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Species richness and evenness have been widely used to investigate the 
spatiotemporal variation of α-diversity. However, some studies have indicated 
that a negative relationship exists between species richness and evenness. The 
question is how the differing sensitivity of α-diversity metrics and interactive 
behavior between richness and evenness affect the modeling of α-diversity 
variation. Here, we explored the response of species diversity, represented by three 
Hill numbers (i.e., species richness, exponential of Shannon index – expShannon, 
and inverse of Simpson index – invSimpson) focusing on the abundance of rare 
and common species, and Pielou index underlining the evenness of a community, 
to α-diversity variation through structural equation modeling (SEM). The model 
scheme integrated three categories of variables, spectral variation hypothesis 
(SVH), community pattern, and vertical structure, along the precipitation gradient 
spanning three steppes, including meadow steppe, typical steppe, and desert 
steppe. Our results showed that there were large differences in species richness 
across the three steppes, with v-shaped patterns emerging along the gradient 
(low-point in the typical steppe). Differences between steppes were diminished in 
the expShannon or invSimpson indices, though the v-shaped patterns persisted. 
The Pielou index showed the opposite pattern, with the peak in the typical steppe. 
Accordingly, a negative relationship between species richness and Pielou index 
was found across the three steppes. The concurrent increases in annual species 
number and dominant species abundance in response to precipitation variations 
led to the negative relationship. As a result, the SEM fitness on expShannon and 
invSimpson indices over the region was substantially diminished by the negative 
relationship. Overall, community pattern better explained the variation in species 
richness, invSimpson and Pielou indices. The performance of SVH differed among 
α-diversity metrics due to the collinearity with the variables of community pattern 
and vertical structure. This study emphasizes the variability of α-diversity metrics in 
response to environmental change. Particularly, distinguishing the asynchronous 
behaviors between species richness and evenness is paramount to account for 
α-diversity variation over heterogeneous ecosystems.
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1. Introduction

Grasslands are among the most species-rich habitats on Earth, 
possessing a high proportion of the world’s plant and animal life 
forms, but nowadays they are confronted with unprecedented 
challenges due to climate change and anthropogenic activity (Cleland 
et  al., 2013; Fauvel et  al., 2020). Globally, 37% of grasslands are 
fragmented, and temperate grasslands have lost about 46% of their 
area due to widespread agricultural expansion and intensive grazing 
regiments (Petermann and Buzhdygan, 2021). Accounting for various 
precipitation and temperature regimes, differing grassland species 
comprise the majority of Eurasian temperate grasslands, which results 
in complicated community structures and species composition (Sugita 
et al., 2007). Grassland species are relatively small in size compared to 
organisms from other biomes, but they greatly enrich a community in 
their large numbers. The species height of a community in the 
temperate steppes (e.g., desert, typical and meadow steppes) is ranged 
between about 4 cm and 30 cm, and determined by climate-relevant 
dominant species (e.g., Stipa breviflora, Leymus chinensis, and Stipa 
baicalensis; Bai et al., 2008; Xu et al., 2020). In the face of climate 
change and intensive land use, increasing studies demonstrate that 
native species are being lost from communities while toxic weeds grow 
in prevalence (Liu et  al., 2013). This is expected to manifest in 
unpredictable changes in ecosystem services (e.g., livestock 
production), as well as impacts on carbon and nutrient cycles (Qiu 
and Cardinale, 2020). The lack of knowledge regarding how the 
asynchronous response of species relates to heterogeneous habitats 
and environmental change hinders an in-depth understanding of 
grassland biodiversity variation (Ryabov et al., 2022).

In general, variation in grassland species diversity can be explained 
by the theory of species coexistence (Questad and Foster, 2008). 
Essential mechanisms for species coexistence are competition and 
niche heterogeneity consociated with the local environmental 
conditions (Chesson, 2000). Numerous studies have shown that 
increased precipitation facilitates the survival of ruderal species and 
allows rare species to coexist with dominant species (Currie et al., 
2004; Cleland et al., 2013; Figure 1). Consequently, evenness in species 
tends to decline in these circumstances due to the shifting abundance 
of the dominant species (Kardol et al., 2010). The adverse variations 
between species richness and evenness yield an asynchronous 
response of species diversity (DeJong, 1975; Stirling and Wilsey, 2001; 
Zhang et al., 2012). Trampling by herbivores and the excreta they 
produce can create more available niches, promoting synchronous 
increases in species richness and evenness (Golodets et al., 2011). 
However, selective feeding by large herbivores can lead to a 
homogeneous community structure and composition (Zhu et  al., 
2012). These asynchronous and/or synchronous influences associated 
with fluctuating precipitation and grazing practices reveal 
unpredictable variations in species diversity (Hauser et al., 2021).

Species diversity is scale-dependent and can be partitioned into 
α-, β- and γ-diversity, corresponding to the local, regional, and global 
scale, respectively (Whittaker, 1960). In general, under an equal level 
of γ-diversity, the communities with high α-diversity are more stable 
than those with low α-diversity (Wang et al., 2021; Figure 1). To date, 
the spectral variation hypothesis (SVH), which is supposed to 
connect the habitat heterogeneity and the composition of a 
community with spectral properties (Palmer et al., 2002), has been 
widely used to map α-diversity. However, the ability to identify 

taxonomic species using spectral properties can be diminished when 
the granularity of resolution exceeds approximately 10 cm (Wang 
et al., 2018). With coarse multispectral image data (e.g., above 0.5 m; 
Wang et al., 2022), the ability of SVH to account for the small-sized 
individuals of grass species is considerably restricted because 
multiple species are included in a pixel cell. Furthermore, due to the 
complex vertical layered properties of the community, the 
electromagnetic spectrum is incapable of penetrating the intensive 
overlap to detect the grass individual successfully. This is an 
additional error source to be aware of when using SVH (Thornley 
et al., 2022).

