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Trilobites inhabited all environments of Paleozoic seas, ranging from estuaries 
to continental slopes, and were globally distributed. Although their functional 
morphology and phylogenetic relations are established by well-preserved body 
fossils, the behavior of trilobites has received less attention. Three well-known 
trace fossils are interpreted to be produced by trilobitomorphs when preserved 
in Paleozoic rocks, Rusophycus (a resting trace), Cruziana (a furrowing trace), 
and Diplichnites (a locomotion trace). Those trace fossils unveil some aspects of 
trilobite behavior, but they were not investigated to test paleoecologic strategies 
based on morphometric parameters. This study uses Rusophycus to access 
the paleoecologic strategies of trilobites in storm-dominated shallow marine 
deposits of the Pimenteira and Cabeças formations (Middle to Upper Devonian, 
Parnaíba Basin, Brazil). It was conducted a detailed analysis of the Rusophycus 
specimens in a section that represents the transition between the Pimenteira and 
Cabeças formations (Parnaíba Basin). The width and length of the Rusophycus 
were measured, and statistical analyses were performed to understand the 
population characteristics. Relatively small-sized Rusophycus are dominant in 
such deposits, suggesting the dominance of young tracemakers and inferred 
r-strategist populations. The here reported multiple-Rusophycus assemblage 
reveals paleoecologic strategies of the population, and tiers relationship (cross-
cutting epistratal and shallow-tier trace fossils such as Bergaueria, Palaeophycus, 
and Protopaleodictyon) indicate deep Rusophycus. The main reason for those 
burrowing activities deep in the substrate might be protection during ecdysis. 
Thus, the random distribution, lack of hunting evidence, and depth of Rusophycus 
suggest molting activity as the trigger for their production in storm-influenced 
beds of the Pimenteira Formation, probably by calmoniids or homalonotids.
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1. Introduction

Trilobites are among the most prominent Paleozoic tracemakers 
that inhabited worldwide almost all marine settings, from estuaries to 
the continental slope (Fortey, 2014; Mángano et al., 2021). Their well-
preserved fossils have helped to establish their functional morphology 
and phylogenetic relations. However, ethological studies based on 
trilobite trace fossils have received little attention (Seilacher, 2007), 
although trilobites are among the taxa with the greatest behavior 
representation in the fossil record (Hsieh and Plotnick, 2020). Three 
classical ichnogenera are assumed to be produced by trilobites when 
preserved in lower Paleozoic rocks, Rusophycus (a resting trace), 
Cruziana (a furrowing trace), and Diplichnites (a locomotion trace). 
The latter is rarely preserved because depositional processes, such as 
waves and currents, easily obliterate or remove the trackways. 
Cruziana and Rusophycus, otherwise, are preserved as they represent 
burrows produced in response to a combination of feeding, 
locomotion, and resting habits (Crimes and Herdman, 1970; Goldring, 
1985; Brandt, 2007; Seilacher, 2007). In some cases, Cruziana and 
Rusophycus may occur as connected or representing a continuous, 
making it challenging to distinct between the ichnogenera (Keighley 
and Pickerill, 1996). Pickerill (1995) suggested that a length/width 
ratio lower than 2:1 could be applied to identify Rusophycus and a 
ratio over 2:1 to identify Cruziana.

Rusophycus specimens can occur isolated or form multiple-
Rusophycus assemblages (Brandt, 2007). In multiple-Rusophycus 
assemblages, Rusophycus may intergrade with Cruziana, suggesting a 
feeding strategy of a single individual that possibly alternates detritus-
feeding (Cruziana) with forays (Rusophycus) for prey (Brandt, 2007). 
However, multiple-Rusophycus assemblages might be produced by 
different individuals randomly or nonrandomly distributed. Brandt 
(2007) stated that random distribution occurs in resource-rich, 
low-energy environments. Non-randomly distributed multiple traces 
were interpreted as reflecting a rheotactic behavior, in which trilobites 
oriented themselves against the current to passively capture organic 
matter (Crimes and Herdman, 1970; Pickerill, 1995), or a circling 
behavior reflecting a mode of sediment feeding (Neto de 
Carvalho, 2006).

