., 2020). In recent years, citizen 
science has become popular in China, and many citizen science 
projects are continuously producing data, which has been used in 
many biodiversity studies (Dong et  al., 2020; Duan et  al., 2020). 
Although studies have indicated that such observation-based data in 
China have large gaps in various dimensions (Yang et al., 2013; Huang 
et al., 2020), China is an excellent geographical unit for exploring 
whether there are differences in the diversity–environment 
relationships between species inventories compiled from 
different sources.

This study will take Chinese breeding birds as an example and ask 
the following questions by integrating species inventories from 
avifauna and observational data: (1) What are the relationships 
(complementary, nested, or totally different) between the species 
inventories compiled from different data sources? (2) Will the species 
inventories derived from different data sources affect the inference of 
diversity (taxonomic, phylogenetic, and functional diversity)–
environment relationships?

2. Materials and methods

2.1. Bird lists and plant richness

The avifauna dataset included bird checklist data for 214 
prefecture-level cities in mainland China, which were compiled from 
national, provincial and regional faunas, e.g., A Checklist on the 
Classification and Distribution of the Birds of China (Zheng, 2017), 
Studies on Birds and Their Ecology in Northeast China (Gao, 2006), 
and The Avifauna of Yunnan China (Yang et al., 1995; Yang and Yang, 
2004). This dataset included 1,130 breeding birds (1,290 species in 
total). Detailed descriptions of the distribution of these birds in 
prefecture-level cities could be extracted from these faunas. All bird 
distribution information was based on the expertise of many 
professional ornithologists and a large number of field surveys. Thus, 
the avifauna dataset was relatively reliable, structured, comprehensive 
but often had publication lags.

Because there were not applicable provincial avifauna records in 
Henan, Hebei, Hubei, Jiangsu, Anhui, Jiangxi, and Fujian, the cities in 
these provinces were not included in our analyses. The distribution of 
birds on islands may be influenced by factors different from those on 
the mainland (Baiser et al., 2018), so cities in Hainan, Taiwan, Hong 
Kong, and Macao were also excluded from our analyses. However, the 
distribution data in this dataset still included information for 90% of 
the domestic avifauna in China (Appendix S1).

https://doi.org/10.3389/fevo.2023.1121422
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
http://www.nsii.org.cn


Huang et al. 10.3389/fevo.2023.1121422

Frontiers in Ecology and Evolution 03 frontiersin.org

The observational dataset included the bird checklist data 
compiled from observational data, including digitalized specimen and 
bird-watching data, i.e., bird occurrence data. The data were obtained 
from three main sources, which represent the digital accessible 
knowledge of birds in China: (1) the Global Biodiversity Information 
Facility (GBIF, https://www.gbif.org, GBIF, 2018), with the majority of 
these records coming from eBird and specimen; (2) the BirdReport,1 
and (3) three sub-platforms of the National Specimen Information 
Infrastructure (NSII, http://www.nsii.org.cn; Huang et al., 2020). The 
bird checklist data for each data source were also compiled for further 
analyses. The observational dataset had the features of big data, and 
was relatively real-time, semi-structured, but error prone. We also 
integrated the avifauna dataset and observational dataset to form 
integrated bird checklist data for further analyses.

Angiosperm plant species richness in each prefecture-level city 
was used as an environmental variable for further analysis and 
compiled from the China Vascular Plant Distribution Database. This 
database integrated the plant distribution information from national, 
provincial, and regional floras, as well as some sampling information 
from herbarium specimens (Lu et al., 2018).

2.2. Nomenclature and dataset alignment

The inventory data from different data sources and publications 
at different periods may use different nomenclature systems. 
Therefore, in this study, the Catalog of Life China: 2020 Annual 
Checklist (The Biodiversity Committee of Chinese Academy of 
Sciences, 2020) was used to unify the avian naming systems. Species 
with matched accepted scientific names were retained for 
further analyses.

To make the results of the datasets comparable, only cities and 
species with data were retained for further analyses. For example, 
Siping city only had data in the avifauna dataset but not in the 
observational dataset, so this city was excluded; additionally, the 
species Arborophila ardens and Hirundo tahitica only appeared in the 
observational dataset but not in the avifauna dataset, and Heterophasia 
auricularis was only appeared in the avifauna dataset, so these species 
were excluded. Finally, the data for analyses included 1,088 breeding 
birds in 212 prefectural cities (Appendix S2).

2.3. Phylogeny and trait data

A phylogenetic tree including 1,088 breeding birds covered by our 
study was extracted from a global phylogeny of birds2 under the 
option of “Hackett All Species: a set of 10,000 trees with 9,993 OTUs 
each” (Jetz et al., 2014). We sampled 5,000 trees from the pseudo-
posterior distribution and calculated a maximum clade credibility tree 
using mean node heights in the software TreeAnnotator (version 
1.8.2) of the BEAST 2 package (Bouckaert et al., 2014).

