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High-elevation lakes on the Tibetan Plateau have the advantage of sensitive response 
to climate changes. Multiple proxy records in lake sediments can provide a large 
amount of extractable information for paleoclimate reconstructions and assessing 
the position of recent global warming within the context of natural climate variability. 
In this study, we reconstruct the climatic and environmental changes over the past 
300 years from a remote alpine lake (Lake Cuoqia) in the southeastern Tibetan 
Plateau using multiple proxies including branched glycerol dialkyl glycerol tetraethers 
(brGDGTs), n-alkanes, elements, fatty acids and their hydrogen isotopes. Due to ice-
cover nature of lake surface during winter, brGDGTs mainly reflect the variation in 
warm-season temperature from March to October, supported by nearby instrumental 
data. Our reconstructed high-resolution temperature showed a continuous cooling 
trend between 1700 and 1950 AD, followed by a rapid warming afterward, in parallel 
with other proxies such as n-alkanes and fatty acids in the same core, which is also 
consistent with previously published regional temperature records. The hydrogen 
isotope (δD) of fatty acids, similar to regional tree-ring δ18O, can record the history 
of atmospheric precipitation isotope and further indicate the variations of regional 
relative humidity. Our record exhibited a long-term decrease since 1700 AD, in accord 
with the decreasing lake level inferred from the ratio of Fe/Mn. The combined pattern 
of reconstructed temperature and relative humidity showed consistent changes 
before 1950 AD toward to a gradually cold-dry trend, whereas started to decouple 
afterward. Before 1950 AD, the declined temperature and relative humidity are 
mainly driven by insolation and thermal contrast between the Indian-Pacific Ocean 
and south Asian continent. After 1950 AD, decoupling of temperature and relative 
humidity may be related to the increased regional evaporation and human-induced 
emission of greenhouse gases and aerosol.
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Introduction

The southeastern Tibetan Plateau is the source of many large rivers in Asia, which is crucial to 
the atmospheric circulation and hydrological cycle from the regional to global scale (Ding, 1992). 
The meteorological data since 1950 AD showed that the heating rate of the Tibetan Plateau is twice 
the global average and relative humidity shows a downward trend (Chen et al., 2015). However, the 
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scarcity of meteorological stations and the lack of paleoclimate records 
limit us to perceive the mechanism of long-term climate changes (Yao 
et al., 2019). Thus, in order to obtain the pattern of long-term climate 
change, proxy-based climate researches are necessary. Moreover, this 
region is a refuge for many animals and plants with high biodiversity 
(Tan et al., 2018). Climate change in this region has an important impact 
on the socio-economic development and ecosystem of Southwest China. 
The past 300 years has been an important period for understanding the 
transition from nature-led to human-induced environmental changes, 
as well as for understanding the interaction between humans and nature. 
Understanding the characteristics and mechanisms of temperature and 
humidity changes over the past 300 years in the southeastern Tibetan 
Plateau is very important for assessing the climate change trend in 
the future.

Lake sediments have the advantages of good continuity, high 
resolution, climate sensitivity and large amount of extractable 
information. They have irreplaceable advantages in reconstructing 
climatic and environmental changes (Shen et al., 2010). In recent years, 
many records of quantitative temperature and precipitation/relative 
humidity have been reconstructed based on lake sediments in 
southeastern Tibetan Plateau (An et al., 2014; Liu X. et al., 2014; Zhang 
et al., 2017, 2022; Tan et al., 2018; Feng et al., 2019; Xu et al., 2019; Sun 
et al., 2021; Zhao et al., 2021a). Quantitative temperature reconstruction 
can not only understand the trend of temperature change in a long-time 
scale, but also obtain the absolute value and change amplitude of 
temperature more clearly. It is of great significance for providing more 
accurate future climate prediction (Kaufman et al., 2004). In addition, 
the reconstruction of relative humidity can increase the understanding 
of hydroclimatic changes in the southeastern Tibetan Plateau.