Trilobites have been reported in Devonian strata of the Parnaíba 
Basin (Kegel, 1953; Castro, 1968; Carvalho et al., 1997; Meira et al., 
2016); however, there has been a lack of ethological studies based on 
their trace fossils. Considering that Rusophycus dimensions might 
evidence ontogenetic phases and paleoecologic strategies of trilobites 
(Levi-Setti, 1995), this study aims to (i) discuss the preservational bias 
represented by multiple-Rusophycus assemblages in a storm-
dominated setting, and (ii) infer the paleoecological strategies of 
trilobites in this context.

2. Geological setting

The study area is located on the eastern border of the Parnaíba 
Basin, in Picos Municipality (Figure 1). The intracratonic Parnaíba 
Basin covers an area of approximately 600,000 km2, reaching ~3,500 m 
thick in the depocenter (Góes and Feijó, 1994; Milani and Zal’An, 
1999). Vaz et al. (2007) divided the stratigraphic record of the basin 
into five supersequences. The deposits studied herein belong to the 
Devonian–Mississippian Supersequence, comprising siliciclastic 

deposits of the lithostratigraphic Canindé Group. This unit is 
represented by storm-influenced shelf, deltaic, and glacial deposits, 
recording deposition in shallow marine environments (Barbosa 
et al., 2015).

Lithostratigraphically, the Canindé Group is divided into four 
units, from base to top: Itaim, Pimenteira, Cabeças, and Longá 
formations (Góes and Feijó, 1994; Vaz et al., 2007). Grahn et al. (2008) 
dated the transition between the Pimenteira and Cabeças formations, 
where the Rusophycus specimens studied here are preserved, as 
Givetian and lower Fransnian. The Pimenteira Formation comprises 
dark gray to black shales interbedded with thin beds of very fine-
grained sandstone (Góes and Feijó, 1994; Young, 2003). In contrast, 
the Cabeças Formation is dominated by sandstones representing 
storm-influenced and glacial beds (Vaz et al., 2007; Vettorazzi, 2012; 
Barbosa et al., 2015).

In the studied section it was recognized eight sedimentary facies 
(Table 1; Figure 2), from proximal (ME1) to distal (ME6) marine 
environments: (M1) Facies Sh and Sl are represented by stratified 
(horizontal stratification or low angle cross-stratification), very fine- 
to medium-grained sandstone, generally low bioturbated, deposited 
in shoreface settings; (ME2) facies Sw, represented by very fine- to 
fine-grained sandstone with wave cross-lamination locally with 
asymmetric ripples, rarely bioturbated, deposited in shoreface settings; 
(ME3) facies St and Sp characterized by fine- to medium-grained 
sandstone bearing trough or planar cross-stratification, with low 
bioturbation, representing deposition in shoreface settings; (ME4) 
facies Shcs characterized by interbedded, very fine-grained sandstone 
with hummocky cross-stratification and siltstone, locally highly 
bioturbated, reflecting a mix of suspension and tractive processes and 
indicating transitional offshore settings; (ME5) facies F characterized 
by moderately bioturbated heterolithic deposits alternating siltstone 
and fine-grained sandstone showing parallel lamination and locally 
lenticular to wavy bedding, rich in plant debris, reflecting deposition 
in upper offshore settings close to storm-wave base; and (ME6) facies 
M represented by parallel-laminated siltstone with low to locally high 
bioturbation, locally with plant debris, reflecting deposition in 
relatively quiet environments in offshore settings.

3. Materials and methods

The studied section is in Picos Municipality, Piauí State, Brazil 
(7°04′36.3″ S, 41°29′00.9″ W; Figure 1) and represents the transition 
between the Pimenteira and Cabeças formations (see Figure  2A). 
Trace fossil characterization used the ichnotaxobases approach 
(Bromley, 1996). We measured the length and width of all Rusophycus 
specimens preserved in very fine- to fine-grained sandstone available 
in the study area (n = 70; see Supplementary Table S1). All Rusophycus 
specimens used for statistical analysis came from the same bed. For 
facies analysis, we considered texture, general composition, primary 
sedimentary structures, trace fossils, geometry, and fossils.

In order to investigate the trends of colonization, five different 
tests were performed on the data: (i) modality, to verify the existence 
of more than one mode; (ii) normality, to observe whether the inferred 
population follows a normal Gaussian distribution; (iii) a skewness 
test, to verify trends toward a larger number of individuals in a certain 
size; (iv) density estimates of multi-distribution of length using 
Gaussian mixture models, and (v) linear regression to observe the 
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trend between lengths vs. width in the ichnospecimens. The Gaussian 
mixture model was adapted based on the method developed for 
trilobite (Triarthrus eatoni) analysis by Pauly and Holmes (2022).