To analyze the functional diversity, four key ecological traits of 
1,088 bird species, i.e., body size, trophic niche (omnivores, granivores, 

1 http://www.birdreport.cn

2 http://birdtree.org

frugivores, nectarivores, insectivores, piscivores, and carnivores), 
migrant status (resident, partial migrant, and full migrant), and 
habitat specificity (Wang et al., 2018), were selected to construct a 
functional dendrogram. The dendrogram were built using Gower’s 
distance and “complete” cluster in the “vegan” R package (Oksanen 
et al., 2015).

2.4. Environmental variables

Previous studies indicated that both paleoclimate and 
contemporary climate would affect the current avian biodiversity 
pattern (Hawkins et  al., 2003; Currie et  al., 2004; Qu et  al., 2015; 
Svenning et al., 2015). Therefore, contemporary climate variables, i.e., 
mean annual temperature (MAT) and mean annual precipitation 
(MAP), were downloaded from the WorldClim database (Hijmans 
et al., 2005). The climate variables in the last glacial maximum (LGM), 
i.e., MAT in LGM and MAP in LGM, were the mean values of the 
Model for Interdisciplinary Research on Climate version 3.2 
(MIROC3.2; Hasumi and Emori, 2004) and the Community Climate 
System Model version 3 (CCSM3; Hijmans et al., 2005; Otto-Bliesner 
et al., 2006). Anomaly in the MAT and anomaly in the MAP were 
calculated as the contemporary MAT/MAP minus the MAT/MAP in 
LGM, which were used to represent climate change (Sandel 
et al., 2011).

Altitudinal data were compiled from the EarthEnv-DEM90 digital 
elevation model3 (Robinson et al., 2014), and the altitudinal range in 
each prefecture city was calculated as the difference between the 
maximum and minimum values and extracted in ArcGIS 10.2 (ESRI, 
Redlands, California, United States).

The resolution of climate variables and elevation data was 2.5 
arc-min, and the mean values of all cells in each prefectural city were 
used for the analyses. All data were extracted and calculated for 
subsequent analyses in ArcGIS 10.2.

2.5. Statistical analyses

2.5.1. Phylogenetic and functional diversity
The standardized effect size of phylogenetic or functional diversity 

were represented using standardized Faith’s PD (SES.pd; Procheş et al., 
2006), which is computed as follows:

 

( )
( )

obs rnd

rnd

PD - mean PD
SES.pd =

sd PD

where PDobs is the observed phylogenetic diversity of birds in a 
city, mean(PDrnd) is the mean PD of the null models (Procheş et al., 
2006), and sd(PDrnd) is the standard deviation of PD of the null 
models. A positive SES.pd means a higher proportion of long branches 
in a city than expected, i.e., species/lineages are relatively old, while a 
negative SES.pd means a higher proportion of short branches, i.e., 
species/lineages are relatively young.

3 http://www.earthenv.org/DEM.html
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Likewise, a positive functional SES.pd means the bird community 
in each city is more similar than expected, that is, similar in functional 
characteristics or functionally clustered; a negative functional SES.pd 
means the functional characteristics are divergent or 
functionally scattered.

2.5.2. Similarity of different species inventories
To quantify the difference between the species inventories 

retrieved from the two data sources, according to the definition of the 
Jaccard Index (Legendre and Legendre, 2012), the species Jaccard 
Index (SJI) between the two species inventories in each city was 
defined as follows:

 

shd

shd obs fau

SSJI =
S + S + S

where Sshd is the number of species shared between two datasets, Sobs 
is the number of species unique to the observational dataset, and Sfau 
is the number of species unique to the avifauna dataset. The 
phylogenetic Jaccard Index (PJI) was defined as follows:

 

shd

int

PPJI =
P

where Pshd is the Faith’s PD of species shared between two datasets, and 
Pint is the phylogenetic diversity of species in the integrated dataset.

The functional Jaccard index (FJI) was defined as follows:

 

shd

int

FFJI =
F

where Fshd is the functional Faith’s PD (calculated as Faith’s PD but 
used the functional dendrogram) of species shared between two 
datasets, and Fint is the functional diversity of species in the 
integrated dataset.

