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While urbanization puts lots of pressure on green areas, the transition of 
green-to-grey surfaces under land use land cover change is directly related to 
increased land surface temperature–compromising livability and comfort in cities 
due to the heat island effect. In this context, we evaluate historical and future 
associations between land use land cover changes and land surface temperature 
in Dera Ghazi Khan–one of the top cities in Pakistan–using multi-temporal 
Landsat data over two decades (2002–2022). After assessing current land use 
changes and future predictions, their impact on land surface temperature and 
urban heat island effect is measured using machine learning via Multi-Layer 
Perceptron-Markov Chain, Artificial Neural Network and Cellular Automata. 
Significant changes in land use land cover were observed in the last two decades. 
The built-up area expanded greatly (874 ha) while agriculture land (−687 ha) and 
barren land (−253 ha) show decreasing trend. The water bodies were found the 
lowest changes (57 ha) and vegetation cover got the largest proportion in all the 
years. This green-grey conversion in the last two decades (8.7%) and prospect 
along the main corridors show the gravity of unplanned urban growth at the cost 
of vegetation and agricultural land (−6.8%). The land surface temperature and 
urban heat island effect shows a strong positive correlation between urbanization 
and vegetation removal. The simulation results presented in this study confirm 
that by 2032, the city will face a 5° C high mean temperature based on historical 
patterns, which could potentially lead to more challenges associated with urban 
heat island if no appropriate measures are taken. It is expected that due to land 
cover changes by 2032, ~60% of urban and peri-urban areas will experience very 
hot to hot temperatures (> 31.5°C). Our results provide baseline information to 
urban managers and planners to understand the increasing trends of land surface 
temperature in response to land cover changes. The study is important for urban 
resource management, sustainable development policies, and actions to mitigate 
the heat island effect. It will further asset the broader audience to understand the 
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impact of land use land cover changes on the land surface temperature and urban 
heat island effect in the light of historic pattern and machine learning approach.
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1. Introduction

Land use (LU)/land cover (LC) refers to the classification of 
landscape according to the natural elements and anthropogenic 
activities. Collectively, the terms are often used as LULC due to their 
interrelationship (Hussain et al., 2020; Sadiq Khan et al., 2020; Das 
et al., 2021). In recent decades, urban sprawl caused a tremendous 
amount of landscape changes that led to land surface temperature 
(LST) variation from local to global scales. In the 1950s, the urban 
area contained only 3% of the world’s population, which boosted to 
51% in 2007, and will reach 70% by 2050 (UN, 2017). The massive 
population influx in urban areas causes the exploitation of resources 
and economic development (Castelli, 2018), which results in huge 
impacts on local LULC changes (Thériault et al., 2020; Aktaş and 
Dönmez, 2021), LST variation (Kafy et al., 2020; Das et al., 2021; Kafy 
et al., 2021a), seasonal variability (Bera et al., 2022) and regional to 
global climate change (Zhou et  al., 2019; Lustgarten, 2020). This 
situation often leads to pollution and unequal distribution of resources 
and services, creating significant challenges for urban developers and 
policymakers (Lakshmisha et al., 2019; Gan et al., 2020).

Cities are considered the locomotive of development. 
Development practices across the world have accelerated urbanization 
(Wang et  al., 2020; Korkmaz and Meşhur, 2021). Unplanned 
urbanization often results in degraded ecology, biodiversity, and 
landscapes along with several surface changes (Hassan, 2017; 
Heikkinen et  al., 2019). This situation represents negative 
consequences (both short and long-term) of economic developments 
in cities. The short-term consequences that urban dwellers face 
include degraded natural systems, poor sanitation, waste management, 
and poor air/water quality (Kadhim et al., 2016; Musse et al., 2018; 
Luo et al., 2019). The increase in LST in cities is one of the long-term 
repercussions of changes in LULC (Peng et al., 2018; Akinyemi et al., 
2019; Kafy et  al., 2021a). These LULC transitions from marshes, 
vegetation, and agricultural lands into the impervious surface are 
particularly associated with increased LST into urban roots. According 
to recent studies (Cai et al., 2018; Peng et al., 2018; Kafy et al., 2021a,b), 
the average LST in cities is typically 2–4°C higher than in rural areas, 
which is mostly contributed by the removal of green cover and 

installation of gray infrastructure. In addition, the increase in the 
impervious surface makes societies more vulnerable to flooding due 
to the higher flow velocity of the water (Rehman et al., 2022).

The high LST concentration is primarily influenced by both 
horizontal and vertical expansion (Crum and Jenerette, 2017), the 
space between buildings, building material (Faroughi et  al., 2020; 
Sadiq Khan et al., 2020; Song et al., 2020), landscape composition, and 
topographic parameters (Peng et al., 2017; Bera et al., 2022) among 
other factors. Also, the geographical location and seasonal variations 
play important roles in increasing LST, resulting in the creation of 
Urban Heat Islands (UHIs) (Khan I. et al., 2019; Guo et al., 2020; Bera 
et  al., 2022; Tariq et  al., 2022a;Mehmood et  al., 2023). These 
geographical locations/places near the equator receive more radiation 
and thus, are more susceptible to the formation of UHIs, which is 
directly linked to high energy consumption, air pollution, and risks to 
human health (Shahmohamadi et al., 2011; Heaviside et al., 2017). For 
better living conditions, public health, and community well-being, 
systematic adoption of measures to mitigate the consequences of UHI 
is desirable.

To measure variations in LULC and LST in cities, geo-information 
technologies such as Geographic Information Systems (GIS) and 
remote sensing (RS) are flourishing (Ahmed et al., 2013; Alqurashi 
et al., 2016; Hassan, 2017; Shen et al., 2017; Tariq et al., 2021). GIS and 
RS applications have gained much attention in studies related to 
ecosystem change, biodiversity, and changes in climatic conditions 
(Mengistu and Salami, 2007; Maurya et al., 2021). Monitoring LST 
through direct site visits to detect changes in LULC is time-consuming, 
tedious, labor-intensive, and error prone. Furthermore, the coupling 
of GIS and RS allows for the practical evaluation, monitoring, and 
simulation of LULC and LST variations (Samie et al., 2017; Kafy et al., 
2020, 2021c). Spatial–temporal modeling of LULC and LST dynamics 
is also necessary to address the difficulties related to land cover change 
and temperature rise, thanks to developments in statistical methods 
using remote sensing data (Wang et al., 2019). Several studies have 
employed thermal infrared sensors with varying spatial resolutions to 
study LST properties in diverse urban areas (by LULC categories), 
which reflects the applicability and utilization of remotely sensed data 
(Zhou et al., 2019; Tariq et al., 2022b). Another example of RS data is 
the derivative products of Landsat imageries such as the Normalized 
Difference Vegetation Index (NDVI) and Normalized Difference 
Built-up Index (NDBI). These spatial indices are used to identify the 
spatial–temporal LULC trend and LST variation. Based on the 
historical trends, climate data along with anthropogenic activities 
information can be used to seek the prediction of LULC changes and 
LST variations.