Glycerol dialkyl glycerol tetraethers (GDGTs) are a kind of 
membrane-spanning lipids with two C28 alkyl chains, 4–6 methyl 
substituents and 0–2 cyclopentyl moieties from bacteria and archaea 
(Sinninghe Damste et  al., 2009; Schouten et  al., 2013), which are 
common in lakes (Sun et  al., 2011; Russell et  al., 2018; Zhao et  al., 
2021a). Previous studies have shown that the bacterial-sourced branched 
GDGTs (brGDGTs) responses to temperature changes via producing 
more/less methyl branches to adjust to colder/warmer conditions 
(Peterse et al., 2011; Schouten et al., 2013). With the development of 
chromatographic separation, previous study successfully separated 5- 
and 6- methyl brGDGTs, further improving the reliability of temperature 
reconstructions (De Jonge et al., 2014). Hydrogen isotopes of fatty acids 
is a proxy which can well record the isotopic changes of atmospheric 
precipitation (Eglinton and Eglinton, 2008; Sachse et  al., 2012). At 
present, there are few studies on precipitation/relative humidity 
reconstruction using hydrogen isotopes of fatty acids in southwestern 
China. In this study, we  use multiple proxies to (1) quantitatively 
reconstruct temperature changes and precipitation/relative humidity 
over the past 300 years including brGDGTs, hydrogen isotope (δD), 
n-alkane, fatty acids and element, and (2) assess combined pattern of 
temperature and precipitation/relative humidity and the possible 
driving mechanisms.

Materials and methods

Study site

Lake Cuoqia is located in Hengduan Mountains in the 
southeastern Tibetan Plateau, ~20 km southwest of Shangri La 

County, Diqing Autonomous Prefecture, Yunnan Province 
(27°24′18.72″ N, 99°46′19.87″ E; elevation: 3960 m; Figure  1A). 
Hengduan Mountain is an important geographical boundary 
between the first and second steps of China, with obvious vertical 
zonality and dramatic changes in geomorphology and climate. 
Marine glaciers are developed in this area, and many glacial lakes are 
developed between 3,900 and 4,000 m above sea level (Zhang et al., 
2012). Lake Cuoqia is lower than the forest line, with an area of 
0.07 km2, an average depth of 13.2 m and a maximum depth of 26 m 
(Figure 1B, Chai et al., 2018). The lake is hydrologically closed with 
no visible surface inflow and outflow. It is mainly supplied by 
atmospheric precipitation and ground melting snow water (Zhang 
et al., 2022). The vegetation around the lake is almost undisturbed by 
human activities, mainly subalpine low temperature coniferous trees, 
such as Abies and Rhododendron shrubs (Xiao et al., 2014).

The region is mainly affected by the Indian monsoon, with the same 
period of rain and heat. The region belongs to the temperate continental 
monsoon climate, with abundant solar radiation throughout the year 
and small annual temperature difference. According to the modern 
meteorological data of Shangri La Meteorological Station (27°30′0″ N, 
99°25′12″ E; elevation: 3276.7 m), the nearest meteorological station to 
Lake Cuoqia, mean annual air temperature is 6.01°C, and mean annual 
precipitation is 624.72 mm. The temperature in this area is the highest 
in July (average monthly temperature 13.9°C) and the lowest in January 
(average monthly temperature  - 2.3°C). The precipitation is mainly 
concentrated in June to September (Figure 1C). The monthly average 
humidity changes are between 58% (December) and 79% (August). 
From 1958 to 2015 AD, the mean annual precipitation has no obvious 
change, while the mean annual air temperature shows an obvious 
upward trend with 0.03°C/year (Figure 1D).

Sample collection and age control

In May 2014, a pair of sediment core (CQ1 and CQ2) were obtained 
using Hon Kajak large-diameter (9 cm) gravity sampler in the center of 
the Lake Cuoqia (Figure  1B). The two cores are 37 cm and 30 cm, 
respectively, and composed of humus black mud. The cores were 
sampled at an interval of 0.5 cm in the field. The samples were stored in 
self-sealing bags and refrigerated at 4°C for analysis. We also collected 
plant samples from trees, shrubs, grasses and surface soil around 
the lake.