2.5.3. Model fitting
Ordinary least squares (OLS) models were used to evaluate the 

relationships between species richness and the three Jaccard indices. 
Then OLS models were also used to assess the correlations between 
the taxonomic, phylogenetic, functional diversity of the avifauna 
dataset, observational dataset, combined dataset, each observational 
dataset (i.e., GBIF, BirdReport, and NSII), and each environmental 
variable. In addition, spatial simultaneous autoregressive models 
(SARs) were used for regressive analyses to control the spatial 
autocorrelation of residuals. These analyzes were performed using the 
function “errorsarlm” in the “spdep” package implemented in R (R 
Development Core Team, 2019). In addition, stepwise multiple 
regression analyses (SMR) with model simplification procedures 
based on Akaike information criterion (AIC) were also used to show 
if the environmental drivers of diversity patterns (taxonomic, 
phylogenetic, or functional diversity) change with the type of 
inventory used, and which inventory (avifauna, observational, or a 
combination of both) better explains the patterns of variation 
in diversity.

To make the correlation coefficients comparable, all other 
variables except for the three Jaccard indices were standardized 
(standard deviation = 1, mean = 0). All the above calculations and 
statistical analyses were performed in R v3.6.1 (R Development Core 
Team, 2019).

3. Results

3.1. Similarity of different species 
inventories

There were 43 cities with a SJI of 0–0.24, 90 cities with a SJI of 
0.25–0.49, 73 cities with a SJI of 0.50–0.74, and only six cities with a 
SJI of 0.75–0.84. The results of the OLS model showed that the species 
Jaccard Index, phylogenetic Jaccard Index, and functional Jaccard 
Index were significantly positively correlated with species richness 
(SJI: R2 = 0.3363, p < 0.0001, Figure 1A; PJI: R2 = 0.3398, p < 0.0001, 
Figure 1B; FJI: R2 = 0.4220, p < 0.0001, Figure 1C); that is, cities with 
higher species richness had higher resemblance of type of inventories 
in terms of the species richness, phylogenetic, and functional diversity 
they render.

Taking the median species richness as the boundary, the species 
Jaccard Indices were below the regression line in 66 of the 106 cities 
with relatively low species richness (on the left of the median), namely, 
the similarity between the species inventories of the observational 
dataset and the avifauna dataset was lower than expected. Moreover, 
the avifauna dataset contributed more additional species in 65 of the 
106 cities. However, the species Jaccard Indices were above the 
regression line in 62 of the 106 cities with relatively high species 
richness (on the right of the median), and the observational dataset 
contributed more additional species in 59 of the 106 cities (Figure 1A). 
In summary, cities with relatively low avian species richness were 
inclined to be  under-sampled, and avifauna provided more bird 
information in these cities, and vice versa. The results were similar in 
the relationships among the phylogenetic Jaccard Index, functional 
Jaccard Index, and species richness (Figures 1B,C).

3.2. Diversity indices vs. environmental 
factors

3.2.1. Species richness vs. environmental factors
The OLS model and the SAR model showed similar results; that 

is, the results from the three datasets all showed that the two 
environmental factors most associated with bird species richness were 
plant richness and altitudinal range (Table 1; Figures 2A,D). More 
importantly, the associations based on the “avifauna dataset” were 
consistently weaker than the associations based on the “observational 
dataset” and the “combined dataset” (Figure 2A). Specifically, the R2s 
calculated from the “avifauna dataset” were smaller than those of the 
“observational dataset” and “combined dataset,” while the AICs using 
the “avifauna dataset” were larger than the other two datasets (Table 1; 
Figures 2A,D). In general, using R2 to comparing the performance of 
results analyzed by different datasets, the “observational dataset” was 
the best (except for the associations with plant species richness), 
followed by “combined dataset,” and the “avifauna dataset” was 
the worst.
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3.2.2. Phylogenetic diversity vs. environmental 
factors

The OLS model and the SAR model again showed similar results 
(Table 1; Figures 2B,E). Altitudinal range was consistently the variable 
most associated with phylogenetic diversity across the three datasets. 
The second most associated variable for phylogenetic diversity in the 

“avifauna dataset” and “combined dataset” was MAT, while it was 
plant richness in the “observational dataset” (Table 1; Figure 2B,E).

More importantly, although the results showed that SES.pd had a 
significant negative correlation with the altitudinal range in all three 
datasets, the correlation was strongest in the “combined dataset,” 
followed by “observational dataset” and “avifauna dataset;” (Table 1; 

A B C

FIGURE 1

Scatter plots and ordinary least squares (OLS) model fitting line of relationships between the (A) species Jaccard index, (B) phylogenetic Jaccard index, 
and (C) functional Jaccard index and bird species richness in the species inventories compiled from combined datasets. The color of the points 
indicates the relative size of the number of species contributed by the “observational dataset” and “avifauna dataset” without the shared species. 
Specifically, a city with a red point indicates that the number of additional species contributed by the observational dataset is greater than that of the 
avifauna dataset and vice versa.

TABLE 1 Correlation coefficients between the diversity indices and environmental factors in observational (Obs), avifauna (Fau), and combined datasets 
(Comb).

