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Seagrass meadows provide essential ecosystem services globally in the context of 
climate change. However, seagrass is being degraded at an accelerated rate globally 
due to ocean warming, ocean acidification, aquaculture, and human activities. The 
need for more information on seagrasses’ spatial distribution and health status is a 
serious impediment to their conservation and management. Therefore, we propose 
a new hybrid machine learning model (RF-SWOA) that integrates the sinusoidal 
chaos map whale optimization algorithm (SWOA) with a random forest (RF) model to 
accurately model the suitable habitat of potential seagrasses. This study combines in 
situ sampling data with multivariate remote sensing data to train and validate hybrid 
machine learning models. It shows that RF-SWOA can predict potential seagrass 
habitat suitability more accurately and efficiently than RF. It also shows that the two 
most important factors affecting the potential seagrass habitat suitability on Hainan 
Island in China are distance to land (38.2%) and depth to sea (25.9%). This paper 
not only demonstrates the effectiveness of a hybrid machine learning model but 
also provides a more accurate machine learning model approach for predicting the 
potential suitability distribution of seagrasses. This research can help identify seagrass 
suitability distribution areas and thus develop conservation strategies to restore 
healthy seagrass ecosystems.
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1. Introduction

Seagrasses are large submerged angiosperms with the general characteristics of vascular plants, a 
fully adapted aquatic environment, and the only angiosperm that can flower, fruit, and germinate in 
seawater (Hemminga and Duarte, 2000). Seagrasses are one of the extremely important marine 
resources that provide significant ecological value (Fourqurean et al., 2012; Cullen-Unsworth and 
Unsworth, 2018). Globally, seagrass habitats are rapidly degrading, and the loss of seagrass habitats 
will lead to multiple risks, such as the increased impacts of global climate change, shoreline 
destruction, and declining biodiversity (Orth et al., 2006; Waycott et al., 2009; Kendrick et al., 2019; 
Moksnes et al., 2021). Seagrass suitability habitat distribution patterns in the world are changing as 
the effects of global change severely threaten seagrass suitability habitats. The accurate knowledge of 
seagrass habitat and understanding of what factors limit or even threaten seagrass distribution has 
become an urgent issue (Short and Wyllie-Echeverria, 1996; Waycott et al., 2009). Unfortunately, 
many seagrass habitats around the world do not have clear spatial information (McKenzie et al., 2001; 
Short et al., 2007; He et al., 2022b), which seriously hinders marine environmental management and 
seagrass conservation. The traditional experimental method of mapping seagrass distribution requires 
large-scale field investigations, which are time consuming and cost-effective (McKenzie et al., 2001; 
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Krause-Jensen et al., 2004). In recent years, due to the development of 
remote sensing technology, a mushrooming number of data and methods 
have been applied to marine predictive modeling, such as satellite data, 
unmanned aerial vehicles (UAV), acoustic surveys, and Geographic 
Information Systems (GIS; Picart et al., 2014; Ouellette and Getinet, 2016; 
Fingas, 2019; Belkin, 2021).

Species distribution models (SDMs) are used to predict regional 
distribution maps (Gonzalez-Irusta et al., 2015; Bittner et al., 2020) and 
to assess the degree of habitat suitability (Miller, 2010; Zimmermann 
et al., 2010; Pollock et al., 2014). As SDM has been intensively studied, 
more and more studies have chosen to use machine learning for SDM 
modeling and have produced excellent results (Evans et al., 2011; Li and 
Wang, 2013). Downie et al. (2013) used GAM and MaxEnt models to 
predict seagrass distribution, and their results showed that machine 
learning could accurately predict seagrass distribution. However, Bittner 
et  al. (2020) found the differences in the relative importance of 
environmental factors in predicting the distribution of seagrasses 
between machine learning models when predicting the distribution of 
species. Therefore, a more accurate and robust machine learning model 
should be selected for prediction, such as random forest model that is 
widely used in SDM modeling methods. As a very representative tree 
modeling algorithm, random forest model can provide high prediction 
accuracy and stability (Kosicki, 2017; Mi et al., 2017; Kosicki, 2020; Luan 
et al., 2020; Saranya et al., 2021).

