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Introduction: Natural hazards such as landslides and floods have caused

significant damage to properties, natural resources, and human lives. The

increased anthropogenic activities in weak geological areas have led to a rise

in the frequency of landslides, making landslide management an urgent task to

minimize the negative impact. This study aimed to use hyper-tuned machine

learning and deep learning algorithms to predict landslide susceptibility model

(LSM) and provide sensitivity and uncertainty analysis in Aqabat Al-Sulbat Asir

region of Saudi Arabia.

Methods: Random forest (RF) was used as the machine learning model, while

deep neural network (DNN) was used as the deep learning model. The models

were hyper-tuned using the grid search technique, and the best hypertuned

models were used for predicting LSM. The generated models were validated

using receiver operating characteristics (ROC), F1 and F2 scores, gini value, and

precision and recall curve. The DNN based sensitivity and uncertainty analysis

was conducted to analyze the influence and uncertainty of the parameters to the

landslide.

Results: Results showed that the RF and DNN models predicted 35.1–41.32

and 15.14–16.2 km2 areas as high and very high landslide susceptibility zones,

respectively. The area under the curve (AUC) of ROC curve showed that the

LSM by the DNN model achieved 0.96 of AUC, while the LSM by RF model

achieved 0.93 of AUC. The sensitivity analysis results showed that rainfall had the

highest sensitivity to the landslide, followed by Topographic Wetness Index (TWI),

curvature, slope, soil texture, and lineament density.

Discussion: Road density and geology map had the highest uncertainty to the

landslide prediction. This study may be helpful to the authorities and stakeholders

in proposing management plans for landslides by considering potential areas for

landslide and sensitive parameters.

KEYWORDS
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1. Introduction

Landslides are considered the second most destructive geo-
hazard that cause serious problems, such as widespread damage
to property and infrastructure, loss of natural resources and,
more importantly, human lives, according to the United Nations
Development Program (Huang and Zhao, 2018; Azarafza et al.,
2021; Tanyu et al., 2021). Each year, landslides claim several lives
and cause billions of US dollars in property damage. According to
a World Bank report, about 300 million people live in landslide-
prone areas, and about 600 people are killed annually by landslides
(World Bank, 2005). In addition, it is estimated that global
landslides cause $20 billion worth of economic damage (Mezősi,
2022). On the other hand, nations like the United States of America,
Italy, India, China, and Germany suffer significant losses annually
(Zou and Zheng, 2022).

Furthermore, landslides are inherently very uncertain due
to the complex function of various factors, such as geological
complexity, topographical influences, land use and landscape
changes (Loche et al., 2022; Mantovani et al., 2022). Also, the
occurrence of landslides can be caused by various factors, including
heavy precipitation, volcanic eruptions, seismic activities such as
earthquakes, elevation and slope of a surface, vegetation cover,
soil properties, and even human activities like the construction of
roads, buildings, and agricultural practices (Liu and Ding, 2020;
Gunturu, 2022). In this regard, the development of more accurate
landslide susceptibility models (LSMs) based on accurate landslide
inventories is essential (Orhan et al., 2020). Therefore, there is a
need to map landslide susceptibility to identify areas that could
potentially be affected by landslides.

Recently, landslide susceptibility has attracted a great deal
of attention from researchers worldwide, where landslides have
been a recurring problem. This could be an empirical response
to this natural geo-hazard that could help those responsible for
land decisions and land use planning. In general, the techniques
that are utilized in the mapping of landslide susceptibility can
be categorized as either qualitative or quantitative techniques
(Nath et al., 2021; Sweta et al., 2022). The qualitative methods
take a more subjective approach and rely on the knowledge and
experience of experts to assign weights to the various factors
that could have caused the effect (Roy et al., 2019). In order
to get around the restrictions associated with the qualitative
methods; the quantitative methods take an objective approach
and are purely statistical or data-driven approach that examines
the interrelationship between landslide and its controlling factors
for predicting susceptibility zones (Das et al., 2022). The field
of quantitative techniques has seen much focus on using remote
sensing (RS) and geographical information systems (GIS) over
the past few years. These methods have provided reliable and
promising results for landslide prediction all over the world.

Furthermore, in recent decades, there has been widespread use
of statistical models, and machine learning algorithms (MLAs), for
various applications in landslide studies. MLAs such as artificial
neural networks (ANN) (Benbouras, 2022), decision trees (DT)
(Pham et al., 2020; Arabameri et al., 2021), support vector machines
(SVM) (Daviran et al., 2022; Saha et al., 2022), random forest
(RF) (Deng et al., 2022; Kavzoglu and Teke, 2022), classification
and regression trees (CART) (Orhan et al., 2020; Alqadhi et al.,

2021), neuro-fuzzy (Mehrabi, 2021), etc., enhance spatial results
and show good landslide vulnerability performance to be used in
land management. Although machine learning models for LSM are
widely used, they also have certain weaknesses such as their high
dependence on the training and testing data and poor predictive
accuracy (Bui et al., 2020; Gautam et al., 2021; Saha et al., 2021).
To overcome this issue, the hybrid models such as ensemble
machine learning models and meta-heuristic algorithm have been
proposed for the LSM modeling (Song et al., 2021; Alqahtani et al.,
2022). Compared to standalone models, these hybrid models can
quickly identify the non-linearity of input and output variables
since these models are flexible and become more robust with noisy
data (Ibrahim et al., 2022). However, the hybrid models are also
complex methods and take a long time, and require a difficult search
for a good meta-heuristic algorithm among many models with
diverse architectures. In comparison to the standalone and hybrid
machine learning models, the deep learning models may reduce
these limitations in the LSM modeling (Prasad et al., 2022; Xi et al.,
2022). In the field of artificial intelligence, Deep Learning and Deep
Neural Network (DNN) have recently become the most influential
approaches. In light of this, experts in the field of landslide
hazard modeling have begun to investigate the effectiveness of
deep learning techniques for solving this problem. Compared to
more traditional shallow learning methods, deep learning typically
produces different results in the feature engineering and extraction
stages of the training process (Tien Bui et al., 2020; Yao et al., 2022).
Standard shallow learning models, such as backpropagation neural
networks, logistic regression and DT, create decision boundaries
from scratch using only the initial feature set provided by the
database GIS. Deep learning is a subfield of machine learning
that involves the use of ANN to model complex patterns and
relationships in data (Azarafza et al., 2021). Unlike traditional
machine learning methods that rely on hand-crafted features, deep
learning algorithms can automatically learn and extract high-level
features from raw data, allowing them to achieve state-of-the-art
performance in a wide range of tasks, including image and speech
recognition, natural language processing, and robotics (Daviran
et al., 2022; Saha et al., 2022). There are several deep learning
algorithms, such as convolutional neural network (CNN), recurrent
neural network (RNN), long-short term memory, which have
been widely proposed and applied successfully in other areas of
environmental modeling, such as climate modeling, hydrology, and
ecology (Gavrishchaka et al., 2018; Tien Bui et al., 2020; Prasad
et al., 2022; Xi et al., 2022; Yao et al., 2022).

However, DNNs among other deep learning models can be an
effective choice when the available data is limited, as they can still
perform well with a relatively small amount of data (Gavrishchaka
et al., 2018; Shang et al., 2021; Yao et al., 2022). This is because
DNNs can learn hierarchical representations of the input data,
which can capture complex patterns and relationships even with
limited data.

In comparison, other types of deep learning models such as
CNNs and RNNs typically require large amounts of data to achieve
good performance, especially for tasks such as image or speech
recognition (Achu et al., 2021; Shang et al., 2021; Dela et al., 2022).