Taxonomic diversity Phylogenetic diversity Functional diversity

Obs CoefOLS R2
OLS CoefSAR AICSAR CoefOLS R2

OLS CoefSAR AICSAR CoefOLS R2
OLS CoefSAR AICSAR

MAT 0.21 0.05** 0.11 535.35 0.33 0.11** 0.38 519.31** −0.36 0.13** −0.30 499.55**

MAP 0.32 0.10** 0.39 524.39** 0.25 0.06** 0.22 527.95 −0.41 0.17** −0.48 489.51**

AnomMAT −0.32 0.10** −0.21 533.56 0.09 0.01 −0.01 531.37 0.46 0.21** 0.48 491.86**

AnomMAP −0.14 0.02* −0.12 534.84 −0.26 0.07** −0.18 528.27 −0.05 0.00 −0.10 505.06

RangeALT 0.36 0.13** 0.37 518.08** −0.59 0.35** −0.54 490.56** −0.10 0.01 −0.05 505.78

PlantSR 0.67 0.44** 0.59 463.74** −0.43 0.19** −0.32 512.31** −0.50 0.25** −0.20 499.10**

Fau CoefOLS R2
OLS CoefSAR AICSAR CoefOLS R2

OLS CoefSAR AICSAR CoefOLS R2
OLS CoefSAR AICSAR

MAT 0.06 0.00 −0.01 570.48 0.46 0.22** 0.50 522.38** −0.45 0.20** −0.46 497.37**

MAP 0.16 0.03* 0.25 565.61* 0.41 0.17** 0.41 532.61** −0.44 0.20** −0.51 495.03**

AnomMAT −0.01 0.00 0.03 570.42 −0.08 0.01 −0.14 545.81 0.59 0.35** 0.63 482.76**

AnomMAP −0.04 0.00 0.02 570.45 −0.19 0.04** −0.15 544.90 −0.03 0.00 −0.11 513.43

RangeALT 0.25 0.06** 0.35 555.67** −0.55 0.31** −0.52 509.10** −0.13 0.02 −0.10 513.22

PlantSR 0.56 0.32** 0.68 478.39** −0.28 0.08** −0.28 532.32** −0.51 0.26** −0.24 505.16**

Comb CoefOLS R2
OLS CoefSAR AICSAR CoefOLS R2

OLS CoefSAR AICSAR CoefOLS R2
OLS CoefSAR AICSAR

MAT 0.19 0.04** 0.10 538.18 0.50 0.25** 0.45 449.38** −0.42 0.18** −0.43 447.79**

MAP 0.31 0.09** 0.40 526.93** 0.44 0.19** 0.40 455.68** −0.45 0.20** −0.59 438.42**

AnomMAT −0.25 0.06** −0.17 537.29 −0.02 0.00 −0.15 465.68 0.60 0.36** 0.64 437.75**

AnomMAP −0.09 0.01 −0.07 538.53 −0.27 0.07** −0.09 466.12 −0.04 0.00 −0.06 462.48

RangeALT 0.35 0.12** 0.40 518.20** −0.65 0.42** −0.48 430.87** −0.20 0.04** −0.13 460.15

PlantSR 0.72 0.52** 0.67 438.59** −0.34 0.12** −0.23 453.26** −0.57 0.33** −0.19 454.89**

The standardized coefficients (CoefOLS) of the variables and the R2
OLS in the general linear regression model (OLS), the standardized coefficients (CoefSAR) of the variables, and the Akaike 

information criterion (AICSAR) were listed. For the results of each dataset, the two highest R2 or lowest AIC values in each column are shown in bold. *p < 0.05, **p < 0.01. 
MAT, mean annual temperature; MAP, mean annual precipitation; AnomMAT, anomaly in MAT; AnomMAP, anomaly in MAP; RangeALT, altitudinal range; and PlantSR, plant species 
richness.
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Figures  2B,E). In general, for the associations with phylogenetic 
diversity, the “combined dataset” had the best performance, followed 
by the “observational dataset” and the “avifauna dataset.”

3.2.3. Functional diversity vs. environmental 
factors

The OLS model showed that in the three datasets, the two 
environmental factors most associated with functional diversity were 

anomaly in MAT and plant richness, while in the SAR model, they 
were the anomaly in MAT and contemporary MAP (Table  1; 
Figures 2C,F).