Although some previous studies have focused on the historical 
changes and future LULC scenarios in Pakistan and worldwide 
(Bokaie et al., 2016; Heaviside et al., 2017; Ullah et al., 2019a; Amir 
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Siddique et al., 2020; Imran and Mehmood, 2020; Kafy et al., 2020; 
Sadiq Khan et al., 2020; Tariq and Shu, 2020; Arshad et al., 2022; 
Bera et al., 2022; Tariq and Mumtaz, 2022; Waleed and Sajjad, 2022; 
Mehmood et al., 2023; Zafar et al., 2023), research on LULC and LST 
modeling, particularly under historical and future scenarios, is rare 
to find. This situation of absence of information on LULC transitions, 
their association with LST, and future dynamics of both hinder 
informed planning of urban regions in Pakistan in the face of 
environmental changes—representing a potential domain of 
research that requires the attention of researchers. Similarly, the site-
specific spatial–temporal insights related to LULC transitions and 
LST variations are a prerequisite to planning effective measures for 
livable and comfortable urban designs. It is crucial to examine how 
urban surface temperature is affected by different spatial patterns of 
LULC. For urban planners, understanding which kinds of LULC 
changes exacerbate or mitigate impacts on urban surface temperature 
can contribute significantly to UHI mitigation strategy. In this 
context, the present study is focused on Dera Ghazi Khan (hereafter 
D. G. Khan) city in Pakistan, to explore historical changes and 
predict LULC scenarios along with their influence on urban 
LST. This study uses multi-source earth observation data to 
investigate the temporal and spatial trends of LULC and LST changes 
in the study area over the past two decades (2002–2022). Further this 
research enlighten the scientific community and urban managers to 
design better mitigation strategies to cope the growing trend of UHI 
especially at city scale. The main contributions of this work are to 
provide a reliable analysis on LST patterns and the UHI effect along 
with predicting LULC and LST change and investigating 
relationships between them, if any. Therefore, the objectives of this 
work are: (1) to examine the LULC changes and their transitions 
from a spatial–temporal lens; (2) model LST and its association with 
spatial indices as NDVI and NDBI; (3) simulate future changes in 
LULC and LST for 2032; and (4) explore the impact of different 
LULC changes on LST and formation of UHI effect.

1.1. Study area

The study area is situated in the southwestern district in Punjab 
province at the foothill of the Koh-e-Suleiman mountain range 
(Suleiman Range) (Munir and Iqbal, 2016). The city has gone 
through a population increase of ~110% between 1998 and 2017 
(FBS, 2017). To accommodate this population, the city has also 
gone through an immense urbanization process, resulting in several 
challenges for city dwellers (Garcia et al., 2019). Geographically, the 
D. G. Khan district is the third largest district in the Punjab 
province in terms of area (13,740 km2). The city area lies between 
30° to 30° 05/ 28// N Latitude and 73° 35/ 33// to 73° 41/ 41// E 
Longitude, which covers ~100 km2 (10,000 hectors) 
(Supplementary Figure S1, a separate file containing additional 
information). In terms of demography, D. G. Khan district is the 
most populous in the Southern Punjab, with ~3 million people and 
the city has 0.4 million urban dwellers as per the recent census in 
2017 (FBS, 2017). The climate of the study area defines the arid zone 
with average annual precipitation of about 150 mm mostly in the 
summer monsoon season July–August. The average temperature 
range from cold-mild winter and hot summer shows a huge 
difference from 13 to 50°C (Munir and Iqbal, 2016). The landscape 

is characterized by a flat city center and gradually increasing 
topography towards the west.

The study area received a large population from the 
surrounding less developed areas in the past two decades mainly 
due to better quality of life, health care, education, and security 
reasons. Also, an influx of migrants from rural areas after the 
destructive flood event in 2010 brought significant changes in the 
existing LULC pattern (Hashmi et al., 2012). The study area was 
selected due to its geo-strategic location as it it situated almost in 
the center of the country and provide access to three provinces 
(i.e., Punjab, Sindh, and Baluchistan). Due to its significant 
international economic importance, the city is now a part of the 
China-Pakistan Economic Corridor (CPEC) under the One Road 
One Built project. The basic aim is to identify the current LULC 
transitions along with LST variation to measure the UHI effect. 
The prospect based on the historical trend analysis at the city scale 
will allow an understanding of the current situation to implement 
the right decision and policies for sustainable resource 
management and urban development.

2. Methodology

2.1. Data Collection and Pre-processing

For this research, the study period is considered as the years 2002, 
2012, and 2022. In these two decades, three Multi-spectral Landsat 
Satellite data (for the years mentioned) are downloaded from the 
United States Geological Survey’s (USGS) Earth Explorer archives to 
evaluate LULC changes and their association with LST. The Landsat 5 
Thematic Mapper (TM) data are used for 2002 and 2012, and the 
Landsat 8 Operational Land Imager (OLI) data are used for 2022. All 
the data are retrieved for March to prevent any influences of seasonal 
variations. Cloud coverage is set to a minimum scale of <10% for all 
Landsat images. However, it is notable that the cloud cover is nearly 0 
% for all the used images of the study area. Additional details 
(metadata) regarding the images were retrieved from the USGS 
repository. Detailed information about the images is provided in 
Table 1.

2.2. Classification of LULC and change 
detection

The Image Classification tool in ArcGIS 10.5 is used to classify the 
LULC map due to its straightforward processing approach and simple-
to-use nature with higher accuracy in terms of LULC classification. 
Following other research in this field, we  use the supervised 
classification based on the maximum likelihood technique–one of the 
most applied techniques for LULC classification. Under the supervised 
classification, the images are classified using spectral signatures that are 
provided through training samples. Landsat-5 TM imaging bands 1–5 
and band-7 are utilized to classify different land use classes. It is noted 
that band 6 is rejected since it represents a thermal band. In the case of 
Landsat-8 OLI imagery, bands 1–7 are employed. To create the LULC 
maps, all bands are initially stacked in ArcGIS 10.5 software using the 
Image Analyst Tool. To attain the accurate LULC classification, Landsat 
surface reflectance-derived spectral indices, such as the Normalized 
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Difference Vegetation Index (NDVI) and Normalized Difference 
Built-up Index (NDBI) were utilized (Tariq et al., 2020; Andrade et al., 
2021; Das et al., 2021). Later, the Training Sample Manager tool is 
employed to detect the pixels’ signatures. The training samples for the 
supervised image classification are collected randomly across the entire 
study area and 150 samples (30 samples per LULC type) were collected 
for each year. A total number of five LULC types were identified and 
detail of each LULC type (see Supplementary Table S1) and their 
associated classes are explained in section 3.1.