CQ1 is used for proxy analysis of brGDGTs, fatty acids and its 
hydrogen isotopes, n-alkanes, total organic carbon (TOC), total nitrogen 
(TN) (Chai et al., 2018) and elements. CQ2 is used for 210Pb/137Cs dating 
to further calibrate the age model based on the CRS (Constant Rate of 
210Pb Supply) model (Appleby and Oldfeld, 1978). The depth-age 
sequence of both cores was previously published in Chai et al. (2018) 
and Zhang et al. (2022).

Biomarkers proxy analysis

About 1–3 g freeze-dried samples were extracted 4 times through 
ultrasonic shaker using organic solvents (dichloromethane: 
methanol = 9:1, v/v), ensuring complete extraction of organic matter 
from samples. After drying with N2 gas, extracted total lipids were 
hydrolyzed using 6% KOH in Methyl alcohol solution for 12 h. Then, the 
supernatant was obtained after adding NaCl and n-hexane and 
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centrifuging. Add 1.5 mL HCl (6 Mol) and 1.5 mL n-hexane to the bottle 
containing the sample solution to obtain the component of fatty acids. 
Finally, the neutral supernatant containing n-alkanes and GDGTs were 
further extracted through silica gel column chromatography using 
n-hexane and MeOH, respectively.

A total of 30 samples are determined for the fatty acids and δD 
values using Delta-V isotope ratio mass spectrometry (IRMS) 
instrument (Thermo Finnigan) via a high-temperature pyrolysis reactor 
at 1430°C. The instrument parameter settings and data analysis methods 
were referred to Liu and Liu, 2019. A total of 52 samples are analyzed for 
the n-alkanes via an Agilent 7,890 Gas Chromatography and the 
conditions for the Gas Chromatography following the previous research 
(Zhang et al., 2019).

A total of 68 samples are analyzed for the brGDGTs via UPLC-
APCI-MS (the ACQUITY I-Class plus/Xevo TQ-S system) equipped 
with two coupled UPLC silica columns (BEH HILIC columns, 
3.0 × 150 mm, 1.7 μm; Waters) in series, fitted with a pre-column and 
maintained at 30°C. The instrument can fully separate of 5- and 
6-methyl isomers with improved chromatographic procedure. The 
samples were dissolved in 1000 μL n-hexane and injected for 4 μL for 
analysis. BrGDGTs were eluted at a constant flow rate of 0.4 mL/min for 
80 min. The mobile phases of A and B, where A = hexane and B = hexane: 
isopropanol (9:1, v/v), were run isocratic ally with 82% A and 18% B for 
25 min, followed by a linear gradient to 65% A and 35% B for 25–50 min, 
then to 100% B for 50–60 min with another 20 min re-equilibration. 
BrGDGTs were ionized in the APCI source at a probe temperature of 

A B

C D

FIGURE 1

Location map and core sampling. (A) The map showing location of the Lake Cuoqia (CQ, red asterisks) and other paleoclimate records mentioned in this 
study. Blue asterisks are paleotemperature record from lakes [TC: Lake Tiancai (Zhang et al., 2017; Feng et al., 2019); XY: Lake Xingyun (Wu et al., 2018)]. 
Black block is stalagmite record from Shenqi cave (Tan et al., 2018). Green circle is tree ring records. [LLH: Larix trees in the low-latitude highlands (Xu et al., 
2019); BLP: Batang-Litang Plateau (An et al., 2014); BD, ZG: Bangda and Zuogong (Duan and Zhang, 2014)]. (B) Bathymetry of the Lake Cuoqia and locations 
of the sediment cores (asterisks), surface sediment samples and soil samples on the catchment (grey dots). (C) The temperature and precipitation changes 
from Shangri La Meteorological Station during 1958–2015 years. (D) Mean monthly temperature and precipitation at the Shangri-la Meteorological Station, 
Yunnan Province, China (data retrieved from the Meteorological Administration of China, http://data.cma.cn/). (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article).
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550°C, voltage corona of 5.0 μV, voltage cone of 110 V, gas flow 
desolvation of 1,000 L/h, gas flow cone of 150 L/h and collision gas flow 
of 0.15 mL/min. BrGDGTs isomers were detected using the selective ion 
monitoring (SIM) mode via [M + H]+ ions at m/z 744 for the C46 
standard, m/z 1,050, 1,048, 1,046, 1,036, 1,034, 1,032, 1,022, 1,020, and 
1,018 for brGDGTs compounds (Hopmans et al., 2016). The modern 
samples were analyzed with the C46 standard and the relative 
concentrations of brGDGTs were calculated according to the integrated 
peak areas. Lipid preparation, n-alkanes and brGDGTs analysis were 
performed at the State Key Laboratory of Lake Science and Environment, 
Nanjing Institute of Geography and Limnology, Chinese Academy of 
Science. The fatty acids and its hydrogen isotopes were analyzed at State 
Key Laboratory of Loess and Quaternary Geology, Institute of Earth 
Environment, Chinese Academy of Sciences.