The statistical analysis was produced in the R (R Core Team, 2013; v. 
4.2.0) programming language, using the integrated development 
environment RStudio (RStudio Team, 2022; v. 2022.02.2). The “readxl” 

FIGURE 1

Location of the study area. (A) South America Overview. (B) Position of Picos at Piauí state. (C) Location of study area at Picos City (adapted from 
Google Earth).

TABLE 1 Sedimentary facies and inferred processes from studied sections.

Facies 
code

Lithology and Texture
Sedimentary 
structures

Geometry Sedimentary process Suites

Sh Fine to medium-grained sandstone Horizontal lamination Lenticular High energetic flows above fair-weather wave-base Absent

Sl Very fine to medium-grained 

sandstone

Low angle cross-stratification Lenticular High energetic flows above fair-weather wave-base A, B

Sw Very fine- to fine-grained sandstone Wave cross-lamination locally 

with asymmetric ripple

Lenticular Oscillatory flows generated above fair-weather 

wave-base, locally influenced by combined 

unidirectional flows

A

St Fine- to medium-grained sandstone Trough cross-stratification Lenticular Unidirectional flows above fair-weather wave base A, B

Sp Fine- to medium-grained sandstone Planar cross-stratification Lenticular Unidirectional flows above fair-weather wave base Absent

Shcs Very fine- to fine-grained sandstone Hummocky cross-stratification Lenticular Oscillatory flows storm-generated, between storm 

and fair-weather wave-base

A

F Siltstone locally interbedded with 

very fine-grained sandstones

Parallel lamination Tabular Decantation episodically disrupted by storm flows 

below storm wave-base, in outer shelf context

A, B

M Mudstone locally interbedded with 

very fine-grained sandstones

Parallel lamination Tabular Decantation episodically disrupted by storm flows 

below storm wave-base, in outer shelf context

C
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(Wickham and Bryan, 2017) package was used to support the import of 
Excel files (“.xlsx”) into R. Graphics were produced using the “ggplot2” 
(Wickham, 2016) and “ggpubr” (Kassambara, 2020) packages, while data 
organization and manipulation were performed with the “dplyr” 
(Wickham et al., 2022) package. The “multimode” (Ameijeiras-Alonso 
et al., 2021) package was used for the HH (Hartigan and Hartigan) test to 
determine the number of modes, “stats” (R Core Team, 2013) to do the 
Shapiro–Wilks and fitting of linear models, and “moments” (Komsta and 
Novomestky, 2022) package was employed for the skewness test. Finally, 
“mclust” (Scrucca et al., 2016) package was used to fit Gaussian mixture 

models to investigate multi-distribution patterns. R Script can be found 
in  Supplementary data 2.

4. Results

The trace fossil content of the section can be subdivided into three 
suites. Suite A is characterized by low bioturbated beds with 
Arenicolites, Asterosoma, Palaeophycus, Rosselia, Rhizocorallium, 
Skolithos, and Thalassinoides (Figures 3A–D). Suite B, the focus of 

FIGURE 2

Sedimentary facies and geologic context of studies section. (A) Geologic section and ichnofacies distribution of studied section. (B) General view of 
fine-grained sandstone with hummocky cross-stratification from the topmost section. (C) Detail of interbedded siltstones and fine-grained sandstone 
in wavy bedding. (D) Erosive contact between fine-grained sandstone and siltstones. *Level with multiple-Rusophycus.
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this  study, is represented by Arenicolites, Bergaueria, Cruziana, 
Diplichnites,  Diplocraterion, Helminthopsis, Lockeia, Palaeophycus, 
Protopaleodyction, Rusophycus, and Skolithos (Figures  3E–H, 4), 
showing moderate to high bioturbation in the bedding plane. 
Rusophycus and Protopaleodyction dominate suite B. Suite C comprise 
Chondrites, Phycosiphon, and Planolites (Figure 3I), with low to locally 
moderate bioturbation.