2.2.1. Accuracy assessment of classified maps
The confusion matrix, also known as the error matrix, is used 

to measure the accuracy of the classified maps. The pixel’s actual 
and expected identity information is explained in this matrix as 
suggested by (Tilahun and Teferie, 2015; Rwanga and Ndambuki, 
2017; Rehman et al., 2021). For this purpose, a total of 210 sample 
locations are selected using the stratified sampling tool in ArcGIS 
for equal representation of all LULC types. Later, these sample 
locations act as ground truths to verify the classified maps. These 
samples are collected using the Google Earth platform coupled with 
actual ground conditions of LULC via the Global Positioning 
System (GPS) for the recent year (2022). The 2002 ground truth 
data were also acquired from the Land Cover Atlas of Pakistan-The 
Punjab Province series which is prepared by the collaboration of 
The Space & Upper Atmosphere Research Commission (SUPARCO) 
and the Food and Agricultural Organization (FAO) due to lower 
resolution image data of Google Earth before 2005. These samples 
are cross-examined with the classified maps to estimate the 
accuracy. The producer’s accuracy (PA) is a referenced-based 
approach in which the accuracy is calculated by analyzing the 
forecasts provided for a class and expressed as a percentage. Besides 
PA, there is another type of map-based accuracy measure known as 
user accuracy (UA). This measure is calculated by analyzing a class’s 
referenced data and expressed as a percentage (Platt and Rapoza, 
2008; Shafi et  al., 2023). Aside from the approaches mentioned 
above, another commonly adopted accuracy coefficient is the Kappa 
coefficient. Due to its wide use in LULC classification, we use the 
Kappa coefficient in our study to estimate the accuracy of classified 
maps. The Kappa value varies from 0 to 1, with 0 denoting low 
agreement and representing 1 nearly perfect agreement between 
ground truths and the classes obtained through the classification of 
images (Foody et al., 1992).

2.3. Retrieval of land surface temperature

The LST is calculated by employing the thermal bands of 
radiometrically and geometrically corrected earth observation data 
from Landsat satellite during 2002–2022 for the periods 2002, 2012, 

and 2022. Thermal data are retrieved from the Landsat sensors and 
stored as Digital Numbers (DN). Later, these DNs are transformed 
into LST using a four-step procedure described by (Artis and 
Carnahan, 1982).

Step 1 involves the conversion of DNs values to radiance utilizing 
the following Equation (1):

 
L LMIN LMAX LMIN DNλ= + −( )× / 255

 
(1)

where.
L λ  represents spectral radiance for both Landsat 5 TM and 8 

OLI images;
LMIN for Landsat 5 TM is 1.238 and 0.10033 for both thermal 

bands (Bands 10 and 11) of Landsat 8 OLI image.
LMAX represents the Landsat 5 TM as 15.30 and 22.00180 for 

both thermal bands (Bands 10 and 11) of the Landsat 8 OLI image.
Step 2 follows the conversion of the radiance above to satellite 

brightness temperature (BT) at sensors into degree Celsius as 
Equation 2:

 
TB K In K L= ( ) +( ) −2 1 1 273 15/ / .λ

 
(2)

Here, K1 and K2 reflect calibration constants given as 607.76 and 
1260.56 accordingly for Landsat 5 TM. For Landsat 8, OLI images of 
K1 and K2 (both bands 10 and 11) are given as 774.89, 1321.08, and 
480.88, 1201.14, respectively. The information on these constants is 
available from the USGS through the metadata files of the 
satellite images.

Step 3 involves the final step to calculate the LST by utilizing the 
following three Equations 3:

 
LST TB TB In= + ×( )× ( ) / /1 λ ρ ε

 
(3)

in which, LST reflects land surface temperature; TB represents 
satellite brightness temperature; λ  represents the wavelength of 
emitted radiance with a peak discharge of 11.5 μm; ρ  can 
be calculated by applying the following Equation (4), and ε  offers the 
ground surface emissivity that can be calculated from proportion 
vegetation (PV) using Equation 5.

 ρ σ= ×h c /  (4)

where.
h is Planck’s constant (6.626∗10–34 J s), σ is Boltzmann constant 

(1.380649 ∗10–23 J/K), and c = velocity of light (2.998∗108 m/s).

TABLE 1 Description of earth observation sensors and remote sensing data used in this study.

Acquired Date Spacecraft ID Sensor ID Cloud 
cover

Spatial 
resolution

Path/Row Time (GMT)

09 March 2002 Landsat-5 Thematic Mapper ~ 1 30 × 30 m 151/039 05:22:48.2970940Z

24 March 2012 Landsat-5 Thematic Mapper ~ 0 30 × 30 m 151/039 05:39:10.2300060Z

26 March 2022 Landsat-8 OLI_TIRS ~ 0.86 30 × 30 m 151/039 05:49:12.3399780Z

https://doi.org/10.3389/fevo.2023.1115074
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Mehmood et al. 10.3389/fevo.2023.1115074

Frontiers in Ecology and Evolution 05 frontiersin.org

Further,

 
PV NDVI NDVImin NDVImax NDVImin= − −( )/ 2

 
(5)

PV represents vegetation proportion calculated from the 
normalized difference vegetation index (NDVI) for all the respective 
years (2002, 2012, and 2022). Finally, the surface emissivity ( ε )  is 
calculated using Equation 6.

 ε = × +0 004 0 986. .PV  (6)

The LST drives from Landsat 8, bands 10, and 11 are then averaged 
to obtain the cumulative LST composite image using the Cell Statistics 
Spatial Analyst tool extension in ArcGIS 10.5 software.

2.3.1. Land surface temperature classification in 
relation to LULC changes

To determine the relationship between LST and land cover 
changes over the past 20 years, if any, the LST is categorized into six 
different zones to better understand the temporal and spatial 
differences. The selection of LST threshold values to visualize 
clusters/zones, past literature, expert opinion, and study area 
characteristics were considered. We categorize the LST zones as 
very cold (<21.1°C), cold (21.1-<23.1°C), chilly (23.1-<25.1°C), 
cool (25.1–27.1°C), warmish (27.1–29.1°C), hot (29.1-<31.1°C), 
and very hot (> 31.1°C) (Utomo and Kurniawan, 2016). After the 
classification, each LST zone is overlaid on LULC change maps, and 
LST variations are calculated using the “Tabulate Area” tool in 
ArcGIS 10.5.

2.3.2. Land surface temperature in relation to 
spatial indices

Indices such as the Normalized Difference Vegetation Index 
(NDVI) and the Normalized Difference Built-up Index (NDBI) have 
been linked to LST (Guha et  al., 2019). The NDVI characterizes 
vegetation phenology as the difference between near-infrared and red 
reflectance (Wessels et al., 2011; Mas and Soares de Araújo, 2021). 
The following procedure (Equation 7) is used to extract the NDVI 
value (Townshend and Justice, 1986).