However, it’s important to note that DNNs also require careful
hyperparameter tuning to achieve optimal performance, even in
data-scarce conditions (Achu et al., 2021). Hyperparameters such as
the number of hidden layers, the number of neurons in each layer,
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FIGURE 1

Showing the study area, landslide sites (A) Saudi Arabia with Asir region; (B) Asir region with the study area location; (C) the study area, landslide site
and non-landslide site and (D,E) 3D model of landslide site (white circle showing landslide-prone area).

the learning rate, and the regularization strength can significantly
affect the performance of the mode (Achu et al., 2021).

Tien Bui et al. (2020) used a DNN to create landslide risk
assessment models and compared its performance to a hybrid
machine learning model. They found that the DNN model had
comparable prediction performance to the hybrid model. However,
there is still a need for further research to investigate and compare
the performance of DNN models for different types of applications,
and to explore the potential of using different learning algorithms
for training DNN models. Consequently, this paper develops the
newly developed DNN model within the H2O framework based
on landslide susceptibility mapping by using gradient descent,
root mean square propagation and adaptive moment optimization
techniques.

However, remote sensing and other data-intensive technologies
have made it possible to gather large volumes of data about the
environment, which can be used to inform management decisions.
However, in many cases, data scarcity remains a major challenge,
particularly in developing countries and remote regions. In such
situations, machine learning models can help to extract information
from limited datasets and support decision-making.

Random forest is a popular MLA that has been widely used
for remote sensing applications due to its ability to handle small
data and provide accurate predictions. However, RF may not always
perform optimally in situations where the data is limited, and
it may require large datasets to produce accurate land surface
models (LSMs). In contrast, DNN has shown promise in producing
accurate LSMs but typically require large datasets to achieve
their full potential.

One potential solution is to use DNN models in data-scarce
regions by tuning the hyper-parameters of DNN and RF. This
approach can help the model to learn data patterns from fewer
datasets and accurately predict new data, even in regions where data
scarcity is a significant issue. This approach is novel and provides

a practical solution to the challenge of limited data availability
in remote regions.

Another issue in management is sensitivity analysis, which
involves identifying the responsible parameters that have the most
significant impact on model performance. Traditional statistical
models have been used to conduct sensitivity analysis. Previous
studies have employed SOBOL indices based on variance, expanded
FAST, Moris one at a time (OAT), and a linear regression model
(Hsieh et al., 2018; Liu and Ding, 2020; Xue et al., 2021; Dela
et al., 2022; Li et al., 2022). These models are also very good in
determining the effect of input parameters on output parameters.
However, DNN models have not yet been utilized for this purpose.
The use of hyper-tuned DNN models to conduct sensitivity analysis
is an innovative approach that can provide valuable insights into
the key parameters that need to be considered in decision-making.
Hence, the use of hyper-tuned DNN models and sensitivity analysis
can help to overcome the challenge of data scarcity and provide
valuable information for management decisions. These novel
approaches can provide accurate LSMs, early warning systems,
and other management tools that are essential for sustainable
development in remote regions.

After reviewing the literature, the objective of this study is
to develop a robust LSM using grid search-based hypertuned
machine learning and deep learning models under H2O
open-source framework, and to analyze the sensitivity and
uncertainty of parameters using DNN based sensitivity analysis
in predicting LSM.

2. Materials and methods

2.1. Study area

Aqabat Al-Sulbat is located on the Abha-Bahah Road in the
Asir region of Saudi Arabia and covers an areas of 199 km2
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FIGURE 2

The landslide triggering factors, such as (A) elevation, (B) slope, (C) curvature, (D) aspect, (E) geology, (F) soil texture, (G) lineament density,
(H) topographic wetness index (TWI), (I) normalized differentiation vegetation index (NDVI), (J) land use land cover (LULC) types, (K) drainage
density, (L) distance to road, (M) rainfall.

(Figure 1). The elevation of the study area ranges from 989 to
2404 m. Geologically, the area belongs to the Ablah Group, which is
dominated by the Farwah Shear Zone and lies between the Al Lith-
Bidah and Shwas-Tayyah structural belts. The Jerub Formation,
the Rafa Formation, and the Thurat Formation are examples of
the three formations found within this group. These formations,
together with the others, form a sequence of volcanic and epiclastic
rocks. There are a large number of fractures, most of which
divide the granite into cubic or quadrangular blocks. All joints are
weathered and eroded. The study site is cold and semi-arid. On

average, 218 mm of precipitation occur per year, with February to
June accounting for 75 percent of the total. The average maximum
and minimum temperatures are 29.5 and 16.8◦C, respectively.

2.2. Dataset

In this work, several sources were used to acquire landslide
triggering variables. NASA’s Earth Science Data Systems provided
the ALOS PALSAR DEM. Sentinel-2 MSI has been downloaded
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FIGURE 3

Methodological hierarchy for employed methods in the study area.

from USGS Earth Explorer.1 The 1:100,000 Saudi Geological
Survey map was used to create the geological map. The field
survey yielded the information on the soil’s texture. Google
earth images and ArcGIS 10.5 software were used to create the
drainage map and road.

2.3. Landslide inventory

Landslide inventories are needed for both training and testing
the LS model. This study identified landslide areas by field surveys
and official sources (Figure 1). The construction of roads and
buildings in the study area has increased in muddy terrain, making

1 https://earthexplorer.usgs.gov/

it more vulnerable to landslides. Additionally, landslides are also
caused by rainfall in the area. Using GPS and Google Earth, 50
landslide sites were identified in the study area, and classification-
based LS modeling with binary data was used. Tang et al. (2020)
suggested using a similar set of negative points or non-landslide
areas, but selecting non-landslide samples can be challenging. In
this study, we selected 50 locations that were not affected by
landslides with the help of landslide data, local knowledge, and
Google Earth. According to geotechnical experts and government
papers, the areas where landslides did not occur are real and can
be used for training and testing data sets. In countries where data
is scarce and technology is developing, Landsat imagery, official
records, and local opinions are used by researchers. We created a
binary inventory dataset by assigning landslides and non-landslides
0 and 1 for classification-based LSM. The inventory data, which
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included 100 landslide and non-landslide polygon locations, were
converted into point form (900 points). Following the approach of
Saha et al. (2022), we created training and test datasets from the
inventory dataset using a 70–30 ratio.

2.4. Landslide triggering variables

The susceptibility model for landslides is built on data from
past events and potential triggers, as noted in reference (Saha
et al., 2022). However, setting suitable input parameters can be
challenging, and expert knowledge and previous literature can
be used to select landslide triggers. To model susceptibility to
landslides, variables such as elevation, slope, aspect, curvature,
geology, soil texture, land use/cover, drainage density, lineament,
distance to road, normalized difference vegetation index (NDVI),
and topographic wetness index (Topographic Wetness Index) are
utilized.

Elevation plays a critical role in influencing numerous factors
such as vegetation, runoff direction, drainage density, landslide
gravitational energy, and human activity (Nhu et al., 2020). An
increase in altitude can increase the likelihood of slope failure and
prolong the slope’s longevity (Pham et al., 2020). Elevation data is
usually obtained from the digital elevation model (DEM), which
shows elevations ranging from 2404 to 989 m in this study area
(Figure 2A).

Most landslides can be traced back to unstable slopes
(Remondo et al., 2008; Leonardi et al., 2020), which indicates
that slope is a crucial factor in regulating landslides (Lee and
Min, 2001). The slope map used in this study was obtained from
ALOS PALSAR DEM (Figure 2B). In addition, landslides are
often associated with curved features in the landscape, and a
curved surface can affect runoff and infiltration. The three possible
radii of curvature, including concave (negative), flat (zero), and
convex (positive curvature), have varying effects, with convex
slopes producing more runoff than concave ones (Lee and Min,
2001). The terrain’s sphericity affects water drainage in mountains,
as shown in Figure 2C.