The Rusophycus specimens are preserved in positive hyporelief 
(sensu Seilacher, 1970) in the sandy beds interbedded to the fine-
grained facies (mudstones to siltstones). They are bilobed ovate traces 
presenting a central groove that separates two symmetrical lobes 
ornamented by scratches (Figures 4B–E). Their widths range from 14 
to 87 mm, and lengths from 21 to 155 mm (Supplementary Table S1; 
Figure 5). Considering that most of the investigated specimens were 
found in moved blocks (ex situ), their azimuthal orientation was not 
measured. However, no preferential orientation is evident in blocks 
showing more than 10 specimens. Multiple-Rusophycus assemblages 
occur with several specimens preserved. Rusophycus can locally 
intersect or overlap Protopaleodyction and Palaeophycus (Figure 4) or 
be  associated with Bergaueria (Figures  4D,D′), all in the same 
stratigraphic level. It also occurs forming continuous traces with 
Cruziana (Figures 4H,H′).

The width and length of the specimens (Figures 5A,B) do not 
follow a normal distribution (Shapiro–Wilk; W = 0.868, p = 2.51e−6 
for width, W = 0.802, p = 2.68e−8 for length), indicating only one 
mode (Hartigan and Hartigan; Dip = 0.043, p = 0.44 for width, 
Dip = 0.035, p = 0.81 for length). These data have a positive skewness 
(D’Agostino; skew = 1.411, p = 2.92e−5 for width, skew = 1.850, 
p = 5.75e−7 for length), showing a trend toward a population with 
more individuals of small width and a predominance of short lengths. 

This trend toward a population with more small individuals is also 
evident in the multi-distribution analysis and the scatter-plot 
regression (Figures 5A,D). We used a density estimate of the Gaussian 
mixture model to observe the multi-distribution in the length of the 
ichnospecimens, and the analysis suggested three main components 
(ml1−3) with means of 34.70 mm (ml1), 62.43 mm (ml2), and 
147.75 mm (ml3).

The length/width ratio was also examined to determine if it could 
be used to distinguish between different animal groups producing the 
same ichnogenus (Figure 5D). According to the results, the data follow 
a normal distribution (W = 0.971, p = 0.104). There is a small peak 
related to specimens with a greater length/width ratio (Figure 5D), but 
there is no statistical basis for attesting that there is more than one 
mode in the data (Dip = 0.036, p = 0.76), and no skewness was observed 
(skew = 0.198, p = 0.465). The normality, unimodality, lack of skewness, 
and the prevalence of a 1.5:1 length/width ratio (μ = 1.52 ± 0.22) in the 
majority of Rusophycus specimens suggest that these traces were most 
likely produced by the same trilobite species, representing a 
population. A strong linear correlation was found between the length 
and width of the specimens (R2 = 0.8988, p = 2.2e−16).

5. Discussion

The three trace fossil suites registered in the study area, A, B, and 
C, represent different expressions of the Cruziana ichnofacies. Suite A 
is considered a proximal expression of Cruziana ichnofacies because 
it presents a mix of shallow-tier, suspension-feeding, or domicile trace 
fossils (e.g., Arenicolites, Palaeophycus, Skolithos, and Thalassinoides) 
and shallow- to middle-tiers, detritus-feeding trace fossils (e.g., 

FIGURE 3

Trace fossil suites from studied section. (A–D) Suite A with Asterosoma (As), Skolithos (Sk), Rosselia (Ro), and Rhizocorallium (Rh). (E–H) Trace fossils 
from suite B, focus of this study, with Arenicolites (Ar), Helminthopsis (He), Rusophycus (Ru), Protopaleodyction (Pr), Diplocraterion (Di), and Cruziana 
(Cr). (I) Suite C represented by Phycosiphon (Ph). Scale bar = 1 cm.
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Asterosoma, Rosselia; MacEachern et al., 2007; Sedorko et al., 2018c), 
suggesting colonization dominantly in lower shoreface settings. Suite 
B is interpreted as archetypal Cruziana ichnofacies due to the higher 
ichnodiversity and variation on preserved behaviors, such as resting 
traces (Bergaueria, Lockeia, and Rusophycus), locomotion (Cruziana 
and Diplichnites), grazing activity (Helminthopsis and 
Protopaleodyction), dwelling or suspension-feeding (Arenicolites, 
Palaeophycus, and Skolithos), and equilibrium (Diplocraterion); they 
present moderate to high bioturbation degree and were produced in 
fine-grained substrates, but often cast by overlying sandy strata, 
suggesting colonization in a transitional offshore zone (MacEachern 
et al., 2007; Sedorko et al., 2018a). Lastly, Suite C represents low-energy 
settings, with deposit-feeding habits (e.g., Chondrites, Phycosiphon, 
and Planolites) in offshore settings (MacEachern et al., 2007; Sedorko 
et al., 2018b). Thus, in the transition between the Pimenteira and 
Cabeças formations, the Cruziana ichnofacies dominate in a lower 
shoreface to offshore setting, and the trilobites had their trace fossils 
preferentially preserved in an offshore transition zone.