 NDVI NIR R NIR R= − +/  (7)

where NIR represents the Near-infrared band and R is the 
Red band of the satellite image. Landsat TM bands 4 and 3 are 
utilized to derive NDVI, while Landsat OLI bands 5 and 4 are 
used. The NDVI scale runs between −1 to +1, with a negative 
value of NDVI indicating water whereas positive NDVI 
indicates vegetation.

Except for NDVI, LST is significantly influenced by impervious 
surfaces. Hence, we also consider this parameter and represent it using 
the well-known NDBI. The following equation (Equation 8) is used to 
calculate NDBI, as given by (Zha et al., 2003).

 ND I SWIR NIR SWIR NIRB = − +/  (8)

where,
SWIR represents the Short-wave Infrared band and NIR is the 

Near-infrared band of satellite images.
Utilizing the NDBI, we can determine the built-up areas using 

remotely sensed data. For Landsat TM and Landsat OLI, bands 5 and 
6 are utilized for SWIR, respectively. Similarly, bands 4 and 5 are 
utilized from Landsat TM and Landsat OLI images for NIR, 
respectively. Similar to NDVI, the NDBI values lie between −1 to +1, 
with values closer to −1 reflecting lesser built-up and values closer to 
+1 showing a high density of built-up areas.

The association between LST and spatial indices is initially 
determined using single and multiple linear regression analysis (Tran 
et al., 2017; Das et al., 2021). For each point data type, values for NDVI 
and NDBI are retrieved from each pixel in the study area. The linear 
regression model is fed with these data points as input. This model 
depicts the correlation/association between LST and LULC, if any, in 
broader terms.

2.4. Simulating LULC projections for the 
year 2032

Given the fact that LULC is spatially dynamic, their simulation 
necessitates the use of spatial techniques for guaranteeing long-term 
sustainability and addressing current and future development needs. 
By combining GIS and RS methodologies, precise spatial models such 
as the Multi-layer Perceptron-Markov Chain (MLP-MC) have been 
developed to properly simulate future LULC (Hamad et al., 2018; Kafy 
et al., 2021b). Based on the MLP-MC, the MOLUSCE tool in QGIS 
and the cellular automata (CA) model are used to forecast future 
LULC changes. The CA model, for example, accounts for both aspects 
(i.e., static and dynamic) of LULC changes, which are essential for 
detailed insights related to urban planning and design (Ullah et al., 
2019a; Kafy et al., 2021c). Another reason to utilize this model is its 
well-document accuracy to project future land cover patterns (Xu 
et al., 2016) based on a set of the function of five-parts transition rules 
on the status of cells to simulate and predict the future LULC changes 
(Wang et al., 2020).

The projection is made using two sorts of data: dependent 
variables like the previous LULC changes estimated (transitional 
matrix) from Landsat images of 2012, and 2022 and independent 
variables including elevation, slope, distance from activity centers, 
distance from waterways, and proximity to road networks. The 
distances to activity centers, waterways, and roads are estimated using 
the Euclidian distance function in ArcMap software. Furthermore, the 
ALOS-PALSAR DEM (12.5 × 12.5 meters spatial resolution) is 
employed in ArcMap software to estimate the elevation and slope of 
the study area. The up-scaling procedure with mean aggregation rules 
(resampling function in ArcGIS) was used to homogenize the spatial 
resolution of DEM and Landsat images. The transition potential 
matrix is created using the aforementioned variables. A random 
sampling approach is used to collect the samples of LULC. The 
maximum iteration (1000) and neighborhood pixel (9 cells) are 
selected to automatically train the prediction model (Mansour et al., 
2020). After modeling the transition potential matrix with the logistic 
regression, the CA model creates a future LULC map (for 2032 in our 
case). Validation of the model using current datasets is required to 
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show that it is trustworthy in projecting LULC change for a specific 
forecasted year (Ruben et al., 2020; dos Santos et al., 2021). Therefore, 
before the projection for 2032 is made, the CA model is tested for 
accuracy via simulating LULC for 2022 and then compared to the 
study area’s estimated LULC (based on Landsat data) for the same 
year. The QGIS-MULUSCE validation module is used to calculate the 
overall kappa coefficients and percent-correctness of 2022 classified 
and projected LULC maps. Once a reasonable accuracy is determined, 
the model is finally used for the 2032 LULC prediction.

2.5. Simulating LST projection for years 
2032

Under the global warming situation, increased LST in 
metropolitan areas is a matter of serious concern for urban planners 
and decision-makers as it would impact energy demands, compromise 
livability in cities, and has potential health-related challenges (Li et al., 
2017). With the advancement in artificial intelligence and machine 
learning-based modeling approaches, it has now become possible to 
spatially simulate climate-related indices such as LST with higher 
confidence. For instance, a Multi-layer Feed-Forward Back-
Propagation Artificial Neural Network approach in TerrSet software 
(Maduako et al., 2016) is used to model, simulate, and project future 
LST patterns (Maduako et al., 2016; Ullah et al., 2019a). The Multi-
Layer Perceptron (MLP) neural network decides network parameters 
and how they should be updated to automatically model the networks 
(Dey et al., 2021). This MLP algorithm is based on the concept of 
error-corrective learning. When a network gets a pattern, the MLP 
analyzes it and a potentially less accurate random output is generated. 
Furthermore, it computes a self-computed error function by 
subtracting the random output from the intended (goal) output. Using 
the “Leveraging back-propagation” algorithm, correction weights are 
estimated between the output and hidden layers as well as between 
hidden and input layers (Kafy et al., 2021c). This iterative approach is 
repeated until a reasonable and acceptable error is achieved between 
the network and the desired output.

In this study, LST simulation is based on the LST data from 2002 
to 2022. Using QGIS software, the study area is subdivided into 500 × 
500 meters spatial grids (fishnet) to obtain the sample points. The said 
grid size is set with the minimum spacing range in mind where 
features of one point can significantly influence LST. The LST and 
LULC data from previous steps are utilized for the training of a Neural 
Network in Terrset in order to predict LST (Vinayak et al., 2021). 
Additionally, we input the information on the latitudes and longitude 
of the defined samples to improve the model efficiency considering 
the notion; the more the input parameters, the better the network 
model’s efficiency. The process of LST prediction includes network 
building ➔ network training ➔ network performance evaluation ➔ 
and prediction. The confidence of the network is determined through 
the Mean Square Error (MSE) and the correlation coefficient (R).

The regression analysis offers information on how well the target 
data set describes the variance in the output results. The closer the 
value of R is to 1, the perfect correlation between the output and target 
data is expected. The Graphic User Interface (GUI) is created to test 
the performance indication before implementing the network. After 
the network’s performance metrics are reasonable, they are retained 
for prediction. During the evaluation, the values of R and MSE are 

reported as 0.8 and 0.5, respectively. Thus, LST for 2032 is simulated 
using the call-back function. The number of hidden layers is 
determined by numerous experiments depending on MSE and R 
values. These hidden layers are significant because they influence the 
outcomes by allowing the network to display non-linear behavior. 
Three hidden layers were chosen for the current study (Mallick et al., 
2021). We use 0.1 as the starting learning rate and control it using the 
decay rate. To update the learning rate, the decay rate of 0.9 is used. If 
the error function between the current and previous iterations 
increases, the learning rate is upgraded by division. Similarly, it is 
multiplied when the error function decreases to recede 
(Kazemzadeh-Zow et  al., 2017; Talukdar et  al., 2020; Alqadhi 
et al., 2021).