Aspect refers to the slope direction, and it was derived from
the DEM of the study region, which created the aspect map
with categories such as flat, north, northeast, east, southeast,
south, southwest, west, and northwest (Figure 3D). The physical
properties of rocks, which are governed by the types and
compositions of those rocks, influence the degree to which a slope
is unstable or collapses. The geological map of the region, scaled at
1:100,000, was digitized by the Saudi Geological Survey, and a raster
format was created using the "spatial analyst" module in ArcGIS.
The study area’s geology map has ten geological classes (Figure 2E).

To analyze soil texture, 32 soil samples were taken from the
study area, and the size of individual soil grains was measured
using a hydrometer. The study area has different soil types, as
shown in Figure 2F. Lineaments, which are long, narrow fissures
in rock that weaken the material, are also crucial landslide factors,
as weak geology or lineaments can increase the likelihood of
landslides. Sentinel-2 satellite imagery was used in this study to
extract lineaments in ENVI, and a line density tool was used to
construct the resulting map of linearity density (Figure 2G).

The likelihood of landslides is influenced by increased
lineament, which can be mitigated through the use of hydrologic

measures provided by WI. TWI detects water accumulation in
basins and helps to control slope failure and landslides caused by
pore water pressure resulting from soil moisture. A high TWI is
associated with increased landslides, as seen in our investigation
where TWI varied from 0 to 10.03 (Figure 2H). NDVI also affects
landslides by altering soil hydrology through vegetation covers
that increase precipitation interception, evapotranspiration, and
infiltration. Greater plant life was observed in the western part of
our study area (Figure 2I), where we extracted vegetation using
bands 8 and 4 of Sentinel-2 data. The presence of vegetation helps
to increase the strength of soil and mitigate the threat of landslides.
Land use and land cover changes can also affect slope durability,
as seen in our LULC map constructed using data from Sentinel-
2, where we identified built-up, water bodies, thick vegetation,
sparse vegetation, agricultural farming, scrubland, exposed rocks,
bare soil, and wadi debris as LULC categories in the study area
(Figure 3J). We utilized MLCC classifiers for LULC mapping.

Drainage density also plays a critical role in the potential for
landslides, as seen in studies where the drainage density was highest
in the east (Figure 2K). We created a drain map using Google
Earth and imported it into ArcGIS for drainage density analysis.
Building roads on steep terrain can compromise slope stability
and lead to slope failure and landslides, as cracks in the road
surface created by construction and movement make materials on a
slope more brittle, filling with water and causing landslides. Intense
precipitation can further hasten the collapse of slopes and increase
the likelihood of landslides. Mountainous regions close to roadways
are especially susceptibility to landslides, as observed in our road
map digitized from Google Earth, where more roads were found in
the southeastern part of the study area (Figure 2L).

Rainfall is a significant factor in landslide occurrence, as it can
trigger landslides by increasing pore water pressure, decreasing
soil strength, and altering soil structure. The collected rainfall
data from 30 rain gauges installed by Ministry of Environment,
Water and Agriculture (MOEWA), Saudi Arabia in the study area,
Asir region, is crucial for evaluating the rainfall-induced landslide
susceptibility. The quality of rainfall data must be checked to ensure
accuracy and reliability in the analysis. The annual average rainfall
in the study area ranges from 225 to 191 mm, which provides
essential information for determining the threshold values of
rainfall intensity and duration required to trigger landslides (Figure
2M).

2.5. Method for multicollinearity analysis

Multicollinearity is a method employed in a model of logistic
regression that employs closely connected independent variables.
As a result, one independent variable can be predicted with a high
degree of accuracy by other variables. Multicollinearity has no effect
on the model’s reliability or predictability. Nonetheless, it influences
the estimation power of each independent variable individually
(Talukdar et al., 2021). Variance inflation factors (VIF), paired
scatter plots, tolerance, and other methods can be utilized to test
for multicollinearities. Multicollinearity among the variables was
computed in this study using VIF and tolerance. The VIF statistic
applies least squares regression (Naikoo et al., 2022) to measure
multicollinearity’s strictness. In the present experiment, the VIF
was employed to assess multicollinearity.
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2.6. Feature selection techniques

Feature selection plays a crucial role in improving the accuracy
and efficiency of machine learning models. By selecting the most
relevant features, it reduces the dimensionality of the dataset,
which in turn reduces the risk of overfitting and makes the model
more interpretable. Feature selection also helps to identify the
most important variables in the dataset, providing valuable insights
for domain experts and decision makers. In this study, we used
RFE and information gain ratio as feature selection techniques for
evaluating the landslide conditioning parameters.

2.6.1. Recursive feature elimination (RFE)
Recursive feature elimination (RFE) is a feature selection

technique that is based on the idea of recursively removing the
least important features until a predetermined number of features is
reached. The importance of each feature is estimated by the model
coefficients, which are used to rank the features. The features with
the lowest coefficients are then removed, and the process is repeated
until the desired number of features is reached.

The RFE technique can be applied to various models, including
linear regression, logistic regression, and SVM. It has been shown
to be effective in reducing overfitting and improving model
performance by selecting the most relevant features.

2.6.2. Information gain ratio
Information gain ratio is another feature selection technique

that is commonly used in decision tree algorithms. It is based on
the concept of entropy, which is a measure of the uncertainty of
a variable. The information gain ratio measures the reduction in
entropy achieved by splitting the data on a particular feature. It
is calculated as the ratio of the information gain to the intrinsic
information of the feature. The information gain is calculated as
the difference between the entropy of the parent node and the
weighted average of the entropies of the child nodes. The intrinsic
information is a measure of the randomness of the feature and is
calculated as the entropy of the feature. The information gain ratio
is given by the following equation:

Information Gain Ratio =

Information Gain / Intrinsic Information

where the information gain is calculated as:

Information Gain =

Entropy
(
parent

)
−

∑ [
weight

(
child

)
x Entropy

(
child

)]
and the intrinsic information is calculated as:

Intrinsic Information =

−

∑ [
weight

(
child

)
x log2

(
weight

(
child

))]
where weight (child) is the fraction of the data points that belong
to the child node, and Entropy (parent) and Entropy (child) are the
entropies of the parent and child nodes, respectively.

The information gain ratio is used to rank the features based
on their relevance to the target variable. Features with a high
information gain ratio are considered to be more relevant and are
therefore selected for the model.

2.7. Frequency ratio

The frequency ratio (FR) method is a statistical approach used
in landslide susceptibility assessment that considers the ratio of
the frequency of landslides in a given area to the frequency of
landslides in the rest of the study area. This method assumes
that the frequency of landslides is influenced by the distribution
of causal factors, which are assumed to be spatially correlated.
Therefore, this method evaluates the relative importance of these
factors in controlling landslide occurrence. The FR values for each
factor are calculated as the ratio of the frequency of landslides that
occurred in the areas with that factor to the frequency of landslides
that occurred in areas without that factor.

The FR method has been widely used in landslide susceptibility
assessment due to its simplicity and efficiency in identifying the
most important factors influencing landslide occurrence. The main
advantage of this method is that it does not require detailed
information about the spatial distribution of causal factors, which
are often difficult to obtain. However, this method assumes that the
factors influencing landslide occurrence are independent of each
other, which is often not the case. Additionally, the method can be
affected by the size and shape of the study area, which can influence
the calculation of the FR values. The equation for calculating the FR
value for a specific factor is:

FR =
(
number of landslide occurrences in areas with the factor

)
/(

number of landslide occurrences in areas without the factor
)

/(
total number of areas with the factor

)
/(

total number of areas without the factor
)

where the numerator represents the frequency of landslides in
areas with the factor, and the denominator represents the frequency
of landslides in areas without the factor. The denominator is then
divided by the total number of areas with and without the factor
to normalize the result. The FR value for each factor is then
used to rank the factors according to their relative importance in
controlling landslide occurrence.