In recent years, with the development of machine learning, hybrid 
machine learning models have been widely used (Bies et al., 2006; Ardabili 
et al., 2019). Meta-heuristic algorithms have been found to improve the 
classification accuracy of models significantly (Beheshti and Shamsuddin, 
2013; Singh and Kottath, 2021). Further, population-based hybrid 
optimization algorithms can dramatically increase the speed and power 
of search algorithms by moving from many individuals to collaborative 
groups (Abdel-Basset et al., 2018; Dokeroglu et al., 2019). The excellent 
performance and optimal solutions of metaheuristic algorithms solve the 
puzzles of multidisciplinary research, ranging from engineering and social 
sciences to ecology (Yang, 2009, 2013). This led to the widespread use of 
metaheuristics in many studies (de Melo and Carosio, 2013; Talbi, 2016; 
Dokeroglu et al., 2019; Hassan and Pillay, 2019; Cruz-Duarte et al., 2021; 
Moya et al., 2021), e.g., the whale optimization algorithm (WOA; Mirjalili 
and Lewis, 2016; Kaur and Arora, 2018; He et al., 2022a).

Some applications have demonstrated the usability of hybrid machine 
learning models in providing insights into various knowledge’s domains 
(Tsai and Chen, 2010; Pinter et al., 2020). Still, few have explored the use 
of hybrid machine learning models to predict species suitability 
distributions. This study combines WOA into a Sinusoidal (S) chaotic 
graph and couples it with Random Forest (RF) to form a new hybrid 
machine learning model (RF-SWOA). The model is able to more accurately 
model seagrass habitat suitability. Thus, the objectives of this study are: (1) 
to develop a hybrid machine learning model for more accurately predicting 
potential seagrass habitat; (2) to explore the effects of environmental 
variables on seagrass habitat; and (3) to evaluate the predictive advantages 
and limitations of the hybrid machine learning model.

2. Materials and methods

2.1. Seagrass occurrence data

Hainan Province, located in the southernmost island of China, is the 
largest province in China in terms of land area (land plus sea). Hainan 

Province has a latitude and longitude range of 3.30°N to 20.07°N and 
108.15°E to 120.05°E, respectively. The climate of Hainan Island belongs 
to the monsoon tropical climate, which is between the two temperature 
zones of the tropics and subtropics. Its annual average temperature is 
24°C. Hainan Island is rich in plant and animal resources, of which 
seagrass is one of the main aquatic seed plant resources.

Hainan Island accounts for 64% of China’s total seagrass area (Zheng 
et al., 2013). Therefore, this study conducted a field survey to determine 
the distribution of seagrass on Hainan Island from March to August 
2021 (Figure 1). The presence of seagrass was marked with latitude and 
longitude, and samples were collected to identify seagrass species 
according to the method advocated by international seagrass researchers 
(Kuo and Den Hartog, 2001). The literature and field survey data were 
also combined to form the known distribution of seagrass beds on 
Hainan Island. We  used GPS (ICEGPS 610) to record seagrass bed 
boundaries, as well as the latitude and longitude coordinates at low tide, 
to determine the spatial extent of seagrass distribution on Hainan Island, 
when the large areas of seagrass beds are more easily exposed at low tide 
(Yang and Yang, 2009; Jiang et al., 2017). A total of 42 actual seagrass 
distribution sites were used in this study, including seven species of 
seagrass (i.e., Halophila ovalis, Halophila minor, Thalassia hemprichii, 
Halodule uninervis, Halodule pinifolia, Enhalus acoroides, and Halophila 
beccarii), while a random sampling of pseudo-absence in the Hainan 
seagrass distribution area produced a total of 31,700 records (Barbet-
Massin et al., 2012).

2.2. Environmental data

The distribution of seagrasses is regulated by external environmental 
factors and key physiological processes. A total of 15 environmental 
prediction layers were used in this study (Table  1), each of which was 
important in determining the prediction of potentially suitable habitat for 
seagrasses (Dennison, 1987; Duarte, 1990, 1991; Nguyen et  al., 2021). 