Parameters of average chain length (ACL) associated with n-alkanes 
and fatty acids were calculated as follow, respectively (Ficken et al., 2000; 
Liu and Liu, 2019).
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Where the Ci is the abundance of the ith n-alkanes and fatty acids.

Reconstructions of quantitative temperature 
and relative humidity

The site-specific calibration of Lake Cuoqia was established using a 
stepwise regression method between brGDGTs fractional abundance of 
short-core CQ1 and the instrumental temperature record during the 
warm season (from March to October, TM-O; Zhang et al., 2022). Such 
calibration has also been verified by reconstructed temperature record 
of another pair core (CQ2) since 1950 AD. Thus, the equation was 
further used to quantitatively reconstruct the temperature sequences of 
both cores over the past 300 years.
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Methanol correction formula is as follow (Yang and Huang, 2003):

 
� � �D D Dn n� �� �� � ��� �� �� �Fas FAMEs methanoln n2 2 3 2 1/

 
(4)

�Dn�Fas , �Dn�FAMEs  and δDmethanol  represent value of fatty 
acids, fatty acid methyl ester and methanol δD, respectively. The value 
of δDmethanol = − 123‰.

For better discuss the driving mechanisms of climatic change, 
we calculated the temperature difference obtained by subtracting the 
average temperature of the Indian-Pacific Ocean from our reconstructed 

temperature. The specific method is firstly to normalize the difference 
between our reconstructed temperature and the temperature of the 
Indian-Pacific Ocean before interpolating to the same resolution.

Results

Our modern results show that the n-alkanes in lake surface 
sediments are mainly composed of long chains of C29 and C31 
(Supplementary Figure S1). This is consistent with carbon chain 
distribution of catchment terrestrial plants (trees and shrubs) and top 
soils, but different from those of herbaceous plants dominated by 
medium chains (C27) in the basin, indicating that the n-alkanes in the 
sediments of Lake Cuoqia are mainly derived from exogenous terrestrial 
arbors. The carbon chain distribution pattern of fatty acids showed that 
C16 and C22 were the main fraction in all periods 
(Supplementary Figure S2). C22 of fatty acids was applied for δD analysis 
due to the unclear source of C16 from microorganisms or terrestrial 
plants (Hou et al., 2006).

The reconstructed temperature shows consistent in two cores from 
Lake Cuoqia, showing a decline trend before 1950 AD and an increase 
after 1950 AD (Figure 2A). ACL values of n-alkanes and fatty acids 
changed almost same before 1930 AD, showing a continuous downward 
trend. After 1930, although ACL of both n-alkanes and fatty acids 
showed an upward trend, the growth rate of fatty acids was more obvious 
(Figure 2C). The ACL values of n-alkanes and fatty acids were consistent 
with the temperature results, both showing a change pattern of first 
falling and then rising. In addition, the change pattern of TOC and TN 
are also consistent with the temperature (Figure 2D). The δD of C22 from 
fatty acids showed a continuous decline pattern in the past 300 years 
(Figure 2E). The change pattern is consistent with the values of Fe/Mn 
(Figure 2F). The Rb/Sr. increased continuously before 1980 AD and 
began to decrease after 1980 AD (Figure 2G).