2.8. Method for landslide susceptibility
mapping

2.8.1. Deep neural network (DNN)
Deep neural networks have become increasingly popular in

recent years, as they offer several advantages over traditional MLAs,
such as higher accuracy and the ability to handle large and non-
linear datasets (Talukdar et al., 2021; Costache et al., 2022; Naikoo
et al., 2022). DNNs are also able to solve complex non-linear
problems and perform hierarchical feature selection. In this study,
a multilayer feed-forward deep learning architecture is applied
under the H2O framework, which is similar to the conventional
multi-layer perceptron (MLP).

The input parameters’ weight is computed in each neuron
and passed on to the next using a transfer function. The model
comprises three layers: an input layer, multiple hidden layers,
and an output layer. The H2O framework is a high-level ANN
with back-propagation optimization (stochastic gradient descent)
technique (Yao et al., 2022). The deep learning algorithm has
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FIGURE 4

Feature selection for evaluating the landslide conditioning factors using (A) information gain ratio, (B) RFE.

been tuned using a random grid search technique with fivefold
cross-validation on the training data in the H2O framework.

The H2O framework has several advantages, such as distributed
computing, efficient memory management, and the ability to
handle large datasets (Yao et al., 2022). The back-propagation
optimization technique used in the H2O framework enables the
DNN to learn from the training data and improve its accuracy.
The use of the random grid search technique with cross-validation
helps to find the optimal hyperparameters for the DNN and
prevents overfitting. The combination of these techniques provides
a powerful tool for analyzing large and complex datasets, and
has the potential to improve accuracy and reduce the time and
resources required for analysis.

2.8.2. Random forest
Random Forest (Breiman, 2001) is a popular ensemble learning

technique that combines multiple DT to make more accurate

predictions. In the H2O framework, the RF algorithm uses
bootstrap aggregation (bagging) and feature sub-sampling to build
an ensemble of DT.

The RF algorithm in H2O first creates a set of DT, each one
trained on a random subset of the training data and a random
subset of the features. The tree is constructed by recursively
splitting the data based on the feature that gives the most
information gain. At each split, the algorithm selects a random
subset of features to consider, reducing the likelihood of overfitting.

Once all the DT have been constructed, the algorithm
aggregates their predictions to make a final prediction. In
classification problems, the final prediction is usually the class that
receives the most votes from the DT, while in regression problems,
it is usually the average of the predicted values.

The RF algorithm in H2O also includes a number of
hyperparameters that can be tuned to improve its performance.
These include the number of trees in the forest, the maximum depth
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of the trees, the minimum number of samples required to split an
internal node, and the minimum number of samples required to
be at a leaf node.

The performance of the RF algorithm can be evaluated
using various metrics, such as accuracy, precision, recall, and F1
score. These metrics provide information about the ability of the
algorithm to correctly classify instances in the data.

The equation for RF algorithm in H2O is as follows:

F (x) = 1/T ∗ 6t = 1, T ft (x)

where F(x) is the predicted output of the ensemble, T is the number
of trees in the forest, and ft(x) is the predicted output of the t-th tree.
The predicted output of the ensemble is calculated as the average of
the predicted outputs of all the trees in the forest.

2.9. Validation of the methods

The Receiver Operating Characteristic (ROC) curve is a
graphical representation of the performance of a binary classifier
system as its discrimination threshold is varied. The ROC curve
plots the true positive rate (TPR) against the false positive rate
(FPR) for different threshold values. TPR is also known as
sensitivity or recall, and it is calculated as the ratio of the true
positive to the sum of true positive and false negative. FPR is
calculated as the ratio of the false positive to the sum of false positive
and true negative. An ideal classifier system will have an ROC
curve that passes through the upper left corner of the plot, which
corresponds to a TPR of 1 and an FPR of 0.

The F1 score is the harmonic mean of the precision and recall
of a binary classifier system. It provides a balance between precision
and recall, and it is calculated as the ratio of the product of precision
and recall to the sum of precision and recall. The F2 score is a
weighted harmonic mean of the precision and recall, where the
recall has more weight than the precision. The gini value is a
measure of the degree of inequality in a distribution, and it is
commonly used as a performance metric for DT and RFs. The
equations for these metrics are as follows:

True Positive Rate (TPR) =

True Positive /
(
True Positive + False Negative

)
False Positive Rate (FPR) =

False Positive /
(
False Positive + True Negative

)
F1 Score =

2 ∗
(
Precision ∗ Recall

)
/
(
Precision + Recall

)
F2 Score = 5 ∗

(
Precision ∗ Recall

)
/(

4 ∗ Precision + Recall
)

Gini Value = 2 ∗ AUC − 1

where Precision is the ratio of true positive to the sum of
true positive and false positive, Recall is the same as TPR,
and AUC is the area under the ROC curve. These metrics are
commonly used to evaluate the performance of classification
models in various domains such as healthcare, finance, and natural
language processing.

2.10. Sensitivity and uncertainty analysis

Deep neural networks, often known as DNNs, are ANN that
include numerous hidden layers and an increasing number of
neurons in each hidden layer. The theoretical background has been
presented in methodological section [see section “2.8.1 Deep neural
network (DNN)”]. These networks were developed specifically
for the purpose of addressing complicated issues. DNN is more
accurate than ANN, but it takes much more time and processing
capacity to run.

In the present study, to best of author’s knowledge, first
time we used DNN based sensitivity and uncertainty analysis
for RUSEI prediction. Many previous researches have used
sensitivity analysis for water quality prediction, climatic prediction,
hydrologic variable prediction and other fields. They used variance
based SOBOL indices, extended FAST, Moris one at time (OAT),
linear regression based model (Glen and Isaacs, 2012; Jaxa-Rozen
and Kwakkel, 2018; Garcia et al., 2019). Those models are also
highly effective to evaluate the effect of input parameters on the
output parameter. But neural network and DNN based sensitivity
and uncertainty analysis has not been implemented yet in urban
research.

In the present study, we implemented this model in two
ways, first we implemented DNN and imported the model into
sensitivity analysis framework. The theoretical background of DNN
has been provided in the previous methodological section (see
section 2.4.2). After obtaining the best DNN model, the weights
and neural structure of the model have been extracted using
the “get_weights()” of the “keras; package.” Then, we used the
“SensAnalysisMLP()” function of “Neuralsens” package to perform
the sensitivity and uncertainty analysis on the extracted object
and same datasets, which were trained using DNN. Thus, three
sensitivity measures of the output (predicted RUSEI by four
models) have been computed in respect to the input parameters.
The sensitivity measures are (a) input variables mean effect over
the output, (b) variance of the input variable’s effect over the input,
and (c) measures of input parameters in the point of view of
perturbation analysis, which means larger changes in output can be
experienced if small changes in the input parameters has been done.
However, the meaningful information can be extracted from the
relationship between mean and variance effect of input parameters
over output parameters. The relationship can be as follows:

If both mean and variance of the input parameters are
toward zero, which shows no relationship between input and
output because the sensitivity of the output on that particular
input is about zero.