3. Results

3.1. Spatial–temporal heterogeneities in 
LULC

Two precise patterns are observed in terms of LULC classification 
(Figure 1A) and the statistical results are detailed in Table 2. As per 
the analysis, a constant increase in urban areas and water bodies is 
observed at the cost of vegetation and bare lands. For instance, ~37% 
of the land in 2002 was urban, which increased to 40% in 2012, and 
45.7% in 2022 (Figure 1B). It is noted that the consistent observed 
increase in water bodies from 2002 to 2022 (0.7–1.3%) is due to the 
construction of a new project called the “Kachhi Canal.” This project 
is a part of a government initiative for Baluchistan province to provide 
water for drinking and agriculture purposes (Yasin and Nabi, 2014; 
Khan, 2018). The study area is a significant part of this project. The 
visual interpretation of this project can be observed in Figure 1A 
(2022 image), where a new canal suddenly appeared parallel to the old, 
constructed Ghazi Canal. A gradual downfall is observed in vegetation 
areas as 58.6% of vegetation land cover in 2002 decreased to 56.5% in 
2012 and 51.9% in 2022. The amount of bare land was reduced to 1.2% 
in 2022, almost half of the amount in 2002 (3.7%).

Moving forward, Supplementary Figure S2 shows the graphical 
representation of the year-to-year land cover transition in relation to 
positive and negative changes. Two clear patterns are a constant 
increase in the urban areas as in 2002–2012; almost 3% of the area was 
transformed into urban areas. Also, 2.1% of vegetation land decreased 
and transitioned to urban areas and other land use. In the next decade 
(2012–2022), 5.7% of the land cover transformed into urban areas 
with a decrease of 4.7% in vegetation land and a 1.1% decrease in bare 
land. Analyzing the two-decade scenario, 8.7% of the total land was 
converted to urban areas resulting in a vast increase in built-up areas 
and a 6.8% decrease in vegetation cover along with a 2.5% decrease in 
bare soil. As for the water body, a small amount of increase is observed 
across the overall study period. For 2002–2012, a 0.2% increase in 
water bodies can be seen, which accelerated to a 0.4% increase in the 
2012–2022 period. Overall, a 0.6% increase is estimated in water 
bodies during 2002-2022–see Table 2 for detailed statistics.

One of the important aspects of LULC classification is its reliability 
and accuracy. Detailed accuracy assessment is performed by picking 
210 ground truth points (GTP) for all years. Multiple sources were 
used to seek the accuracy assessment and their detail is given in 
section 2.2.1. Table 3 shows the detailed assessment scenario of the 
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LULC classification. The estimated Kappa Coefficient is higher than 
0.90 for each year. Similarly, the Overall accuracy is also higher than 
90% for all the years, whereas it almost reached perfection in 2022. 
However, the producer’s accuracy is low for Bare Soil for 2002 
(56.25%). A possible justification for this low producer accuracy is the 
limited exposure area for sample collection but in the recent decade, 

it shows satisfactory results as 81.82% (2012) and 81.30% (2022), 
accordingly. All other accuracy level is more than 90%. The most 
corrected classification was recorded for water bodies for almost all 
the periods, which reached 100% for the producer’s accuracy scenario 
in 2022. This situation shows the reliability of the LULC classification 
results from this study.

A

B

FIGURE 1

(A) Land use land cover (LULC) maps of Dera Ghazi Khan City from 2002 (left), 2012 (center), and 2022 (right). (B) Area percentage of different LULC 
types from 2002, 2012 and 2022.

TABLE 2 LULC area distribution and change detection from 2002, 2012, and 2022.

LULC LULC area distribution Change detection

2002 2012 2022 2002–2012 2012–2022 2002–2022

Area 
(ha)

Area 
(%)

Area 
(ha)

Area 
(%)

Area 
(ha)

Area 
(%)

Area 
(ha)

Area 
(%)

Area 
(ha)

Area 
(%)

Area 
(ha)

Area 
(%)

Water body 69 0.7 88 0.9 126 1.3 19 0.2 38 0.4 57 0.6

Built-up area 3,693 36.9 3,997 40.0 4,567 45.7 304 3.0 570 5.7 874 8.7

Bare soil 374 3.7 260 2.6 121 1.2 −114 −1.1 −138 −1.4 −253 −2.5

Vegetation 5,864 58.6 5,655 56.5 5,186 51.9 −209 −2.1 −469 −4.7 −678 −6.8

Total 10,000 100
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3.2. Spatial–temporal heterogeneities in 
LST (2002–2022)

As the urban areas increased, so did the study area’s temperature 
in the last two decades (Figure 2A). In 2002, a meager amount of hot 

areas is observed in the study area. Major areas are covered in very 
cold to chilly class (<21.1-<25.1). Around 33% of the area is covered 
in a very cold region. Nearly 2% of the area lies in the hot region. 
However, this situation changed in 2012 as the maximum temperature 
in the study area raised to 33.096 ° C from 30.896 ° C—approximately 

TABLE 3 Detail of all LULC classification accuracy assessments from 2002, 2012, and 2022 Landsat images.

Year User’s accuracy (%) Producer’s accuracy (%) Overall 
accuracy 

(%)

Kappa 
Coefficient

Water 
Body

Built-
up 

Area

Vegetation Bare 
Soil

Water 
Body

Built-
up 

Area

Vegetation Bare 
Soil

2002 90 89.61 92.98 90 100 92 95.5 56.25 91.5 0.913

2012 100 93.75 95.66 90 100 93.75 96.43 81.82 94.8 0.947

2022 100 97.73 97.1 92.9 100 97.73 99 81.3 97.2 0.97

Mean 96.7

A

B

FIGURE 2

(A) Spatial Distribution of LST Change in Dera Ghazi City from 2002, 2012, and 2022. (B) Spatial distribution of LST index with percent area coverage in 
D. G. Khan City from 2002 to 2032.
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3° C higher than in the year 2002. Similarly, the mean temperature 
increased by approximately 2° C, but the standard deviation remained 
the same (Table 4). About 40% of the area falls into the chilly region, 
and around 20% falls into the cold region. However, in 2012, the very 
cold regions consisted of only 3% of areas, approximately decreasing 
from 33% in 2002. Some areas in the 2012 scenario also fall into a very 
hot region. In 2022, the maximum temperature increased at the same 
rate. The highest temperature recorded was 36.661°C in 2022, having 
the same increasing trend as 2002–2012. Despite this, the mean 
temperature increased at an alarming rate. Almost a 7° C increase is 
observed in the 2012–2022 LST scenarios. This situation shows no 
area falling into cool, chilly, cold, and very cold regions. Most areas in 
2022 are covered with “very hot” and “hot” regions (85% 
approximately). Nearly 11% of the area is covered with warmish 
regions. These results show an overall increase in the mean, minimum, 
and maximum LST in the study area—which should be a matter of 
serious concern for the relevant authorities. The rate of average annual 
LST change for the study area is noted as 0.3° C.