Discussion

Quantitative temperature reconstruction at 
Lake Cuoqia since 1700 AD

Previous study shows that the brGDGTs in Lake Cuoqia mainly 
come from autochthonous sources, which are supported by multiple 
lines of evidence including comparison of brGDGTs distribution 
between surface sediments and down-core samples, ternary plots 
analysis (tetra-, penta-, and hexamethylated brGDGTs), relationship 
between the concentration of brGDGTs in surface sediments and water 
depth and ∑IIIa/∑IIa calculation (Zhang et al., 2022). The brGDGTs 
can well capture the temperature changes during the instrumental 
period at Lake Cuoqia with high correlation (R2 = 0.89) to nearby 
meteorological data (Zhang et al., 2022). Using the same correction 
equation, we  further quantitatively reconstructed the temperature 
changes in the past 300 years. The reconstructed temperature dropped 
continuously before 1950 AD and rose rapidly afterwards (Figure 2A). 
BIT (Branched Isoprenoid Tetraether index) values are the ratio of 
branched GDGTs to all fractional abundance of GDGTs (including 
branched and isoprenoid tetraether) and have been widely used as a 
proxy to evaluate the stability of the sedimentary environment (Zhang 
et al., 2019, 2022; Yan et al., 2021; Zhao et al., 2021a). The change of the 
BIT values was quite stable varying from 0.95 to 1 (Figure 2B), indicating 
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stable sedimentary environment and the applicability of the calibration 
to the whole core. Our temperature results are supported by warm-
season temperature (from March to October) from regional 
meteorological station data during 1958–2015 AD for both long-term 
trend and amplitude of variation (Figure 2A).

The reconstructed temperature shows consistent with other proxies 
from the same core such as ACL values of both n-alkanes and fatty acids, 
TOC and TN (Figures 2C, D). Previous study shows that the mid- and 

long-chains of leaf wax mainly from terrestrial plants, which is sensitive 
to temperature changes and can be used as an indicator of temperature 
changes (Zhou et al., 2005). Although the overall pattern of temperature 
changes is consistent, the slight discrepancy between them is possibly 
due to different responses to climate change. TOC and TN are two 
fundamental proxies for describing organic matter content in sediments, 
mainly reflecting the primary production of biomass which is related 
with regional climate changes (Meyers and Ishiwatari, 1993). The decline 

A

B

C

D

E

G

F

FIGURE 2

Results of multiple proxies from Lake Cuoqia. (A) The reconstructed temperature using brGDGTs from core CQ1 (red line) and CQ2 (magenta line). The 
orange line represents the warm season temperature (3–10 month) from Shangri La Meteorological Station. Elevation correlation was made using a lapse 
rate of ~0.53°C/100 m (He and Wang, 2020). (B) BIT values. (C) ACL values of fatty acids and n-alkanes. (D) TOC and TN (Chai et al., 2018). (E) δD of fatty 
acids (C22, blue line) and relative humidity (green line) from instrumental data. (F) Fe/Mn ratio. (G) Rb/Sr. ratio. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article).
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of TOC and TN may indicate the gradually cold-dry climate conditions, 
in accord with the variation of our reconstructed temperature.