FIGURE 1

Study area and seagrass field distribution location sites.
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Temperature, salinity, velocity, nitrate, phosphate, silicate, phytoplankton, 
calcite, pH, and attenuation were obtained by Bio-ORACLE 2.2 version.1 
Ocean slope data are from GMED 2.0 version.2 Ocean chlorophyll-a 
concentration data are from Google Earth Engine.3 Photosynthetically active 
radiation data are from the Moderate-resolution Imaging Spectroradiometer 
(MODIS) aqua sensor.4 Distance to nearest-shore data is from NASA’s Ocean 
Biology Processing Group.5 Bathymetric dataset is from The General 
Bathymetric Chart of the Oceans (GEBCO) global network.6 Table 2 shows 
the minimum (MIN), maximum (MAX), mean (MEAN), and standard 
deviation (STD) of the 15 different environmental variables. All 
environmental variables were interpolated to 1 km spatial resolution using 
kriging interpolation in the ArcGIS 10.8 version of geostatistical analysis. To 
reduce spatial autocorrelation between variables (Legendre, 1993; Koenig, 
1999; Dormann et al., 2007), correlation coefficients (r > 0.7) were excluded 
using spdep R package (Bivand et al., 2015).

2.3. Machine learning models and evaluation

2.3.1. Random forest model
Random Forest (RF) algorithm is an extension of Bagging (Breiman, 

1996, 2001), in which base learners are fixed as decision trees and a 
forest is made up of multiple trees (Figure 2). Compared with bagging 
integration of decision trees, RF has poor starting performance. 
However, as the number of base learners increases, RF tends to converge 
to a lower generalization error. Also, unlike bagging, in which the 
decision tree selects the optimal division attributes from all attribute 

1 https://www.bio-oracle.org/index.php, accessed on February 5, 2022.

2 https://gmed.auckland.ac.nz/index.html, accessed on February 6, 2022.

3 https://earthengine.google.com/, accessed on February 5, 2022.

4 https://oceancolor.gsfc.nasa.gov/data/aqua/, accessed on February 6, 2022.

5 https://oceancolor.gsfc.nasa.gov/docs/distfromcoast/, accessed on February 

6, 2022.

6 https://www.gebco.net/, accessed on February 6, 2022.

sets, RF selects the division attributes from only a subset of the attribute 
set and thus is more efficient to train. In this study, the gini importance 
built-in algorithm of random forests was used to calculate the 
importance of the environmental features of the potentially suitable 
habitats for seagrasses.

2.3.2. Hybrid model
Whale Optimization Algorithm (WOA) was introduced by Mirjalili 

and Lewis (2016). Inspired by the way whales hunt, the predation 
behavior is organized into three mathematical models: prey 
encirclement, bubble net attack, and prey search (Mirjalili and Lewis, 
2016; Aljarah et al., 2018). A whale encircles its prey while locating the 
best search position with an increasing number of iterations, while 
updating in real time. The mathematical expression of this behavior is

 

D C X t X t

X t X t A D
L

L

= ∗ ( ) − ( )
+( ) = ( ) − ∗

,

,1  
(1)

where D  represents the distance between whale and prey, A  and 
C  are the coefficient vectors, t  indicates the current iteration, XL  is 
the position vector of the best solution obtained so far, X  is the position 
vector,  is the absolute value, and * is an element-wise multiplication. 
A  and C  are calculated via
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= ∗
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where r  is a random vector, and a  is linearly decreased from 2 to 
0 during iterating. A new position must be defined between the initial 
search position and the optimal search position so as to adjust the 
parameters. In this case, it is described as follows:
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where b  is a constant coefficient, and l  is a random vector whose 
items are all within [0, 1]. The whale contraction or spiral model 
approach is selected based on a 50% probability. Based on the 
mathematical model, the whale’s prey is simulated in a spiral circle 
as follows:
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Contraction envelope and spiral position updates are performed 
simultaneously, with contraction according to p  and spiral wandering 
according to 1− p , where p∈[ ]0 1, .

As the whale searches for prey, it moves toward the local optimal 
location while expanding the global optimal location search, and this 
phase can be described as follows:
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TABLE 1 Environmental variables used in this study.

Notation Description Units

Silicate Ocean silicate concentration mol.m−3

Attenuation Diffuse attenuation m−1

Calcite Constituent minerals in the ocean mol.m−3

Chlorophyll Ocean chlorophyll-a concentration mol.m−3

Depth Ocean depth F

Land Distance from land F

Nitrate Ocean nitrate concentration mol.m−3

Par Photosynthetically active radiation E.m−2.day−1

pH Hydrogen ion concentration 1

Phosphate Ocean phosphate concentration mol.m−3

Phytoplankton Phytoplankton in the ocean μmol.m−3

Salinity Ocean salinity PSS

Slope Ocean slope F

Temperature Ocean surface temperature °C

Current Currents velocity m−1
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where X rand  is a vector of random locations. A more detailed 
explanation of the WOA algorithm can be  found in Mirjalili and 
Lewis (2016).