However, in the OLS model, comparing the strength of the 
relationships between the functional diversity and the two most 
relevant environmental factors, the correlations in the “combined 
dataset” was the highest, followed by the “avifauna dataset” and the 
“observational dataset” (Table 1; Figure 2C). In the SAR model, for the 

A D

B E

C F

FIGURE 2

Relationship between each diversity index and environmental factor in observational (Obs), avifauna (Fau), and combined datasets (Comb), comparing 
(A–C) the R2s in the OLS models and (D–F) Akaike information criterions (AICs) in the spatial simultaneous autoregressive (SAR) models of taxonomic 
diversity, phylogenetic diversity, and functional diversity.
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relationships between the functional diversity and the anomaly in 
MAT, the AIC calculated by the “observational dataset” was larger 
than that of the “avifauna dataset;” for the relationship between the 
functional SES.pd and the MAP, the AIC calculated by the 
“observational dataset” was smaller than that of the “avifauna dataset” 
(Table 1; Figure 2F). In general, for the associations with functional 
diversity, again the “combined dataset” had the best performance, 
followed by the “avifauna dataset” and the “observational dataset.”

3.2.4. Diversity indices vs. environmental factors 
using stepwise multiple regression analysis

The SMR analyses about the relationships between all the three 
diversity indices and environmental factors showed that best models 
established were the ones using the “combined dataset,” followed by 
the “observational dataset,” and the “avifauna dataset” (Table  2). 
Specifically, the adjusted R2s of models based on “combined dataset” 
were larger and AICs were lower than those based on the 
“observational dataset” and the “avifauna dataset” (Table  2). In 
addition, the final environmental factors included in the best models 
obtained from these data sources were same for phylogenetic diversity, 
but different for taxonomic and functional diversity (Table 2).

3.3. Diversity indices vs. environmental 
factors in each dataset of observational 
data

In terms of the consistency of the correlations, the relationships 
between the phylogenetic diversity and the environmental factors in 
each dataset branch was basically the same as that in the “combined 
observational dataset;” that is, the two most relevant factors were the 
altitudinal range and plant richness, both of which were significantly 
negatively correlated (Table 3). The strongest relationship was shown 
in the BirdReport dataset, with GBIF in the middle and NSII being the 
worst (Table 3).

In addition, the correlations between species richness and 
functional diversity and each environmental factor was the worst in 
the NSII dataset among the three dataset branches; that is, the 
relationship between the diversity indices and environmental factors 
tended to be  random, and there was no significant correlation 

(Table 3). In general, the results analyzed using the BirdReport dataset 
were the most similar to the “observational dataset,” the GBIF was 
ranked the second, and the NSII was the worst (Table 3).

4. Discussion

The results showed that there was a positive correlation between 
bird richness and the similarity between the species lists obtained 
from the two data sources. Importantly, when the species richness was 
low, the avifauna dataset contributed more additional species to the 
combined species inventory and vice versa. The results of simple 
regressions indicated that the two species inventories compiled from 
different datasets did not “shape” different patterns of diversity. 
However, correlation of diversity with environmental drivers was 
stronger in the species inventory based on observational data than in 
that based on avifauna data. Moreover, the SMR analysis showed that 
models built with different datasets were including inconsistent 
environmental variables. In addition, both results of simple and 
multiple regression analysis indicated that it may be more reliable to 
use a combined species inventory to analyze the relationships between 
diversity indices and environmental factors. The completeness of the 
species inventory will indeed affect the inference of the correlations 
between taxonomic diversity, phylogenetic diversity, functional 
diversity, and environmental factors.

4.1. Complementarity of the observational 
and avifauna dataset

The relatively low level of taxonomic similarities between 
observational and avifauna dataset in many cities indicated the 
complementarity of species inventories coming from different data 
sources, which is crucial for producing complete list of species at 
the local (and smaller) scale and biodiversity management at 
multiple scales. Notably, the species inventory based on the avifauna 
dataset does not fully include that based on the observational 
dataset, indicating that the bird species list of each city obtained 
from either data source may not be a truly representative list. But 
still studies have shown that bird diversity patterns are clearer than 

TABLE 2 Stepwise multiple regression analysis (SMR) results between the diversity indices and environmental factors in observational (Obs), avifauna 
(Fau), and combined datasets (Comb).