The prediction of LST for 2032 shows that an additional 5° C 
increase in maximum and a 4° C raise in the mean temperature is 
expected. Under these circumstances, the study area is expected to 
consist of very hot and hot regions mostly. By 2032, nearly 60% of 
areas in the study area are expected to be in the “very hot” class along 
with 40% of areas in hot regions (Figure 2B).

3.2.1. LULC-wise LST discrepancies
As expected, the lowest temperature in comparison with other 

land use classes is recorded for water bodies over 2002–2022 and in 
the predicted scenario for 2032. Where 23°C is the mean temperature 
in 2002 for water bodies, the value remained almost the same in 2012. 
In 2022, however, the value jumped to 33°C (Figure 3). The predicted 
scenario also recorded nearly a similar situation for water bodies in 
2032. For the built-up areas, the mean temperature gradually increased 
throughout the study period. For instance, in 2002, the mean 
temperature is estimated as 23°C, which increased to ~25°C in 2012. 
However, in the next decade, the mean temperature increased to more 
than 30° C, which eventually became nearly 38°C in the predicted 
scenario of 2032. This situation represents that the temperature for the 
built-up areas is the highest as compared with other land use types–
which is expected due to an increase in impervious surface. On the 
other hand, the mean temperature for vegetation cover is observed at 
~22° C in 2002, which gradually increased to 25°C in 2012, and nearly 
30°C in 2022. For the simulated scenario, the mean temperature is 
predicted as 35°C in 2032 (Figure  3). Lastly, bare soil shows the 
highest mean temperature in almost all the years, even in a predicted 
scenario. In both 2002 and 2012, the mean temperature of bare soil 
land cover is approximately 26° C. In 2022, the temperature reached 
33°C, and it is predicted to reach 35°C in 2032. Overall, there has been 
an increase in the mean temperature for almost all of the LULC types 
during the study period, and this increasing trend is more likely to 
remain the same in the future without proper measures.

3.3. Exploring connections among LST, 
NDBI and NDVI

NDBI is used to identify the human settlements in land cover with 
few other essential features like roads, dams, canals, etc. (Kafy et al., 

2019). A value of NDBI closer to +1 indicates land use covered with 
man-made features like buildings, roads, etc. Conversely, the values 
relative to −1 represent natural features like a forest, water body, 
vegetation, etc. Based on our assessment, an increasing NDBI index is 
as the value approached gradually +1 in the urban areas (Figure 4A). 
As for 2002, the maximum value for NDBI was closest to 0.35, which 
increased to 0.38 in 2012 and reached 0.43 in 2022. The increased 
value of NDBI in the central region of the study area represents a 
major urban expansion during the study period.

As for the NDVI, a completely mirrored scenario can be seen. For 
instance, the variation of NDVI values can be analyzed based on the 
radiation absorbed by the red spectral area chlorophyll and reflectance 
near the infrared spectral area of NDVI the more vegetation there will 
be. However, Figure  4B shows a different scenario as the value is 
decreasing towards −1. A gradual increase of urban areas at a cost of 
vegetation removal can be seen in a gradual decrease of NDVI values, 
as the maximum value for 2012 was reduced to 0.64 from 0.70 for 
2002. In the recent decade (2022), the NDVI value decreased to 0.56. 
A similar pattern is observed for the minimum value too. In the 2002–
2012 period, the minimum value of NDVI decreased by about 
0.20 percent.

The relation between LST and NDVI for the study area during the 
last decade shows a disproportionate relation. In 2002, the highest 
concentration of NDVI values was between the 25 to 30°C range, with 
a low value of −0.2 to 0.2 (Supplementary Figure S3). In 2012, a 
different scenario was seen. The value was not concentrated in a 
specific range but equally distributed in all LST ranges, having the 
highest value of 0.6 in the 21–25°C LST range. In 2022, higher values 
of NDVI (0.6–0.3) were seen in the low value of the LST range 
(27–29°C). The overall scenario shows that the lower the value of 
NDVI, the higher the value of LST in the study area. The goodness-
of-fit for all the linear relationships is well observed by higher values 
of R2 (Supplementary Figure S3).

The relation between LST and NDBI shows the corresponding 
scenario of LST and NDBI. An evaluation of the linear relationship 
between NDBI and LST shows a positive association between both 
(Supplementary Figure S3). This implied that the LST is expected to 

TABLE 4 Detail of LST in Dera Ghazi Khan City from 2002, 2012 and 2022.

Year Minimum Maximum Mean STD

2002 16.942 30.896 22.632 2.319

2012 19.142 33.096 24.832 2.319

2022 26.984 36.661 31.193 1.692

2032 29.335 41.165 35.71 1.622

FIGURE 3

Details of mean LST for all LULC types from 2002 to 2032.
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rise in the study area with an increase in NDBI. Similar to NDVI, there 
is high confidence in this association as reflected by higher goodness 
of fit values for all the periods (0.83, 0.85, and 0.89 for 2002, 2012, and 
2022, respectively). In 2002, the NDBI pointed to having a higher 
value of 0.1 to 0.4 concentrated in the LST region of 25–30°C. The 
same scenario can be seen in the next decade as the higher valued 
NDBI points (0.2–0.4) were in the LST range of 27–33°C. In 2022, the 
scenario remained the same, but the value changed considerably 
(Supplementary Figure S3).

3.4. Drivers of LULC and LST changes

Five driving forces are selected to predict the LST and LULC 
changes for the year 2032. As for the elevation (Figure 5A), the highest 

peak was seen in the western part of the study area with a maximum 
of 94 m. The elevation scenario was gradually decreasing value in the 
eastern region. A maximum of 15° slope was seen in the study area 
(Figure 5B). Buffer distances for waterways and road distances are 
essential to simulate the urban areas in the study area. As for the city 
center, the urban expansion region was determined by anthropogenic 
activity centers (Figure  5C). Panels d and e (Figure  5) show the 
buffered distance covered by the waterways and road distance, 
respectively, where a low value derives that this area will remain 
unchanged for at least 2032.