If mean of the input has different value rather than zero and
variance has value toward zero, it can be called linear relationship
between input and output because the sensitivity of the output on
that particular input is about constant. The uncertainty analysis was
computed using density plot by considering mean and standard
deviation of sensitive value of output, which shows the uncertainty
of the output with the respect to the data distribution pattern of
the input parameters. The coefficient of variation (CV) has been
computed to analyze the degree of variance of the data distribution
pattern for uncertainty analyze.

The whole methodological framework has been presented in
Figure 3.
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FIGURE 5

The variable importance for triggering landslide using frequency ratio.

FIGURE 6

Computation of important variables for predicting LSM as per the top 100 DNN models.

3. Results

3.1. Computation of multicollinearity
analysis

In this study, multicollinearity among independent variables
was evaluated using VIF and Tolerances (TOL). The absence of
multicollinearity problem was observed as the VIF was less than 10
and tolerance was greater than 0.20 for each variable. The LSM was
developed by utilizing all fourteen parameters in the current study,
and it was found that the highest VIF was associated with drainage
density, followed by elevation and soil texture. However, the lowest
VIF was observed in aspect, geology, LULC, lineament density, and
TWI. As the highest and lowest VIF for this study were far below the
VIF of 10, it can be concluded that there was no multicollinearity
problem among the input parameters, and all the input parameters

can be utilized for the modeling process. This is an important
finding for the development of accurate landslide susceptibility
maps, as it indicates that all the input parameters can be included
in the model without any risk of bias caused by multicollinearity.
The utilization of all input parameters can contribute to the
development of a comprehensive and reliable LSM.

3.2. Feature selection analysis

IGR is a measure used to evaluate the worth of an attribute in
a decision tree. It calculates the amount of information gained by
splitting the data based on the values of the attribute. In general,
a higher IGR value indicates that the attribute is more useful
in predicting the target variable. In this case, the IG.CORElearn
function was used to calculate the IGR values of each variable.
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FIGURE 7

Computation of important variables for predicting LSM as per the top 132 RF models.

FIGURE 8

Learning curve for diagnosing the fitness of the model for (A) DNN, and (B) RF models.

The result shows that the Curvature variable has the highest IGR
value (0.47), followed by Rainfall (0.80), Slope (0.76), and Hillshade
(0.45), which suggests that these variables are more important in
predicting the target variable (Figure 4A). On the other hand,
NDVI has the lowest IGR value (0.07), which indicates that this
variable is less useful in predicting the target variable. Similarly,
Geology, Road density, and Soil texture have relatively lower IGR
values, indicating that they are less important in predicting the
target variable.

Recursive feature elemination is a feature selection method that
selects the most relevant subset of variables from a large set of
variables. It is based on the idea of repeatedly training a model and

removing the least important feature(s) until the optimal subset
of features is found. In this specific result, RFE was performed
using a cross-validated (10-fold, repeated 5 times) outer resampling
method (Figure 4B). The performance of the model was measured
in terms of accuracy and Kappa over subset size from 1 to 14
variables.

The results show that the accuracy and Kappa increase as
the number of variables included in the model increases. The
highest accuracy and Kappa are achieved when using five variables,
after which the performance plateaus. The five variables that are
most important for predicting the target variable are Rainfall,
Slope, Curvature, Elevation, and Hillshade, according to the
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FIGURE 9

The gain and lift chart for explaining the performance of the model on the testing datasets for (A) DNN and (B) RF models.

FIGURE 10

Computation of important parameter for predicting LSM using best (A) DNN, and (B) RF models.

variable importance analysis. The variable importance analysis
ranks the 14 variables based on their importance in the model
(Figure 4B). Rainfall is the most important variable, followed
by Slope, Curvature, Elevation, and Hillshade. The remaining
variables have relatively lower importance.

3.3. Statistical analysis of parameters

The FR is a commonly used measure to identify the importance
of individual variables in classification problems, particularly in

landslide susceptibility studies. FR is a ratio of the proportion of
events (e.g., landslides) in a certain category or range of a variable
to the proportion of non-events (e.g., non-landslides) in the same
category or range.

In this case, the FR values have been computed for 14 variables,
including continuous variables (TWI, road density, curvature,
aspect, hillshade, NDVI, drainage density, rainfall, lineament
density and elevation) and categorical variables (Geology, LULC,
Soil texture). The FR values range from 0.73 to 3.18, with higher
values indicating that the corresponding variable is more important
in distinguishing landslides from non-landslides (Figure 5). From
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FIGURE 11

Landslide susceptibility mapping using (A) DNN and (B) RF models.

FIGURE 12

The accuracy assessment of susceptibility model using AUC of ROC curve and precision an recall curves for DNN (A,B) and RF (C,D).

the results provided, we can see that the parameters with the
highest FR values are curvature (2.762), slope (3.184), and
TWI (0.733), indicating a positive association with landslide

occurrence. Parameters with an FR value close to 1, such as NDVI
(0.996) and Elevation (0.830), are weakly associated with landslide
occurrence. Other parameters such as rainfall (1.056), lineament
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FIGURE 13

Training and validation accuracy changes with the number of epochs using DNN.

density (1.395), and LULC (1.281) have moderate association with
landslide occurrence. Geology (0.866), hillshade (0.704), and soil
texture (1.250) have weaker associations with landslide occurrence
compared to other parameters.

For example, curvature has the highest FR value of 2.76,
indicating that it is an important variable in distinguishing
landslides from non-landslides. This is not surprising, as curvature
is often used as a proxy for slope instability and has been shown to
be a useful predictor of landslides. Similarly, slope has a relatively
high FR value of 3.18, indicating that it is also an important
variable in landslide susceptibility. On the other hand, variables
such as NDVI and elevation have relatively low FR values (less
than 1), indicating that they may be less important in distinguishing
between landslides and non-landslides.

It is important to note that FR is a simple measure that
does not take into account the interactions between variables or
the potential for multicollinearity. Therefore, it is often used in
conjunction with other measures, such as correlation analysis, to
better understand the relationships between variables and their
importance in predicting landslides.

3.4. Implementation of hypertuned
machine learning and deep learning
algorithms

In this research, we aimed to achieve the robust and highly
accurate landslide susceptibility map using RF and DNN models.
Many previous researches have utilized default RF and DNN model
and produce LSM. But the issue is that the model that has been
employed for prediction needed to be perfectly set, otherwise the
default model or not-set model cannot produce highly accurate
LSM. The RF and DNN models have several components that
should be optimized or set by trial and error process. But the trial
and process can take many times to find the optimal parameters
for the models. Therefore, in this study, we first decided to find the
best values for several components. For DNN models, we aimed
to find the best value for activation function, numbers of hidden
layers, epochs, regularization (l1 and l2), rate, rate annealing, rho,
epsilon, momentum start, momentum stable, and max w2. For the
RF models, we optimized the following components, ntrees, mtry,
max depth, min rows, nbins, and sample rate. We provided very
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FIGURE 14

Sensitivity and uncertainty analysis using deep neural network based sensitivity technique.

FIGURE 15

The influence of value of each sample of input parameters to the LSM.

low to very high value to these component, applied grid search
techniques. We set the model to produce top 100 models for DNN
and unlimited for RF model as per the accuracy of training and
testing data. Then, we arrange all the models based on the value
of misclassification. Thus, we obtained 100 models for DNN and
132 models for RF algorithms to predict LSM. Figures 6, 7 show

that the computation of importance variable for predicting LSM
using all DNN and RF models. Figure 6 shows that all DNN models
computed that NDVI and rainfall are most important parameters
for LSM, while geology and curvature have less importance in
predicting LSM. In addition, Figure 4 shows that rainfall, slope,
NDVI, and drainage density are most important for LSM as per
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all RF models, while aspect, TWI, and curvature are less important
parameters. Therefore, both models have difference results for
finding the most important parameters for LSM; therefore, to find
this, further research is required.