WOA becomes SWOA after adding a chaotic map to optimize 
global search capabilities. SWOA is mathematically described as follows:

 ( ) [ ]2
1 0sin , 0,1 ,0 4,k kkp ap p p a+ = ∈ <π   

(6)

where k  is the number of iterations, and a  is the description 
parameter within 0 4a<  . For more information on SWOA algorithm, 
please refer to (He et al., 2022a).

The model in this study randomly selects 80% of the seagrass 
occurrence data for training and the remaining 20% for testing. The RF 
and RF-SWOA models were developed in Python 3.8  
(Python, 2021).

2.3.3. Model evaluation
A comprehensive evaluation of the model was conducted using six 

evaluation metrics. They are AUC, Omission rate, Correct classification 
rate, Sensitivity, Specificity, Kappa.

 

True positive1
True positive False negative

False positive
False positive True negativeAUC

True number False number

+
+

−
+

=
∗  

(7)

 
Omission rate

False negative

False negative True negative
=

+  
(8)

 
Correct classification rate

True number

Total sample
=

 
(9)

TABLE 2 Statistical analysis results for different environmental variables.

Notation Min Max Mean Std

Silicate 5.87 13.12 8.13 1.96

Attenuation 0.04 0.27 0.15 0.06

Calcite 0.00 0.04 0.01 0.01

Chlorophyll 0.12 0.56 0.25 0.10

Depth −100.09 −1.11 −30.82 18.70

Land 0.02 0.28 0.14 0.05

Nitrate 0.02 1.93 0.52 0.51

Par 36.04 42.37 39.21 1.54

pH 8.18 8.19 8.19 0.00

Phosphate 0.00 0.10 0.05 0.03

Phytoplankton 0.92 2.97 1.53 0.45

Salinity 32.94 33.31 33.18 0.08

Slope 0.02 0.19 0.09 0.04

Temperature 24.97 27.13 26.20 0.67

Current 0.12 0.55 0.24 0.09

FIGURE 2

Random forest model structure.
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3. Results

3.1. Correlation analysis between 
environments

The results of the study clearly show the spatial autocorrelation 
among all environmental variables (Figure 3). Correlation analysis of 
environmental variables was used to identify and remove variables with 

high multicollinearity (r > 0.7) in order to prevent model over-fitting. 
After removing phosphate, phytoplankton, par, and attenuation 
environmental variables, and the remaining variables were introduced 
into the model training.

3.2. Importance of environment features

The results of the importance of environmental characteristics showed 
that the most important ones to predict the potential habitat of seagrass 
were the distance to land (38.2%) and the depth of the ocean (25.9%). The 
rest of the environmental variables showed small contribution values 
(<6%) to the prediction of the potential habitat of seagrass (Figure 4).

3.3. Potential seagrass habitat

Both models (RF and RF-SWOA) mapped potential seagrass habitat 
areas (Figure  5). RF model overestimates the potential habitat of 

FIGURE 3

Correlation analysis matrix for different environmental variables.
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FIGURE 4

Importance analysis of 11 environmental features.

seagrass and makes a more optimistic prediction, but this is not 
consistent with actual observations (Figure 1). In contrast, the potential 
seagrass habitat areas estimated by RF-SWOA model are closer to actual 
observations. From Figure 5, it can be  found that the further is the 
potential seagrass habitat from land, the less likely it exists. This is 
reflected in both models.

3.4. Model performance evaluation

RF-SWOA and RF models are compared in Figure 6. Their results 
show that RF-SWOA has a higher AUC, correct classification rate, 
Kappa, and lower omission rate than RF. RF-SWOA produced a more 
accurate and stable prediction of seagrass habitat than RF. In Figure 7, 
the sensitivity and specificity of the proposed model (RF-SWOA) are 
better than those of RF model. Hybrid machine learning algorithms 
with higher sensitivity and specificity in prediction can reduce errors in 
the potential distribution of seagrass, achieving more reliable results.