The predicted LULC and LST are illustrated in Figures 6A,B, 
respectively. According to the simulation results, the study area will 
go throw a tremendous amount of changes in the built-up area at 
the cost of green areas. Similarly, the LST predicted a high amount 
of temperature in the city center and its peripheries. The 

A

B

FIGURE 4

(A) Spatial pattern of NDBI in Dera Ghazi Khan City. (B) Spatial pattern of NDVI in Dera Ghazi Khan City. It is noted that the left, center, and right figures 
in both panels represent 2002, 2012, and 2022, respectively.
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uncontrolled urbanization and increasing trends of LST in the study 
area should be  a potential concern for urban managers, city 
planners, and urban dwellers. The areas where the predicted LST is 

comparatively high (i.e., very hot zones represented by black shades 
in Figure 6B) should be prioritized for measures to mitigate the heat 
island effect.

A B

D E

C

FIGURE 5

All drivers for predicting the LULC and LST change for the year 2032. (A) elevation, (B) slope, (C) anthropogenic activities buffer, (D) waterways buffer, 
and (E) road buffer.

A B

FIGURE 6

(A) Predicted LULC and (B) LST for the year 2032.
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4. Discussion

Sustainability in the long-term context requires informed 
planning and management in the face of environmental changes 
through space and time. In an anthropogenic activities-based climate 
change-induced warming world, rapid urbanization-led impervious 
surface in cities leads to land resource degradation and scorching heat, 
which creates challenging conditions in terms of health issues and 
energy use among many others 1. Evaluating drivers of LULC changes, 
its association with LST, and their simulation for future decision-
making is a progressive approach to tackling related climate change 
impacts. The present study not only effectively explore the historical 
patterns in LULC and LST, but further goes ahead one step to simulate 
future expected LULC patterns and LST situation using machine 
learning, artificial intelligence, and spatial modeling techniques (e.g., 
Figures  1, 2, 4, 6). The observed changes indicated a constantly 
increasing trend of built-up area and a consistently decreasing trend 
of green areas at a pace of 8.7 and 6.8%, accordingly, from 2002 to 
2022, which is in line with existing studies in different parts of the 
world (e.g., Alqurashi et al., 2016; Das et al., 2021; Waleed and Sajjad, 
2022). Such findings have particular implications to plan and 
strategize action plans for sustainable resource use particularly the 
land resource in cities. While the findings are useful in the elaborated 
context, similar studies are recommended in other regions beyond the 
study area in Pakistan to have a broader understanding and provincial 
and national scale policy on LULC (i.e., no-net-loss of green cover). 
In terms of LULC classification using the supervised- maximum 
likelihood classification, the accuracy assessment results (Kappa’s 
Coefficient) found almost perfect agreement as >90% as compared 
with the Bera et al. (2022) (87%), Das et al. (2021) (88%), Kafy et al. 
(2021c) (96%) and Hussain et al. (2019) (> 80%).

Notably, the urban fabric in the city area increased by 874 ha with 
high intensity towards the main corridors in the northeast to the 
southwest direction (Figure 1A). The haphazard urban expansion and 
messy development in the study area’s center increased LST and 
spotted the urban heat island effect (Figure  2A). Due to the 
development planning-related negligence, the city has only one older 
park and fewer green spaces constructed in recent years, which 
provided fewer opportunities to lower LST. On the other hand, several 
large-scale commercial activities and services are distributed in the 
urban center adding more impervious surfaces to the urban regions 
of the city. In the future, the introduction of modern integrated gray-
green structural development along with initiatives to preserve 
vegetation cover could potentially compensate for the lack of green 
areas in the study area leading to lower LST. Except for the central 
dense urban regions, the peri-urban areas comprised the newly 
developed housing societies and industrial areas where green spaces 
are unevenly distributed. The removal of trees and agricultural land, 
no insertion of new green spaces, and construction are among the 
critical issues that lead to the rising temperature and, ultimately, the 
heat island effect (Figure 2). The future scenario depicts the worst 
scenario if proper planning and mitigation measures are not followed 

1 https://www.worldweatherattribution.org/

climate-change-made-devastating-early-heat-in-india-and-pakistan-30-

times-more-likely/

promptly. Hence, evaluations as such are of high importance to 
identify priority intervention areas for immediate or gradual actions 
in the context of climate change adaptations in the study area 
and beyond.

The historical city of D. G. Khan was the first of its kind gridded 
planned city in 1911 (Garcia et al., 2019) in the British colonial period 
where each grid (Block) is interlinked with roads and a community 
gathering space in the block center with proper green space. The 
Tehsil Municipal Authority (TMA) autonomously governed the city 
planning and developmental activities and was responsible for a better 
quality of life. After the independence on 14th August 1947, district 
D. G. khan and its historical city were neglected, and unplanned 
developmental activities were started due to improper resource 
allocation and the absence of any effective urban land use policy in 
Pakistan (Arshad et al., 2022).

In 1970, a flux of labor migration toward the middle east countries 
(e.g., the United Arab Emirates and Saudi Arabia) (Azhar, 2008), and 
flood events in 1992, 1998, 2010, 2014 and 2022 (Ahmed et al., 2014; 
Munir and Iqbal, 2016; Garcia et al., 2018) acted as trigger points that 
initiated urban migration from rural areas. Such migration, especially 
from the de-excluded areas, led the high land price and renters, 
unplanned construction activities, congested road development, 
improper green space management, and removal of agriculture and 
scrubland. Similar studies also show the same results in other parts of 
the country. Arshad et al. (2022), for example, conducted the temporal 
changes of LULC in association with the surface urban heat island 
(SUHI) effect. Their study argued that the high demand for housing 
schemes to a flux of migration from neighboring rural areas in the 
recent two decades had put lots of pressure on Lahore city (the 2nd 
largest city in Pakistan). This disorganized urban growth leads to the 
removal of green spaces and causes 3–4°C higher temperatures and 
the SUHI effect in the central urban district (CBD) and slum areas. 
Similar results were found in the capital city of Pakistan (Islamabad) 
(Waseem and Khayyam, 2019; Aslam et  al., 2021). Waseem and 
Khayyam (2019) discovered the 3–9°C higher LST (0.52°C per year) 
at the cost of 51% vegetation removal. This green-gray conversion 
increasing LST and UHI effect also affects the northern mountainous 
region of Pakistan. Where Ullah et al. (2019b) found that the previous 
three decades were the most critical that put a lot of pressure on 
Pakistan’s mountainous cities and LULC changes had a stronger 
relationship to raising the LST in the lower Himalayan region, which 
further shows our findings’ consistency with the literature. In the same 
year, Ullah et al., (2019a,b) discovered that the flux of migrants from 
neighboring villages due to insecurity and to seek better living 
standards causes deforestation and consequently, the removal of urban 
forest (4.42%) and agriculture land areas (2.74%) led to the rising LST 
(greater than 27°C) and UHI effect will increased to 42 and 60% in the 
upcoming years (2032 and 2047). This situation further stresses the 
need for informed planning of land resources along with preserving 
the vegetation through no-net-loss policies via empirical references 
such as those presented in this study.