After arranging as DNN and RF models in ascending order
based misclassification rate, the model with lowest error rate has
been considered as best model. In this study, 20th and 10th models
of DNN and RF have been considered as best model, which have
very less error. These models have been used for LSM prediction in
the study area. However, before proceeding for implementing the
model at raster datasets, it is necessary to diagnosis whether the
model is well-fit or not. Therefore, the learning curves for best DNN
and RF models have been plotted in Figure 8. It is usually used
to diagnosis the underfit, overfit, and well-fit model. The learning
curve has been plotted with log-loss rate (error metric) against
epochs (learning progress) for training, testing, and cross validation
sets. Figure 8A shows that error for training loss has been stabled
at 110 epochs, while the validation loss has also been stabled at the
same epoch. The difference of error between training and validation
loss has a close gap. Therefore, it can be considered that the best
DNN model is well-fit model. In addition, the learning curve for
best RF model shows very close gap between training and validation
loss (Figure 8B). It is almost 0.1. Therefore, this model can also be
stated as well-fit model.

The graphical representation of the gain and lift chart has been
employed for DNN and RF models based on testing data to see
how the predict models capture the response (LSM) by targeting
the certain amount of sample. This chart shows the performance of
the selected model on the new data (testing data). It shows that 98%
of the data can be captured by DNN model by targeting only 50%
of the sample. This indicates high quality performance by the DNN
mode for predicting LSM based on testing dataset (Figure 9A).
In addition, for RF model, 85% of the data can be captured by
targeting only 50% of the sample data. Therefore, it also indicates
higher performance for predicting new data (Figure 9B). But the
performance of DNN model is very high than RF model.

Therefore, it is found that 20th DNN and 10th RF models are
best model among 100 DNN and 132 RF models in terms of model
fitness and prediction of new data. The optimized parameters for
best DNN and RF models have been identified. For DNN model,
the best parameters are as follows:

A total of five layers: one input, three hidden layers, one out
layers; neurons: 713 for input, 50 for each hidden layer, and 2
for output layers; activation function: rectifierdropout for hidden
layers, and softmax for output; regularization: l1 is 0.000010 for
hidden and output layers; mean rate: 0.294 for hidden 1, 0.005
for hidden 2, 0.004 for hidden 3, and 0.0022 for output layer; rate
rms: 0.448 for hidden 1, 0.003 for hidden 2, 0.007 for hidden 3,
and 0.0007 for output; weight rms: 0.052 for hidden 1, 0.152 for
hidden 2, 0.139 for hidden 3, and 0.779 for output; mean bias: 0.479
for hidden 1, 0.915 for hidden 2, 0.959 for hidden 3, and −0.013
for output layer.

On the other hand, the best parameters for best RF model are
as follows:

Number of trees: 450; number of internal trees: 450; model size
in bytes: 42517; min depth: 1; max depth: 2; mean depth: 1.0156;
min leaves: 2; max leaves: 3; mean leaves: 2.01.

Understanding the factors that initiate landslides is crucial
in preventing landslides and mitigating their impacts. The

identification of these factors will allow for the development of
effective strategies to tackle the problem. The current study has
used machine learning techniques to identify the most influential
parameters in the occurrence of landslides.

In the DNN model, the most influential parameters in the
occurrence of landslides are rainfall, hillshade, soil texture, geology,
NDVI, and elevation (Figure 10A). The occurrence of rainfall and
its intensity is one of the most important factors in triggering
landslides. The water content of soil increases when it rains, and
this can cause instability in the soil structure. Hillshade, which
refers to the angle and intensity of the sun’s rays on the land surface,
affects the amount of solar radiation that is absorbed by the land
surface. This, in turn, affects the rate of evaporation, which can
also impact the stability of the soil. Soil texture and geology are also
important parameters that can affect landslide occurrence. Certain
types of soil and rock formations are more prone to landslides than
others. NDVI, which is a measure of vegetation cover, can also affect
the stability of the soil. Vegetation helps to stabilize the soil and
reduce erosion.

In the RF model, the most influential parameters in the
occurrence of landslides are drainage density, NDBI, geology,
rainfall, and slope (Figure 10B). Drainage density refers to the
amount of water flow in the land, and it can affect the stability of
the soil. NDBI, which is a measure of the urbanization level of an
area, can also impact the stability of the soil. The conversion of
natural land to urban areas can cause soil erosion and instability.
Geology and rainfall are also important factors that can affect
landslide occurrence. As previously mentioned, certain types of soil
and rock formations are more prone to landslides than others, and
the occurrence of rainfall can trigger landslides. Finally, slope is
another important factor in landslide occurrence. Steep slopes are
more prone to landslides, and this parameter is commonly used in
landslide susceptibility mapping.

In order to tackle these parameters, implementation strategies
can be developed based on the identified influential factors. For
example, to tackle the issue of rainfall, land-use planning can
be conducted to ensure that development is not done in areas
prone to landslides. To address the issue of steep slopes, slope
stabilization techniques can be used, such as terracing or the
planting of vegetation. Soil stabilization techniques can also be used
to address soil texture and geology issues. Overall, the identification
of influential parameters in the occurrence of landslides is critical
to preventing landslides and mitigating their impact, and the
implementation strategies can be developed based on the identified
factors to reduce the risk of landslides.

3.5. Prediction of landslide susceptibility
models

The best DNN and RF models have been implemented to raster
datasets to generate the LSM at pixel scale. Then, the LSMs have
been generated with values ranging from 0 to 1, where the value
close to 1 indicates high susceptibility to landslide and vice versa.
The generated LSMs have been classified into five classes using
Jenk’s natural break algorithm, such as very high, high, moderate,
low, and very low landslide susceptibility zone for DNN and RF
(Figure 11). Then, we computed the areas under different LSM
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zones for DNN and RF models. It shows that 8.14 km2 area
predicted as very high LSM zone, followed by high (29.27 km2),
moderate (47.86 km2), low (59.98 km2), and very low (57.06 km2)
(Figure 11A). On the other hand, RF predicted 16.03 km2 areas
as very high LSM zone, followed by high (41.32 km2), moderate
(61.45 km2), low (61.33 km2), and very low (18.4 km2) LSM zone
(Figure 11B).

The results show the variation of areas under different LSM
zones of DNN and RF models are relatively high for very high
and very low landslide zones. The predicted high, moderate,
low LSM zones have been visually screened and found that the
predicted results are highly correlated with each other. Therefore,
the results arises the question for reliability that planners and
stakeholders will believe which models as there is variation between
the models. To solve this issue, the resultant models have been
validated with ground truth. The best model can be considered for
management plans.

3.6. Model validation and comparisons

In this study, we used ROC curve, precision recall curve, F1,
F2 score, gini, logloss, MSE, RMSE, and mean per class error.
The accuracy assessment has been done using training and testing
datasets for DNN and RF based LSMs. The AUC value of ROC
curve for DNN model based on training dataset is 1, which
indicates 100% accuracy of the model, while the AUC of precision
recall curve is also 100%. The gini value with value ranging from 0
to 1, indicates the quality of a binary classifier, therefore, the value 0
shows the perfect equality, which can be considered totally useless
classifier and vice versa. In this research, we obtained 1 gini value
for DNN model, which considered that this model is perfect model
for predicting LSM. The F1 and F2 value for the DNN model are
0.976 and 0.976, respectively. The higher the F1 and F2 values, the
better the model. This DNN model can be considered a perfect
model because of the F1 and F2 values. The mean per class rate is
0, while MSE, RMSE, and logloss are also very low, near 0, which
indicates the performance of the DNN model based on training
dataset is very high.