Taxonomic diversity Phylogenetic diversity Functional diversity

CoefSMR Obs Fau Comb Obs Fau Comb Obs Fau Comb

MAT - 0.28** 0.35** 0.53** 0.58** 0.71** - −0.44** -

MAP 0.16* - - - - - −0.16* - -

AnomMAT - 0.46** 0.27** 0.35** 0.26** 0.41** 0.22** - 0.44**

AnomMAP −0.15** - - - - - - −0.16** -

RangeALT 0.18* - 0.19** −0.26** −0.25** −0.28** - - -

PlantSR 0.55** 0.70** 0.69** −0.26** −0.15* −0.16** −0.37** −0.42** −0.40**

adjR2 0.49 0.40 0.55 0.46 0.42 0.58 0.34 0.41 0.49

AICSMR 464.93 499.98 441.24 477.53 494.37 426.90 518.52 496.46 463.22

The standardized coefficients (CoefSMR) of the variables, adjusted R2 (adjR2), and the Akaike information criterion (AICSMR) were listed. *p < 0.05, **p < 0.01. 
MAT, mean annual temperature; MAP, mean annual precipitation; AnomMAT, anomaly in MAT; AnomMAP, anomaly in MAP; RangeALT, altitudinal range; PlantSR, plant species richness.
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those in other animal groups, both in China and globally (Lepczyk 
et al., 2017). Because there are relatively complete species lists at the 
global, national and even provincial levels (e.g., IOC World Bird 
List). However, it is increasingly difficult for administrative levels 
below the provincial level to obtain a complete species list. 
Currently, only a few administrative regions below the county level 
and limited taxa (e.g., plants and birds) can be fully investigated 
(Qian et al., 2018). Therefore, although various problems have been 
reported in observational data (e.g., uneven distribution patterns 
and multidimensional biases, Huang et al., 2020), the observational 
data will be an important data source regarding species distribution 
information, as shown in this study. Future revisions to the avifauna 
may consider including information obtained from the 
observational data. This method should be  practicable both in 
China and globally.

4.2. Do species inventories from different 
data sources “shape” different diversity 
patterns?

Many studies on different biological groups have attempted to 
compare the species distribution patterns shown from observational 
data sources with randomness (including digital specimens, 
observation records, etc.) and standardized data sources (such as atlas, 
actual surveys, and literature records; Soroye et al., 2018; Alhajeri and 

Fourcade, 2019; Rotenberry and Balasubramaniam, 2020; Zhou et al., 
2020). However, few studies have compared the relationship between 
diversity indices (taxonomic, phylogenetic and functional diversity) 
and environmental factors based on different data sources at the same 
time. For the first time, this study comprehensively compared the 
relationships between the diversity patterns based on observational 
data and avifauna data and environmental factors to explore whether 
species inventories obtained from different data sources lead to 
inconsistency in the drivers of the biodiversity patterns. The results 
showed that although the correlation coefficients between diversity 
indices and environmental factors analyzed based on species 
inventories from different data sources were inconsistent, the 
correlation relationships were consistent. That is, the relationships 
between the diversity indices and environmental factors were both 
significantly positively (or negatively) correlated. It can also 
be concluded that a higher plant richness and a more stable climate 
will lead to a more diversified bird community with observational 
data, which has been confirmed by using the avifauna dataset (Qian, 
2010; Wang et al., 2020). Moreover, the result showed that the multiple 
regression models built using the combined species inventories of 
observational and avifauna dataset had the best performance (with 
highest adjusted R2 and lowest AIC), which emphasized the necessity 
of integrating data from different sources, especially data collected by 
different methodologies, to conducted biodiversity researches and 
effectively management. Complete data will make the analysis results 
and conclusions more reliable and closer to reality.

TABLE 3 Correlation coefficients between the diversity indices and environmental factors in each dataset in the observational dataset.

Taxonomic diversity Phylogenetic diversity Functional diversity

NSII CoefOLS R2
OLS CoefSAR AICSAR CoefOLS R2

OLS CoefSAR AICSAR CoefOLS R2
OLS CoefSAR AICSAR

MAT 0.22 0.05** 0.20 470.60* 0.11 0.01 0.17 474.21 −0.02 0.00 −0.01 484.75

MAP 0.22 0.05** 0.23 469.30** 0.04 0.00 0.04 476.89 −0.09 0.01 −0.09 483.76

AnomMAT −0.17 0.03* −0.15 472.25 0.05 0.00 0.01 477.01 0.10 0.01 0.09 483.74

AnomMAP −0.20 0.04** −0.18 471.14 −0.05 0.00 −0.04 476.90 0.00 0.00 0.00 484.76

RangeALT 0.11 0.01 0.16 471.73 −0.31 0.10** −0.31 465.86** −0.12 0.01 −0.11 483.28

PlantSR 0.35 0.12** 0.37 454.92** −0.28 0.08** −0.30 464.84** −0.21 0.04** −0.21 478.19**

GBIF CoefOLS R2
OLS CoefSAR AICSAR CoefOLS R2

OLS CoefSAR AICSAR CoefOLS R2
OLS CoefSAR AICSAR

MAT 0.03 0.00 −0.05 486.71 0.12 0.02 0.21 460.78 −0.40 0.16** −0.42 473.04**

MAP 0.18 0.03* 0.23 482.98* −0.03 0.00 −0.03 463.99 −0.41 0.16** −0.44 471.99**

AnomMAT −0.17 0.03* −0.11 486.18 0.24 0.06** 0.13 463.17 0.37 0.14** 0.39 477.50**