Our reconstructed temperature is also consistent with previously 
limited regional temperature records (Duan and Zhang, 2014; Zhang 
et al., 2017; Wu et al., 2018). For instance, July temperature based on 
subfossil chironomids from Lake Tiancai showed an overall decrease 
with a rapid increase after 1970 AD, albeit with an abnormal value at 
1950 AD and quite low resolution (Figure 3B; Zhang et al., 2017). Our 
absolute temperature has lower values than Lake Tiancai for the past 
300 years, which can attribute to differences of reconstructed season and 
elevation (higher ~60 m). Moreover, the similar long-term trend can also 
be observed from pollen-based July temperature record at the Lake 
Xingyun (Figure 3C; Wu et al., 2018). The higher-resolution warm-
season (from April to September) temperature from tree ring showed a 
slight decrease trend before 1920 AD with a reverse afterwards 
(Figure 3D; Duan and Zhang, 2014). The low temperatures centered at 
1870 AD and 1980 AD corresponded with our reconstructed 
temperature (Figure  3D). The mismatch in the warming time may 
be  attributed to dating uncertainty. It is worth noting that our 
temperature shows obvious discrepancy with the trend of mean annual 
air temperature reconstructed by brGDGTs from Lake Tiancai and sea 
surface temperature from Indian-Pacific Ocean (Tierney et al., 2015; 
Feng et al., 2019), both showing a continuous warming (Figures 3E, F). 
This may be attributed to seasonal difference between warm-season and 
mean annual temperature, which is confirmed to be present at longer 
Holocene scales (Sun et al., 2021; Zhang et al., 2022). In conclusion, our 
reconstructed 300 years quantitative temperature is reliable and agrees 
well with regional limited temperature records.

Relative humidity changes over the past 
300 years

Previous studies suggest that the hydrogen isotopes of fatty acids 
and n-alkanes from terrestrial plants can well record the isotopic 
changes of atmospheric precipitation (Eglinton and Eglinton, 2008; 
Sachse et  al., 2012). δD of C22 from fatty acids has similar fraction 
process of n-alkanes δD from precipitation isotope in hydrological 
cycles (Hou et al., 2006; Contreras-Rosales et al., 2014). However, the 
controlled factors of leaf wax δD include local rainfall, soil evaporation, 
vegetation fractionations, etc. (Dansgaard, 1964; Cai et al., 2012; Sachse 
et al., 2012; Zhang et al., 2020). The water required for plants in the lake 
catchment mainly derived from soil water which is influenced by 
monsoon precipitation and soil evaporation effect (Sachse et al., 2004, 
2012; Zhao et al., 2021b). Thus, leaf wax δD should mainly reflect the 
variations in the relative humidity. The isotopic fractionations may also 
exist during lipid biosynthesis in plant, and possible evapotranspiration 
between soil and lipid leaf wax water (Sachse et al., 2012). Some studies 
from southwestern China demonstrate that the isotope (δD and δ18O) 
of tree ring indeed indicates the changes of relative humidity on 
centennial time scale (An et al., 2014), and has been verified by the 
regional instrumental data. Note that the effect of vegetation 
fractionation also exists in tree-ring δD with little influence, similar to 
our leaf wax δD of fatty acid (An et al., 2014). Therefore, our isotope 
records the changes of regional relative humidity with positive δD of C22 
indicating dry environment, and vice versa.

In the past 300 years, the gradually enriched δD of C22 from the Lake 
Cuoqia indicates a continuously dry condition, which shows good 
relation with the relative humidity measured by instrument data over 

the past decades (Figure 2E). Our δD-based relative humidity is also 
consistent with the ratio of Fe/Mn from the same core (Figure 4B). Fe/
Mn can indicate redox state and further indicate the rise and fall of lake 
level with high ratio of Fe/Mn corresponding to high lake level, and vice 
versa (Mackereth, 1966). Similar changes can also be  observed in 
another proxy of Rb/Sr. ratio in the same core (Figure 2G), which is 
widely used to reflect the intensity of chemical weathering with low 
values for intense chemical weathering related to humid environment, 
and vice versa (Chen et al., 2008; Liu J. et al., 2014).