Rusophycus has been recorded in the Lower Paleozoic beds of the 
Parnaíba Basin, particularly in the Pimenteira Formation. However, 
none of the known ichnospecies shows the same morphological 
features that characterize the analyzed specimens. Rusophycus polonica 

Seilacher (1970) shows a deep oval central area and thicker ridges 
(Correa et  al., 2004). Rusophycus dispar Linnarsson, 1869 is 
characterized by a heart shape and scratches in several directions 
(Gracioso, 2011). Rusophycus biloba Vanuxem, 1842 presents thick 
bifid transverse scratches and united posterior and anterior margins 
(Silva et  al., 2012). Rusophycus piauiensis Agostinho et  al. (2004) 
described in the Longá Formation, shows a smaller length/width ratio 
and thicker striae when present (Muniz, 1982). Considering that not 
all observed Rusophycus in this study bear  a clear pattern of scratches, 
we treat them at the ichnogeneric level.

The statistical analysis of the studied specimens revealed three 
components (grouping) of sizes (Figure  5A), indicating different 
ontogenetic stages of burrowing trilobites. In the early ontogenetic 
phases (protaspis and meraspid), trilobites were extremely small (less 
than 1 or 2 mm), hampering a prominent ichnologic record. This 
situation changes when they reach the holaspis phase and assume a 
burrowing behavior (Seilacher, 2007). Smaller tracemakers dominate 
the analyzed suite (Suite B), suggesting a typical form for r-strategists’ 
populations (Bromley, 1996; Ruppert et al., 2005). The dominance of 
small organisms in storm-influenced strata points to the prevalence 
of opportunistic strategies in a stressful substrate, possibly due to high 
hydrodynamic levels and short colonization windows (sensu Pollard 

FIGURE 4

Details of Rusophycus from the studied section. (A–C,A′–C′) Rusophycus (highlighted in red) in association with Protopaleodyction (highlighted in 
yellow). (D,D′) Rusophycus (highlighted in red) in association with Bergaueria and Palaeophycus (highlighted in yellow). (E–G,E′–G′) Detail of the 
morphology of Rusophycus. Rusophycus also overlaps Palaeophycus (white arrow) in (E,G). (H,H′) Rusophycus (highlighted in red) in association with 
Cruziana (highlighted in yellow). Scale bars = 2 cm.
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et al., 1993). The high depositional frequency is also corroborated by 
the occurrence of Diplocraterion, both protrusive and retrusive in the 
same bed, suggesting frequent vertical replacement of the infauna 
(Buatois and Mángano, 2011).

The growth pattern observed in trilobite species in the fossil 
record is relatively continuous (e.g., Kim et al., 2002; Crônier, 2003; 
Park and Choi, 2009; Shen et al., 2014; Hou et al., 2017; Pauly and 
Holmes, 2022; Dai et al., 2023), and this trend is also evident in the 
size patterns of Rusophycus from the studied section (see Figure 5C, 
R2 = 0.8988). The Rusophycus ichnospecimens show a pattern of 
greater prolongation in length than the width (Figure 5C), possibly 
due to the accumulation of new segments in post-protaspid trilobites 
(Hughes, 2003; Hughes et al., 2006), leading to slightly greater growth 
in length than in width.

The population trend of smaller organisms is a common 
phenomenon in trilobite species, as observed in previous studies 
(Sheldon, 1988; Kim et al., 2002; Crônier, 2003; Park and Choi, 
2009; Shen et al., 2014; Hou et al., 2017; Pauly and Holmes, 2022; 
Dai et al., 2023). This trend is characterized by a higher number 
of smaller individuals, and as the size increases, the number of 
individuals decreases continuously, which is a typical trait of 
r-strategist species (Pianka, 1970) and type III survivorship 
curves (Demestrius, 1978).