On the other hand, for RF based LSM model using training
dataset, the AUC of ROC and precision recall curve are 1, while
the gini value is 1. The F1 and F2 values are 0.99 and 0.991 for the
RF model. The mean per class error is o, while the MSE, RMSE,
and logloss are near 0. Therefore, these findings indicate that the
performance of the model based on training data using RF model
can be considered perfect and highly accurate model. However, the
performance on training dataset does not count as accurate model,
until the performance has been judge based on the testing dataset. If
the model accurately predicts the new data, it can be considered as
perfect and accurate model. Therefore, in this study, similar error
matrices have been employed to evaluate the performance of the
DNN and RF models based on testing dataset.

In this study, we computed AUC value for ROC and precision
and recall curve for DNN and RF models based on testing dataset
(Figure 12). Figures 12A, C show that the AUC value of DNN and
RF are 0.962 and 0.935, indicating the very high agreement of the
model with ground truth. In addition, the AUC of precision and
recall curve for DNN and RF are 0.966 and 0.917, indicating higher

area under the curve (AUC), which signifies the prediction is quite
real (Figures 12B, D). In addition, the gini value is 0.923, F1 and
F2 score are 0.963 and 0.984, mean per class error is still 0 for DNN
model. The RMSE is 0.003, logloss is 0.0008, and the MSE is near 0
for DNN model. These findings indicate the DNN model can learn
the new data and predict the LSM perfectly.

On the other hand, the error matrices for RF model based on
testing dataset show very high accuracy, such as 0.869 of gini value,
0.963 of F1, 0.984 of F2, 0.5 of mean per class error, 0.504 of logloss,
0.425 of RMSE, and 0.18 of MSE. These results show the satisfactory
performance of the model.

However, we compare the DNN model with RF model as
per the generated statistics of model evaluation, it is found that
DNN model outperformed RF model. But it does not mean that
RF model is not good performer, but it predicts LSM quite well.
Therefore, it can be stated that RF model performed very well, but
DNN performed better than RF model. As per this finding, the
management plan should be DNN model oriented.

3.7. Sensitivity and uncertainty analysis

In the present study, DNN based sensitivity analysis has
been performed to evaluate the sensitivity and uncertainty of
the parameters to the output. The whole process has been
implemented in the R programming language using several
packages, such as “keras,” “tensorflow,” “Neuralsens,” and “monmlp.”
For the modeling, the predicted LSM by DNN algorithm has
been considered as the target variable; while the 12 landslide
conditioning parameters have been considered as the input
variables. In the present study, we chose DNN-predicted LSM as
target because the model outperformed RF based model. However,
we trained the DNN model using hyper-parameter tuning. In this
study, the algorithm consists of five fully connected layers and
dropout layers. The hyper-parameter tuning has been employed
based on random search technique to find the best number of
neurons (16, 32, 64, 128) and dropout rate (0.01, 0.02). We also used
relu activation function for hidden layers, while sigmoid activation
function has been used for output layers. In addition, we used adam
algorithm for optimization. In the present study, we used cross
entropy and accuracy matrices for plotting the accuracy assessment
of the trained model. The matrices were plotted against each epoch
for training and validation phases.

Figure 13 shows the variation of the accuracy with the number
of epochs for the training and validation phases. It is found out that
the error has been decreased rapidly in the first two epochs, showing
that the network is learning fast. Afterward, the curves are getting
flatten, which indicates the much epochs are not needed to train the
model further. Therefore, the optimal model with 200 epochs was
chosen. Moreover, since we have only a few data sets, the model
took a long time to train. The whole procedure took almost 10 min.

The sensitivity and uncertainty measures of input parameters
and their effect on the output have been displayed using label
plot, bar plot, and density plot in the present study (as shown
in Figure 14). The label plot shows that TWI, curvature, LULC,
hillshade, road density, and geology have negative non-linear
relationships with LSM (Mean of sensitivity is <0, and variance
of sensitivity is >0.01), whereas rainfall has a high positive non-
linear relationship with LSM, followed by slope, soil texture, NDVI,
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drainage density, and lineament density. The bar plot shows the
sensitivity measures of the importance of input parameters in
relation to output parameters. Rainfall has the highest positive
influence (0.6) in predicting landslide, followed by slope (0.5),
soil texture (0.4), and other parameters, such as NDVI, drainage
density, and elevation, have low positive influence (0.1). The same
bar plot shows that TWI has the highest negative influence (0.55),
followed by curvature (0.52), LULC (0.23), hillshade (0.18), and
road density (0.1).

It is evident from the findings that rainfall has a major
impact on predicting landslide and that the sensitivity analysis
should be conducted before initiating the management process.
The uncertainty analysis emphasizes how the uncertainties of input
parameters propagate to the output. The density plot displays the
distribution pattern of input parameters and their linear and non-
linear relationships with the output. The CV has been computed
to show the variation in the data distribution pattern, and the
higher the variation, the higher the uncertainty in the output
variable. In this study, road density (−140.37%), followed by
geology (−113.8%), and hillshade (−53.13%) have a high CV, and
therefore, they need to be normalized and preprocessed before
using them for model building to avoid erroneous results. It can
be concluded that the rainfall should be closely monitored and the
threshold value for rainfall that can initiate a landslide should be
identified to use it as an early warning system.

After identification of sensitive and uncertain parameters, the
contribution of the value of each sample on the LSM prediction
can provide further information, which may be very useful for
management plans. Figure 15 shows the contribution of each
sample of input parameters to the landslide. The influence of
sample has been indicated by high and low value with blue
to orange color. The shade toward deep blue indicates high
influence, while the shades toward orange indicate low influence.
The soil texture, slope, rainfall, NDVI, and aspect have positive
influence, while some parts of drainage density, NDVI, hillshade,
curvature, road density, geology have positively influence the LSM.
In addition, some parts of curvature, elevation, LULC, hillshade,
TWI, and geology negatively influence the LSM.

4. Discussion

Effective planning and development of hilly and mountainous
regions requires special consideration due to the presence of natural
hazards, with landslides being one of the most significant risks
(Pourghasemi et al., 2012; Kirschbaum et al., 2015). Landslide
susceptibility studies are essential in these areas to provide decision-
makers and planners with an initial proactive approach (Youssef
et al., 2015; Abbaszadeh Shahri et al., 2019; Ali et al., 2021).
However, creating accurate models for landslide susceptibility is a
major challenge that requires the selection of appropriate factors
and models (Mallick et al., 2021; Mandal et al., 2021; Hakim et al.,
2022; Sun et al., 2022).

Landslide indicators vary depending on the characteristics
of the area and are related to various environmental and
anthropogenic factors (Youssef et al., 2015). Selecting the
appropriate and most influential factors is important for accurate
landslide susceptibility evaluation (Ali et al., 2021). In order to
achieve this, various techniques such as multicollinearity tests have

been used to identify relationships among landslide indicators
that could negatively impact the overall accuracy of the model
(Mallick et al., 2021). Multicollinearity tests were performed
to ensure that there was no correlation among the selected
factors (Mallick et al., 2021). All factors were incorporated into
the models as a result (Mallick et al., 2021). In this study,
multicollinearity as well as RFE and information gain ratio was
used for selecting appropriate parameters. We used the VIF
test to evaluate multicollinearity between LIFs and found no
significant correlation among the selected factors. Rainfall, Slope,
Curvature, Elevation, and Hillshade were found to be the most
important factors in predicting landslide susceptibility in the area.
The importance of these factors was determined using variable
importance analysis, which ranked the 14 variables based on their
significance in the model.