The consistent changes of the relative humidity can also be recorded 
by other geological archives including tree ring, stalagmite and lake (An 
et al., 2014; Xiao et al., 2014; Tan et al., 2018; Xu et al., 2018, 2019). For 
example, the relative humidity, reconstructed by high-resolution tree 
ring δ18O from Batang-Litang Plateau (BLP) of southeastern Tibetan 
Plateau (Figure  1A), showed a long-term drying trend in the past 
300 years (Figure 4C; An et al., 2014). Also, similar trend can be observed 
in another δ18O of tree ring from low-latitude highlands (LLH) of 
southwestern China (Figure 1A), revealing an apparent drying trend 
especially after 1840 AD (Figure 4D; Xu et al., 2018, 2019), which can 
be supported by the reconstructed cloud cover records using composite 
δ18O of three tree-ring chronologies from southeastern Tibetan Plateau 
(Figure 4E; Liu X. et al., 2014). Similarly, many δ18O records of stalagmite 
in nearby regions also show consistent changes with our reconstructed 
relatively humidity. For instance, the precipitation index and δ18O of 
stalagmite from Shenqi Cave (SQ) in southwestern China (Figures 4F, G; 
Tan et al., 2018) showed a persistent positive trend, indicating a drying 
environment. In addition, the gradually drying environment is also 
supported by pollen data in sediments of Lake Tiancai, in which the tree 
pollen of Tsuga gradually decreases (Xiao et al., 2014). In summary, the 
reconstructed relative humidity is consistent with proxies from same 
core and is supported by instrumental data and regional precipitation/
relative humidity records.

Combined pattern of temperature and 
relative humidity and driving mechanisms

Our reconstructed temperature and relative humidity showed 
consistent changes between 1700 AD and 1950 AD toward to gradually 
cold-dry trend, whereas started to decouple after 1950 AD, manifested 
as increasing temperature and decreasing relative humidity 
(Figures 2A,E). The combined pattern of reconstructed temperature and 
relative humidity is characterized with decoupling at 1950 AD, when the 
reason has not yet completely recorded and discussed by regional 
archives. Here, we focus on analyzing and explaining the underlying 
causes and driving factors of decoupling before and after 1950 AD.

The continuous decrease of temperature and relative humidity 
before 1950 AD was in accord with the decreasing warm-season 
insolation (from March to October) at 26° N (Figure 3H; Laskar et al., 
2004; Sun et al., 2021). The decreasing insolation reduced total energy 
received at the earth surface, resulting into the decline in regional 
temperature. The decreasing insolation also weakened the intensity of 
Indian summer monsoon and further reduced the precipitation and/or 
relative humidity in our study area (Tan et al., 2018). Moreover, the 
persistent decline of relative humidity may be related to the decreasing 
thermal contrast between sea surface temperatures of the tropical 
Indian-Pacific Ocean and land temperature in our region (Figure 3G), 
which determines the intensity of water-vapor transports dominated by 
the Indian summer monsoon (Bansod et al., 2003; Feng and Hu, 2005; 

https://doi.org/10.3389/fevo.2023.1119869
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Yan et al. 10.3389/fevo.2023.1119869

Frontiers in Ecology and Evolution 07 frontiersin.org

An et al., 2014). Furthermore, the pressure difference between Tibetan 
Plateau and tropical Ocean may also affect the monsoon precipitation 
and relative humidity in the southeastern Tibetan Plateau (Rashid et al., 

2011). Previous studies suggest that the years with high relative humidity 
are related to the low-pressure conditions on the southeastern Tibetan 
Plateau, while the pressure field on the Indian Ocean is opposite 
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FIGURE 3

Comparison with regional temperature records and driving mechanisms. (A) Quantitative temperature reconstruction from Lake Cuoqia in this study. The 
gray shadows indicate period of low temperature. (B) Quantitative mean July temperature reconstruction based on subfossil chironomids from Lake 
Tiancai (Zhang et al., 2017). (C) Pollen-based mean July temperature record from Lake Xingyun (Wu et al., 2018). (D) The Apr-Sep mean temperature 
reconstruction using tree ring from Bangda (BD) and Zuogong (ZG) in the southeastern Tibetan Plateau (Duan and Zhang, 2014). (E) Quantitative mean 
annual air temperature using brGDGTs from Lake Tiancai (Feng et al., 2019). (F) The temperature reconstruction of Indian-Pacific Ocean based on coral 
records (Tierney et al., 2015). (G) Temperature difference between our reconstructed temperature anomaly and SST from Indian-Pacific Ocean (Tierney 
et al., 2015). (H) Warm-season insolation anomaly at 26°N (Laskar et al., 2004). (I) GHG-driven forcing (Crowley, 2000). (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article).
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(An et al., 2014). When the Tibetan Plateau maintains a high-pressure 
ridge in summer, the intensity of Indian summer monsoon weakens, 
reducing the movement of ocean air mass from the Indian Ocean to the 
plateau (Charles et al., 1997; Xu et al., 2009). Therefore, the path of rain 
storms will move southward, resulting in low relative humidity. In 
addition, the decreasing relative humidity over the past 300 years has 