In this work, the analysis of Rusophycus reveals a similar pattern 
of size abundance as that observed in trilobite species (see Figure 5 
and positive skewness). This is consistent with the survival pattern of 
trilobites, where many die in the process of protaspis and small 
meraspids stages, with few reaching the larger holaspid stage (Cisne, 
1973; Brezinski, 1986; Sheldon, 1988; Shen et al., 2014; Hou et al., 
2017; Pauly and Holmes, 2022; Dai et al., 2023). This is similar to a 
type III survivorship curve (Demestrius, 1978). Our analysis also 
revealed three different groups of components in the length of the 
Rusophycus specimens (Figure 5A). This pattern of “pulses” of size has 
been observed in trilobite species (see Cisne, 1973), and reevaluation 
of the data by Brezinski (1986) and Pauly and Holmes (2022) could 
be  related to different instars in trilobite tracemakers (Hunt and 
Chapman, 2001) resulting in Rusophycus of different sizes.

Trilobites are generally considered marine organisms, although 
some trace fossils attributed to trilobites were found in estuarine 
settings (Mángano et al., 2021). In the studied area, the Rusophycus 
occur at the bottom of a storm-influenced bed but were generated in 
the fine-grained deposits of facies F and M, characterizing 
pre-depositional colonization.

The dominance of Rusophycus in an ichnoassemblage, as observed 
in Suite B, has been interpreted as a hunting strategy, in which 
trilobites hide in shallow burrows to catch detritus or hunt for 

FIGURE 5

(A) Histogram of the length of the Rusophycus ichnospecimens, with the inclusion of the Gaussian fit model (density line), with three groupings of 
components (ml1–3). (B) Histogram and density plot of the width (mm) of Rusophycus specimens. (C) Scatterplot with linear regression (red line), 
showing a high correlation between length and width of the ichnospecimens. (D) Density plot of the length/width ratio. It is possible to observe a 
population trend of smaller organisms in (A) and (B), and the accumulation of smaller specimens in the scatterplot. The positive skewness visually 
corroborates the a and b density plots. Vertical dashed line, mean; ml1–3, mean length of the Gaussian components; μ, population mean; W, normality 
test; HH, multimodality test; s, skewness; R2, coefficient of determination; p, value of p.
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soft-bodied prey, as reported in other Paleozoic units (e.g., 
Whittington, 1980; Seilacher, 1985; Jensen, 1990; Brandt et al., 1995; 
Pickerill and Blissett, 1999; Rydell et al., 2001; Brandt, 2007). However, 
the close association of Rusophycus with Protopaleodyction in these 
beds and their overlapping by Palaeophycus (Figures 4A,B,G) indicate 
that they were relatively deep burrows. Although a carnivorous habit 
cannot be discharged, in study area there is no record of Rusophycus 
overlapping a trace fossil that would be produced by some worm-like 
organism. In addition, there is no record of carnivorous trilobites in 
the Brazilian sedimentary basins (Carvalho and Ponciano, 2015; 
Carbonaro et al., 2018).

The depth of the Rusophycus specimens, the random 
distribution against the currents, the concentration in a single bed, 
and the presence of different component groups of length 
(Figure 5A) with positive skewness, allow interpreting the studied 
Rusophycus as result of a resting behavior related to molting burrow 
for ecdysis. The trilobites probably excavated deeper in a previously 
bioturbated substrate for protection during the molting process, as 
proposed for some burrows attributed to trilobites (Seilacher, 2007). 
The preservation of Rusophycus in palimpsest preservation with 
other burrows (as represented in Figure  6) further supports 
this interpretation.

The dominance of traces produced by smaller organisms in the 
Suite B assemblage suggests that trilobites had an opportunistic 
behavior in offshore transition settings. The prevalence of an 
r-strategist population in stable environments such as the offshore 
transition zone indicates punctual ecologically stressing conditions, 
probably due to salinity fluctuations resulting from episodic 
continental inputs, as suggested by the presence of combined flow 
ripples and abundant phytodebris (Ponciano and Della Fávera, 2009). 
However, the spawning behavior of trilobites naturally implies a high 