4. Discussion

4.1. SWOA hybrid model evaluation

Intelligent optimization algorithms are widely used in various 
engineering practices (Su et al., 2014; Wang et al., 2020; Li et al., 2021), and 
simple operation is one of the advantages of WOA algorithm. It has excellent 
optimization capabilities and few parameters, which can dramatically 
increase the accuracy of the solution and convergence speed in the process 
of optimizing machine learning functions (Sun et al., 2018; Chakraborty 
et al., 2021). Although WOA has obvious advantages compared with other 
intelligent algorithms, it has similar problems like other intelligent 
algorithms, such as being easily trapped into a local optimum. The SWOA 

algorithm proposed in this paper can update its position according to its 
adaptive parameter strategy while updating the optimal individual to 
achieve the ability of optimizing global search. This study further verified 
the performance of the SWOA algorithm through simulation experiments. 
Four standard test functions (Table 3) were used to assess the performance 
of the algorithm. F1 and F2 test functions were used to determine how 
quickly and efficiently the SWOA algorithm finds an optimal value 
(Figures 8A,B). F3 and F4 test functions were used to see if the algorithm 
can jump out of its local optimum (Figures 8C,D). Each simulation test is to 
solve the performance of a 1,000-dimensional test function. By testing the 
performance of the SWOA and WOA algorithms through simulations, the 
SWOA algorithm has better global convergence and robustness (Figure 8). 
In this study, a random forest model was also used, which is increasingly 
being used in ecology due to its predictive accuracy and stability (Cutler 
et al., 2007; Evans et al., 2011). In particular, random forest models are still 
very robust at predicting species distributions with limited sample sizes 
(Luan et al., 2020). After coupling SWOA with RF, we found that the SWOA 
algorithm greatly influenced the performance of RF on classification. Based 
on the above findings, hybrid machine learning models can improve 
predictions of marine species distributions (e.g., seagrasses).

4.2. Environmental drivers of seagrass 
habitat

The potential adaptability of seagrass habitat is influenced by a 
combination of environmental elements. In this study, those 
environmental variables were combined to model potential seagrass 
habitats. Our results show that the most critical environmental 
factors affecting seagrass habitat are the distance from land, ocean 
depth, and current velocity. It reflects the particular importance of 
physical environmental variables for seagrass habitats. However, this 
does not mean that chemical and biological types of environmental 
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A B

FIGURE 5

Potential habitat areas (Predicted by (A) RF model and (B) RF-SWOA model).

FIGURE 6

RF and RF-SWOA model performance evaluation.
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FIGURE 7

Sensitivity and specificity tests of RF and RF-SWOA models. The upper part of the panel shows the statistical test results of frequentist analysis, and the 
lower part of the panel shows the statistical test results of Bayesian analysis. The results follow the gold standard of statistical reporting (Patil, 2021).

variables do not affect seagrass survival. We found that modeling 
the distribution of seagrasses in different study areas and scales was 
influenced by different environmental drivers. A global model 
showed that the temperature of the sea surface and the distance to 
the land were the most important environmental variables to predict 
the distribution of seagrass (Jayathilake and Costello, 2018). At a 
regional scale, surface nitrate concentration and the availability of 
benthic light became the most important environmental variables 
for predicting seagrass distribution in a model of seagrass species 
distribution in the Gulf of Mexico, while in another sea area, the 
distance to the sandy shore and depth were the most important 
environmental drivers (Downie et al., 2013; Bittner et al., 2020). 
Therefore, we proposed to establish a seagrass habitat simulation in 
the local study area to identify which environmental factors will 

lead to seagrass distribution limitation in order to better target local 
seagrass conservation and restoration (Mao et al., 2022).

5. Conclusion

This study proposed a new hybrid machine learning model 
(RF-SWOA) to accurately predict suitable habitats for potential 
seagrasses. The results of this study indicated that the RF-SWOA model 
could effectively be applied to model seagrass distribution. The results 
of the RF-SWOA model compared with RF model showed that 
RF-SWOA was able to identify potential seagrass habitats more 
accurately and stably. This hybrid machine learning model was 
demonstrated to be effective in improving the prediction of SDM. The 
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most important environmental factors affecting seagrass distribution 
were the distance from land, ocean depth, and current velocity. 
Therefore, seagrass potential adaptability habitat maps based on the 
RF-SWOA model can assist in the adequate conservation and restoration 
of seagrass and provide scientific guidance for seagrass area planning.
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FIGURE 8

RF and RF-SWOA model performance evaluation. (A) Griewank simulation function; (B) Schwefel 2.20 simulation function; (C) Ackley simulation function; 
(D) Rastrigin simulation function.
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