high coherence with overall southward shift of Intertropical 
Convergence Zone (Figure 4H; Tan et al., 2019) and intensified EI Niño-
like conditions (Figure 4I; Man and Zhou, 2011), indicating a pivotal 
role of low-latitude driving force to southeastern Tibetan Plateau.

After 1950, our reconstructed temperature record showed consistent 
changes to the rapid increase in greenhouse gases emission caused by 
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FIGURE 4

Comparison with regional relative humidity records and driving mechanisms. (A) δD of C22 from fatty acids (this study). (B) Changes of lake level inferred 
from Fe/Mn (this study). (C) Reconstructions of relative humidity from June to August based on tree-ring δD chronologies (An et al., 2014). (D) Record of 
δ18O from regional tree ring (Xu et al., 2019). (E) Reconstructed cloud cover using composite δ18O of three tree-ring chronologies (Liu X. et al., 2014). 
(F) Precipitation index inferred from stalagmite (Tan et al., 2018). (G) Stalagmite δ18O of Shenqi cave (Tan et al., 2018). (H) Shift index of Intertropical 
Convergence Zone inferred from stalagmite (Tan et al., 2019). (I) Model simulated Niño3.4 sea surface temperatures variability (Man and Zhou, 2011). (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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human activity (Figure 3I), indicating a close connection between them 
(Crowley, 2000). Although increased temperature can lead to more 
water-vapor supply and larger temperature difference between sea and 
land, the relative humidity showed an overall decrease trend during this 
period (Figure 4A). The decreased relative humidity may be caused by 
enhanced evaporation associated with unprecedented warming. In 
addition, the decreasing relative humidity was possibly related to the 
aerosol-affected Anthropocene warming as well which can lead to a 
weakening of summer monsoon intensity and thus result into dry 
environment (Liu et al., 2017). In the future, the continued and rapid 
warming would further decrease the relative humidity, and more 
attention should be taken for extreme climate changes in the Tibetan 
Plateau region.

Conclusion

We reconstruct quantitative warm-season temperature and relative 
humidity from Lake Cuoqia over the past 300 years, using multiple 
proxies of brGDGTs, n-alkanes, fatty acids and δD of C22. The result of 
temperature showed decreased trend before 1950 AD and increased 
trend thereafter, which was consistent with the changes in ACL values 
of n-alkanes and fatty acids in the same core. Our temperature data was 
also in accord with regional warm-season and/or summer temperature 
records. The reconstructed relative humidity using C22 δD of fatty acids 
showed gradually dry trend over the past 300 years, which is consistent 
with the results of lake level inferred from Fn/Mn in the same core and 
regional δ18O records from tree ring. Before 1950 AD, temperature and 
relative humidity were coupled, showing a cold-dry trend. After 
1950 AD, the temperature and relative humidity were decoupled, and 
the temperature began to rise while the relative humidity continued to 
decline. The temperature is possibly affected by warm-season insolation 
before 1950 AD. The continuous drying is related to monsoon intensity 
and water-vapor input caused by the temperature difference between the 
lake Cuoqia and the Indian-Pacific Ocean. After 1950 AD, the 
decoupling of temperature and relative humidity may be related to the 
enhanced evaporation and increased emission of human-induced 
greenhouse gases and aerosol. The continued and rapid warming would 
further decrease the relative humidity, and more attention should 
be taken for extreme climate changes in the Tibetan Plateau region in 
the future.
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