These findings indicate that all selected parameters have a
significant impact on landslide susceptibility. While selecting
the appropriate landslide indicators is crucial, the diversity of
indicators and characteristics of the area make it challenging
to establish clear rules for selection. Nonetheless, the study
suggests that the selection of appropriate indicators can be
achieved by testing multicollinearity and employing variable
importance analysis.

Machine learning and deep learning techniques are effective
in handling complex, non-linear datasets and identifying hidden
patterns within the data to predict outputs with high accuracy
(Shrestha et al., 2017; Ma and Mei, 2021; Mandal et al., 2021;
Shahabi et al., 2021; Hakim et al., 2022; Sun et al., 2022). However,
the performance of these models is heavily dependent on the
availability of field data for training, and limited data can negatively
impact the predictive skills of the models (Mandal et al., 2021).
To address this challenge, various techniques have been developed
around the world, including the application of hyper-tuned RF
and DNN algorithms under the open-source H2O framework.
In this research, we have used these algorithms to construct
accurate models of landslide susceptibility, which can help identify
landslide-prone areas.

The study evaluates the performance of RF and DNN models
using the area under the receiver operating characteristic curve
(AUC-ROC) for validation. Although both models achieved
satisfactory accuracy (AUC > 0.80), the DNN model outperformed
the RF model in landslide susceptibility mapping. Previous research
has demonstrated that the RF method is an effective tool for
identifying areas where landslides are likely to occur using spatial
data (Xu et al., 2012; Lagomarsino et al., 2017; Shrestha et al.,
2017; Pham et al., 2019). In recent years, the DNN model has
become increasingly popular among researchers studying landslide
susceptibility (Xiao et al., 2018; Ghorbanzadeh et al., 2019). Wang
et al. (2019) reported that the DNN framework achieved higher or
comparable prediction accuracy, and this study also corroborates
their findings (Ciregan et al., 2012; Krizhevsky et al., 2017; Dou
et al., 2020). Consequently, DNN has the potential to provide more
accurate predictions and to enhance our comprehension of areas
prone to landslides. Therefore, the study shows that fine-tuned
models can improve performance in data-scarce conditions.

One of the recent studies suggests that the DNN model
performs better than other algorithms, such as CNN, LSTM, and
RNN, in predicting landslide susceptibility (Habumugisha et al.,
2022). However, these other algorithms can still be used as they
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perform similarly to the DNN model (Habumugisha et al., 2022).
Previous research also supports the effectiveness of the DNN
model in predicting landslide susceptibility (Ciregan et al., 2012;
Krizhevsky et al., 2017; Xiao et al., 2018; Ghorbanzadeh et al.,
2019; Dou et al., 2020). Overall, the study suggests that the DNN
model can provide better predictions and improve understanding
of landslide-susceptibility areas.

However, this study shows that more than half of the study area
falls under very low and low LS zones, while nearly 20% area falls
under the very high and high LS zones. This finding is identical to
the finding of Mallick et al. (2021) who also found about 25% of
the total area of Asir region under high and very high LS zones.
Further, the study shows that the LS is comparatively high in the
southern and south-eastern parts of Aqabat Al-Sulbat Asir region
while most of the western and northern parts have either low or
very low LS. This is possible due to gentle slope, low elevation
variation and strong geological setting in the western and northern
parts. Further, central parts of the Aqabat Al-Sulbat Asir region also
have high LS because in this part, the terrain is mostly hilly with
very high drainage and lineament density which triggers the risk of
landslide.

The findings of the study using DNN-based sensitivity analysis
for landslide susceptibility assessment have important implications
for landslide management. The sensitivity analysis provides a clear
understanding of the influence of input parameters on the output,
which can be used to prioritize management interventions and
improve the effectiveness of landslide risk reduction measures. By
identifying the most important input parameters, resources and
efforts can be focused on those parameters, resulting in more
effective management interventions.

The use of DNN for sensitivity analysis in landslide
susceptibility assessment is a significant Contribution To The Field.
While previous methods such as Sobol, Efast, and Monte Carlo
simulation have been used for sensitivity analysis, the use of DNN
provides a more efficient and accurate approach for analyzing
large datasets with numerous input parameters. This is particularly
important in the context of landslide susceptibility assessment,
where there are often many potential input parameters that need
to be considered. The use of DNN-based sensitivity analysis allows
for more precise and targeted management interventions, which
can lead to better outcomes in terms of reducing landslide risk and
protecting communities and infrastructure.

The results of this study can help in landslide management
by providing a better understanding of the key input parameters
that influence landslide susceptibility. This can inform targeted
management interventions, such as to control LSM or reduce the
impact of landslide, the rainfall should be closely monitored and
also need to do measure the threshold value for rainfall which
can initiate the landslide, can be used as early warning system.
The sensitivity analysis also allows for the identification of input
parameters that may require normalization or preprocessing before
being used for model building. This can prevent erroneous results
and improve the accuracy of landslide susceptibility predictions.
Overall, this study provides a valuable Contribution To The Field
of landslide susceptibility assessment and can have important
implications for the management of landslide risk.

In this study, we have explored variables that can contribute to
landslides, and identified methods that can be applied for landslide
susceptibility mapping in areas beyond the study site. The use

of hyper-tuned RF and DNN models under an open-source H2O
framework is a novel approach in Saudi Arabia, and coupling these
models with spatial analytical methods for landslide susceptibility
modeling is a valuable consideration.

The comparison of the performance of the two hyper-
tuned models is also a valuable Contribution To The Field,
as it provides insights into which model may be better suited
for different types of data and situations. Additionally, the
authors propose a novel DNN model for sensitivity analysis that
examines how triggers behave in causing landslides, which is an
important step toward understanding the causes and predicting the
occurrence of landslides.

The application of these methods and models has significant
potential societal outcomes, as landslides can have devastating
impacts on communities, infrastructure, and the environment. By
improving our ability to predict and map landslide susceptibility,
we can take proactive measures to mitigate the risks and reduce the
impacts of landslides. This can include implementing early warning
systems, developing hazard maps, and identifying areas that may be
at high risk for landslides.

5. Conclusion

This study explores the use of machine learning models such
as RF and DNN for predicting landslide susceptibility. The models
were hypertuned using a grid search technique to determine
the best model for the task, and a DNN-based sensitivity and
uncertainty analysis was conducted to identify the most sensitive
and uncertain parameters involved. The results provide valuable
insights into model hypertuning and sensitivity and uncertainty
analysis, with the DNN-based analysis being a novel approach in
natural hazard research.

The grid search method produced 100 DNN models and
132 RF models, and the 20th DNN model and 10th RF model
were identified as the baseline models for predicting landslides.
The analysis showed that the models predicted high and very
high landslide susceptibility zones, covering 35.1–41.32 and 15.14–
16.2 km2, respectively. Both models achieved a high level of
accuracy with an AUC score of >0.9, indicating their robust
performance. However, the DNN model outperformed the RF
model. Sensitivity analysis revealed that rainfall, slope, aspect
and LULC were the most sensitive parameters in predicting
landslide susceptibility, while geology was identified as the most
uncertain parameter. Therefore, special attention should be paid to
normalizing or pre-processing these uncertain parameters to avoid
erroneous results.

This study provides valuable scientific insights into landslide
prediction analysis, although there are some limitations that
need to be addressed in future research. Firstly, the number of
parameters involved is quite low, given the complexity of landslides,
so increasing the number of parameters could yield more accurate
results. Additionally, field surveys for landslide locations need to
be expanded to improve the accuracy of landslide predictions, and
the use of high-resolution images could also improve the results
significantly. Nevertheless, these findings can aid stakeholders in
selecting the best model and identifying the most sensitive and
uncertain parameters to propose robust management plans.
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