AnomMAP −0.06 0.00 −0.13 485.55 −0.27 0.07** −0.26 458.27** 0.04 0.00 −0.02 488.86

RangeALT 0.27 0.07** 0.22 481.54* −0.42 0.18** −0.40 444.18** 0.03 0.00 0.11 487.66

PlantSR 0.50 0.25** 0.45 455.43** −0.49 0.24** −0.36 443.02** −0.34 0.11** −0.16 486.22

BirdReport CoefOLS R2
OLS CoefSAR AICSAR CoefOLS R2

OLS CoefSAR AICSAR CoefOLS R2
OLS CoefSAR AICSAR

MAT 0.24 0.06** 0.16 537.27 0.29 0.09** 0.34 509.63** −0.36 0.13** −0.40 499.28**

MAP 0.33 0.11** 0.39 526.93** 0.22 0.05** 0.15 517.36 −0.38 0.15** −0.47 495.43**

AnomMAT −0.32 0.10** −0.23 535.83* 0.12 0.01 0.05 518.67 0.44 0.19** 0.52 493.65**

AnomMAP −0.14 0.02* −0.11 538.13 −0.31 0.10** −0.24 513.35* −0.09 0.01 −0.14 510.04

RangeALT 0.31 0.10** 0.35 523.38** −0.57 0.33** −0.50 484.93** −0.07 0.01 −0.02 511.71

PlantSR 0.62 0.39** 0.56 479.02** −0.47 0.22** −0.35 495.69** −0.45 0.21** −0.17 507.32*

The standardized coefficients (CoefOLS) of the variables and the R2
OLS in the general linear regression model (OLS), the standardized coefficients (CoefSAR) of the variables and the Akaike 

information criterion (AICSAR) are listed. For the results of each dataset, the two highest R2 or lowest AIC values in each column are shown in bold. *p < 0.05, **p < 0.01. 
MAT, mean annual temperature; MAP, mean annual precipitation; AnomMAT, anomaly in MAT; AnomMAP, anomaly in MAP; RangeALT, altitudinal range; PlantSR, plant species richness.
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With the digitization of specimens in museums around the world 
and the development of citizen science, massive species distribution 
data based on observation records are providing services for various 
users (Telenius, 2011). An increasing number of studies on 
macroecology and biogeography have obtained species lists based on 
observational data sources from data portals such as the GBIF (de 
Carvalho et al., 2020; Wüest et al., 2020). However, the results showed 
that, at least for birds within the scope of China’s prefectural level, the 
correlations between biodiversity indices and environmental factors 
were similar or even stronger using the species inventory based on the 
observational dataset than the avifauna dataset. Besides, the 
environmental drivers of taxonomic and functional diversity patterns 
changed with the type of inventories used, that is, species inventories 
compiled from observational and avifauna datasets “shaped” different 
biodiversity patterns. These results revealed that data from different 
sources may yield different results, leading to completely different 
conclusions. It requires data producers to pay more attention to the 
filling of biodiversity data gaps, and the data users should be cautious 
about the results from incomplete data and avoid drawing 
erroneous conclusions.

However, whether similar conclusions can be obtained for other 
taxa, geographic resolutions, or regions remains to be  further 
studied. Especially for groups other than birds and plants where the 
number of open data sources is relatively small, it is imperative to 
generate more data through data mobilization or enhanced 
sampling efforts.

4.3. Objective and accurate species 
distribution data urgently need to 
be supplemented

How environmental factors shape the biodiversity pattern in 
different geographic areas is one of the important issues in 
macroecology (Pärtel et al., 2016). Accurate and credible biodiversity 
distribution data and environmental data are the basis for answering 
this question. At the research scale of interest, obtaining a sufficiently 
accurate and reliable species list is still an arduous scientific task that 
needs to be continuously carried out. The results of this study showed 
that although the correlations among the three biodiversity indices 
and environmental variables were similar or sometimes stronger using 
species inventories compiled from observational datasets than those 
from avifauna datasets, there were obvious differences in the reanalysis 
using each data source in the observational dataset.

Specifically, the results based on the NSII data showed the lowest 
correlation coefficient and R2, which were obviously caused by 
insufficient specimen data. Currently, the NSII has collected more 
than 16 million digital specimen records, but the number of bird 
specimens obtained in this study was less than 120,000 with an 
obvious data bias. However, birds are currently the group of vertebrates 
with the largest volume of digital specimen data. Moreover, compared 
with bird watching records, digital specimen data are more recognized 
by users in terms of data quality, traceability, and credibility (Boakes 
et al., 2010). Nevertheless, based on the results of this study, if the 
specimen dataset is the only data source used for biodiversity research, 
it may be necessary for researchers to analyze and interpret the results 
more carefully. When it is confirmed that the data used for analysis 
and research are biased, even if the mathematical model or method 

used in the analysis is good, it will be difficult to obtain objective and 
accurate results (García-Roselló et al., 2015).