number of small and fewer mature adults in the population, since the 
option of a reproductive strategy with simultaneous spawning reduces 
the possibility of individuals within the same cluster being consumed 
by predators (Hegna et al., 2017). According to Cisne (1973) and the 
reevaluation of Pauly and Holmes (2022), the spawning of trilobites 
was seasonal (once a year), resulting in populations of high rates of 
small organisms compared to holaspis individuals. Although the 
spawning behavior of trilobites could explain the record of a 
population with a higher number of young adults compared with the 
mature ones, there is no evidence of seasonal events in the studied 
deposits. The erosive nature of the sandy beds that preserved the 
trilobite burrows suggests episodic storm events. The presence of 
sedimentary structures that suggest continental input, allied with 
plant debris, reinforces the hypothesis of sporadic salinity stress as the 
most parsimonious cause of stress for the studied section.

During molting, arthropods are more vulnerable to potential 
predators, so burrowing becomes a useful protection strategy for the 
tracemaker (e.g., Bromley, 1996; Seilacher, 2007). The presence of 
three different groups of sizes (Figure  5A) reinforces the 
interpretation of this strategy of burrow during molting (Hunt and 
Chapman, 2001). Body fossils of homalonotid and calmoniid 
trilobites have been recorded in the Brazilian Devonian beds (e.g., 
Simões et al., 2009; Carvalho and Ponciano, 2015), and in some cases 
there is a record of trilobites (Burmeisteria notica and Metacryphaeus 
cf. australis = M. meloi) with Rusophycus (Leme et  al., 2013). 
According to Simões et al. (2009), homalonotids occur associated 
with shallow, sandy subaquatic deposits accumulated just in and/or 
above the fair-weather wave base zone and calmoniids are more 
common in muddy facies (flooding surfaces) generated below the 
storm wave base zone. Therefore, considering this 
paleoenvironmental distribution, calmoniids might be considered 

FIGURE 6

Reconstitution of the molting strategy of trilobites while producing Rusophycus, and tier relation of commonly associated trace fossils. 
 Pr, Protopaleodyction; Ru, Rusophycus; Sk, Skolithos.
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as the main potential tracemaker of the studied Rusophycus 
specimens, mostly during the molting phase.

However, the Parnaíba Basin has a limited record of trilobites, with 
only few species from the Calmonidae and Homalonotidae families 
(Ghilardi and Simões, 2007; Meira, 2014; Carbonaro et al., 2018). The 
most common genus within Calmonidae is Metacryphaeus, with three 
species recorded: M. tuberculatus, M. meloi, and M. kegeli (Carvalho 
et al., 1997; Leme et al., 2013; Meira, 2014; Meira et al., 2016; Carbonaro 
et al., 2018), along with a record of Eldredgeia cf. venusta (Carvalho and 
Ponciano, 2015). In the Homalonotidae family, only Burmeisteria notica 
has been identified (Leme et al., 2013; Meira, 2014), with a width range 
of 22–40 mm (Leme et al., 2013), similar to the mean width of the 
Rusophycus specimens studied here (~35 mm). The sizes of the 
Metacryphaeus species differ, with M. kegeli being the smallest, ranging 
widthwise from ~7 to 23 mm (Carvalho et al., 1997), M. meloi ranging 
in width from ~17 to 31 mm (Carvalho et al., 1997; Leme et al., 2013), 
and M. tuberculatus ranging in width from approximately from 30 to 
108 mm, with some complete specimens ranging lengthwise from 75 to 
176 mm (Carvalho et  al., 1997; Meira et  al., 2016). Therefore, it is 
possible that both calmoniids and homalonotids have produced the 
Rusophycus traces reported in this study.

6. Final remarks

The trace fossil suites in the studied section are an expression of 
proximal, archetypal, and distal Cruziana ichnofacies in lower 
shoreface to offshore settings. The suite with multiple Rusophycus can 
be interpreted as a pre-depositional suite, generated in the underlying 
muddy beds, and cast by the sandy sediments carried by storm-
generated and combined current flows in transitional offshore to 
offshore settings. Most Rusophycus can be attributed to a tracemaker 
in meraspis and few holaspids stages. This distribution suggests an 
r-strategist population. The random distribution in low energy 
depositional setting, absence of hunt evidence, and high deep of 
Rusophycus allowed the assumption that a molting activity is the 
triggered behavior to the production of Rusophycus in those storm-
influenced beds from Pimenteira Formation, while Cruziana 
represents detritus-feeding strategy.
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