A clear trend of decreasing NDVI and increasing NDBI (Figure 4) 
in the study area further confirms the consequences of lack of 
management, ill-informed construction, and unplanned resource 
allocation that affect the LST and UHI hotspots. D. G. Khan city is the 
center point of Pakistan that connects all the adjacent provinces. Being 
divisional capital, it is the hub of commercial and economic activities. 
Economic growth results in the LULC change and causes 
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socio-environmental problems. The simulation results presented in 
this study confirm that by 2032, the city will face a 5° C high mean 
temperature based on the historical patterns, which could potentially 
lead to more challenges associated with UHI (Figures 4, 6 and Table 4) 
if no appropriate measures are taken. These findings are similar to 
(Tariq et al., 2023).

Recently, the government developed several land-use policies and 
rehabilitation programs at the federal and provincial levels. Still, lack 
of political interest and insufficient urban governance are the main 
barriers to implementing these initiatives. In recent years, the 
government has launched a Billion Trees Tsunami program all over 
Pakistan to tackle green cover degradation in the country, which has 
important implications for urban climatic conditions (Sajjad, 2020). 
For instance, this program was initially introduced in Khyber 
Pakhtunkhwa province and recent research shows positive outcomes 
regarding land surface temperature reduction (Mumtaz et al., 2020), 
air surface temperature reduction (Mahmood, 2020), better ecosystem 
quality (Khan N. et al., 2019), and air pollution control measures 
(Kharl and Xie, 2017). Taking such programs to the city level 
particularly to zones of higher LST, as identified in this study, could 
be a useful approach to mitigate the UHI effect in cities.

Our results have shown that green spaces are insufficient to 
overcome the large urban footprint. Hence, the green cover should 
be introduced and preserved on large patches to overcome the impact 
of impervious surfaces. The city and divisional government should 
introduce strict policies to implement green space initiatives at a larger 
scale to overcome the LST effect. The predicted results of 2032 also 
indicated the tremendous increase of 4–5° C LST and UHI, which 
represents an alarming situation for urban dwellers and should be a 
matter of the highest concern for relevant authorities. Estoque et al. 
(2017) and Arshad et al. (2022) investigated that the temperature of 
green spaces is ~3° C lower than urban fabric temperature and 
strongly suggested that the urban green space is one of the most 
optimal solutions to overcome the LST and mitigate the UHI effect. 
Hence, we recommend prioritization of the areas with higher LST, 
particularly in the 2032 prediction map, to initiate efforts for green 
spaces in the context of mitigating the impacts, especially the health 
issues, which the country has witnessed recently due to heat wave.

5. Conclusions and recommendations

This study leverages multi-temporal remote sensing data to track 
historical and predict future patterns of land use/cover changes, LST, 
and the association between them in a mid-country city that is a part 
of the China-Pakistan Economic Corridor (CPEC) under the One 
Road One Built project. The overarching goal of the study is to 
determine how changes in land use classes affected LST. The methods 
used in this study are quite effective in accomplishing the research 
objectives. The study area is divided into four LULC categories, such 
as water bodies, built-up land, bare land, and vegetation. Due to 
political and socio-economic considerations, the land cover 
classification revealed that built-up areas and water bodies increased 
by 8.7 and 0.6%, respectively, over the study period (2002–2022). In 
contrast, bare land and vegetation dropped by 2.5 and 6.8%, 
respectively.

Furthermore, the study determines a negative association of 
vegetation area (NDVI) and water bodies with LST. The LULC 

significantly influences the LST and is extremely sensitive to vegetation 
and soil moisture; vegetation is the most important element in this 
connection. Although there is a positive association between NDBI 
and LST, higher LST is reported in areas with less vegetated (barren 
land) and vice versa. We conclude that without proper measures, a 
tremendous increase in the impervious surface is expected at the cost 
of green areas, which could potentially compromise the livability and 
comfortability of cities in the wake of global warming. This situation 
would very well lead to the UHI effect influencing millions of people 
in terms of increased energy demands and health-related  
challenges.

In order to cope with this increasing LST situation, green urban 
design and infrastructure planning and development must 
be prioritized. Similarly, enhancing water features like lakes, canals, 
waterfalls, and public fountains along with significantly increasing 
green areas like artificial parks, green walls, gardens, and linear 
plantings, particularly woody plants could positively drive the UHI 
mitigation efforts. In addition, to achieve the intended ecological 
development in terms of environmental resource planning and 
management, LULC alteration activities should be minimized, and 
environmental education should be reawakened. The findings of this 
study have important implications for urban landscape planning, 
particularly when it comes to landscape connectivity between green 
and impervious surfaces and their impact on LST. All of these would 
result in science-based information having important implications for 
urban planning and land resource management along with providing 
opportunities to design appropriate action plans to mitigate the 
UHI effect.

6. Limitations and future works

The present study provides important and useful information 
for the study area to design proper adaptation and mitigation 
policies and action plans. Such actions at local levels would 
progressively contribute to regional sustainability from a bottom-up 
perspective. From a short-to-medium-term impact perspective, 
predicting future changes in LULC and how it will influence the 
LST under environmental changes provides key references for 
planning and management of the land resource in a more 
sustainable way along with providing opportunities for adaptation 
and mitigating climate change through local actions. Future urban 
studies could concentrate on the topic of rapid urbanization’s 
impact on public health and infrastructure along with the influence 
of predicted LST on health-related issues in urban societies—left for 
upcoming studies. Future research should address the following 
limitations. Higher-resolution images for LULC categorization may 
improve LULC composition-LST correlation explanation and urban 
planner usability. Urban morphology is needed to better understand 
the nonlinear association between LULC and LST in urban areas. 
For more conclusive LST prediction findings, other nonlinear 
regression approaches may need to be investigated. This study used 
temperature indices to analyze LST; multi-season analysis will 
provide more information. Although LULC is a primary influence 
in LST variation, other characteristics affecting LST, most likely 
topography and elevation, are equally essential. In commercial/
industrial locations, surface morphology also effects surface 
temperature retrieval. More precise spatial distribution information 
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regarding urban land shape is required for more accurate 
characterization of patterns and changes of the urban heat 
island effect.

Landsat data can detect LULC and LST effects, but projecting 
future changes is challenging. MC, CA, and ANN models are most 
often employed to predict LULC change. We used MC model based 
on the LULC conversion is known but spatial dependency and 
dissemination are unavailable. Future studies will focus on the CA and 
ANN models. CA is employed in utility and resource research since 
its greatest advantage depends on the initial configuration of variables 
like distance to road and rail network, slope, and elevation. To forecast 
LST, ANN can be used in conjunction with associated LULC indices 
like as NDVI, NDBI, NDBSI, and NDWI to successfully estimate 
future changes. ANN technique is an LST predictor because it employs 
LULC indices to anticipate future scenarios and reflects past patterns. 
As a result, ANN is often recognized as the best tool for forecasting 
the effects of LST.
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