4.4. Why is it necessary to compare the 
inference results from different data 
sources?

Unlike previous studies, this study did not define the criteria for 
whether a species inventory is “complete.” Various methods have been 
developed to infer whether the species list is complete, such as using 
species accumulation curves to estimate the number of species (Yang 
et al., 2013), comparing lists with the approved species inventories 
(Qian et al., 2018), or introducing geometry, algorithms, or model 
knowledge for inference (Feria-Arroyo and Peterson, 2002). However, 
more commonly, there is not enough evidence (data) to support a 
conclusion (Yang et al., 2013), and it is difficult to obtain an authoritative 
species inventory for comparison (Qian et al., 2018). In this study, the 
species inventory based on the avifauna dataset was considered to 
be  near complete and was practically applied in the studies of 
biodiversity patterns (Feng et al., 2020; Wang et al., 2020; Yang et al., 
2021). However, after comparison with the species inventory based on 
observational data, it was found that there was room for improvement 
in the species inventory based on the avifauna dataset. For instance, the 
species inventories based on avifauna data in Meishan city and Baiyin 
city had only two and four species, respectively, while the species 
inventories based on observational data showed that these two cities 
had at least 311 species and 30 species of breeding birds, respectively.

Integrating all available data in biodiversity research is a common 
way to ensure the credibility of the results (Guedes et al., 2018), but 
this method does not fundamentally solve existing data gaps. The 
work for filling the data gaps will eventually fall on the cell data source 
(i.e., the original source of the data), not on the data aggregators or 
portals (Wetzel et al., 2018). Through comparative analyses, this study 
learned about the differences and deficiencies in the results of 
analyzing diversity–environment relationships based on species 
inventories using different data sources. Therefore, targeted 
improvement plans can be proposed for filling the gaps of various data 
sources. For example, this study found that prefecture-level cities with 
relatively “low” species richness should pay more attention to species 
that have been recorded in avifauna. In the future, bird observations 
and surveys should focus on the species that have already been 
documented but have not been further confirmed by recent 
observations. It can even be further confirmed whether these species 
originally thought to be locally distributed have disappeared locally or 
just have not been discovered and recorded (Huang et al., 2020). The 
compilation of avifauna data usually needs to be based on a large 
amount of reliable documentary evidence, which means that even the 
most recent avifauna data often lag behind in terms of documenting 
the species distribution. Many studies have shown the superior 
performance of observational records in monitoring real-time changes 
in species distribution, such as changes in species distribution due to 
climate change or habitat loss caused by human activities (Hu et al., 
2020). Although there are still doubts regarding the credibility and 
traceability of the observation records used for the compilation of the 
fauna records, it is advisable to collect the species distribution 
information that exists in the observational records but not in the 
original fauna records when updating the fauna list to confirm 
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whether a specific species should be included in the new edition of 
the fauna.

4.5. Implications for future research

Whether data quality will affect the results of the research is a 
question worth discussing and is related to the success or failure of 
hypothesis verification (Costello et al., 2013). This research did not 
focus on discussing how environmental factors affected the formation 
of biodiversity patterns. Instead, it tried to compare the results based 
on different data sources to think about how to apply existing data in 
the future, fill the data gaps, and improve data quality.

 (1) Currently, open-access biodiversity data are continuously 
increasing, but independent verification of research results 
using open-access datasets is still rare. This study indicates that 
although the current observational data have problems such as 
data biases and lack of credibility, the observational data can 
be  considered as an independent data source to verify the 
analyses of the biodiversity patterns (Gaul et al., 2020).

 (2) This study suggests that the observational data has a certain 
degree of credibility, at least for compiling the Chinese city-
level bird inventory. But it is still doubtful whether the data can 
maintain a good effect at scales below the city level. Therefore, 
the future collection of species distribution data should focus 
on the distribution of birds at scales below the city level, study 
the change trends of species distribution ranges, and strengthen 
the collection of species distribution data in the temporal 
dimension. For example, the distribution of species can 
be continuously monitored using infrared cameras and other 
continuous monitoring technologies (Stephenson, 2020).

 (3) As an important supplement to species distribution data, the 
accuracy and credibility of observational data must 
be strengthened. Wildlife surveys and observations involving 
the public require more professional skills and knowledge 
support. Practical methods include the participation of 
taxonomic experts in species identification and the full use of 
existing species identification techniques and applications, 
which could provide reliable evidence for the compilation of 
animal monographs, biodiversity research, and decision making.
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