Empirical studies have shown that species diversity is closely 
associated with vertical structure, horizontal community pattern, and 
physiological properties (Loreau, 2000; Marselis et al., 2020). Vertical 
structure describes the height heterogeneity among species in a 
community, and horizontal community pattern reflects the intricate 
interaction between species at a population level (McCann et  al., 
2005). These two physical properties have been widely used to explore 
species diversity (Navarrete and Berlow, 2006; Gholizadeh et al., 2022). 
Using SVH partially expresses the variation of a biophysical 
relationship, but it is limited in detecting the details of horizontal and 
vertical features, and so constrains the accuracy to under 50% 
(Schmidtlein and Fassnacht, 2017; Thornley et al., 2022). In the face 
of the various steppe types (e.g., desert, typical, and meadow steppe), 
the effectiveness of SVH to reflect independent variations in 
α-diversity metrics and their interactions have not been fully explored. 
Ideally, integrating spectral variation with physical measures of both 
vertical and horizontal categories facilitates species diversity detection 
in grasslands (Wang and Gamon, 2019). For example, by combining 
vegetation structure data with airborne spectral images, species 
diversity can be calculated more accurately across the different growth 
stages of the grasses (Marcinkowska-Ochtyra et al., 2018) or in the 
degraded grassland disturbed by shrub encroachment (Sankey et al., 
2021). Here, we questioned how effective this integration applies in 
identifying variations in species diversity across differing temperate 
steppes. Physical measures from the vertical structure and horizontal 
traits are inferred to improve the ability of SVH.

To accomplish this, we integrated the three categories of vertical 
structure, horizontal community pattern, and SVH to characterize 
variation in α-diversity and to systematically investigate how α-diversity 
metrics respond to variation in α-diversity over differing grassland 
types. We  hypothesized that α-diversity could be  comprehensively 
displayed by vertical structure, community pattern, and SVH associated 
with physiological properties (Marselis et al., 2020). In this case, the 
sensitivity of SVH variables to α-diversity could be co-influenced by the 
variation in vertical structure and community pattern due to the 
compounding response of the electromagnetic spectrum to community 
complexity (Thornley et al., 2022). Among widely used α-diversity 
metrics, three Hill numbers (i.e., species richness, exponential of 
Shannon index, and inverse of Simpson index) and the Pielou index 
were selected for both assessing abundance- and evenness-based 
species diversity (Pielou, 1966; Hill, 1973). Accordingly, we outline 
three objectives of interest, including (i) the independent and interactive 
behavior of α-diversity metrics in responding to precipitation variation; 
(ii) the performance of individual categories of explanatory variables in 
interpreting the variation in α-diversity metrics; (iii) the integrated 
performance of those three categories in depicting α-diversity variation, 
focusing on the boundedness of using SVH.
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2. Materials and methods

2.1. Study sites

This study was conducted in the Eurasia steppe region of the Inner 
Mongolia Autonomous Region (IMAR) of northern China (Figure 2), 
which has a semi-arid and arid continental climate in the middle 
temperate zone. The study sites encompass three grassland types from 
east to west; meadow steppe (MS; 48.66°N, 119.13°E), typical steppe 
(TS; 44.14°N, 116.51°E), and desert steppe (DS; 41.77°N, 110.57–
61°E). Over 1,125 km wide, the elevation ranges from 600 m in the east 
to 1,300 m in the west. Based on long-term meteorological 
observations (1980–2017), the mean annual temperature (MAT) 
ranged from −2.9°C to 6.5°C, with averages of −0.9°C, 3.1°C, and 
4.8°C for MS, TS, and DS, respectively. The mean annual precipitation 
(MAP) ranged from 142.2 mm to 590.8 mm, with averages of 
332.5 mm, 309.2 mm, and 279 mm for MS, TS, and DS, respectively. 
Most precipitation occurs from May to August. The soil is classified as 
chestnut and calcic brown (Bai et al., 2008). The MS is dominated by 
species Leymus chinensis, Carex duriuscula, and Stipa baicalensis. The 

TS is dominated by Stipa krylovii, Cleistogenes squarrosa, and Leymus 
chinensis. The DS is dominated by Stipa breviflora, Agropyron 
desertorum, and Cleistogenes songorica.

2.2. Materials

This study utilized multispectral satellite image data, species 
ground-truth survey data, and vertically projected RGB images of 
the quadrats. The multispectral satellite image data was obtained 
from the Sentinel-2A satellite, which was launched by the European 
Space Agency in 2015. Every 10 days, the satellite revisits the same 
viewing angles. A multispectral instrument (MSI) with 13 bands is 
mounted on the sentinel-2A satellite. Four bands are at 10 m spatial 
resolution, and six bands are at 20 m spatial resolution. In addition, 
there are three bands for atmospheric correction and cirrus cloud 
detection at 60 m spatial resolution. The reflectance bands at the 
finest resolution of 10 m were used in the study; blue (492.4 nm), 
green (559.8 nm), red (664.6 nm), and near-infrared (832.8 nm). 
Sentinel-2A Level 2A images were orthographic-corrected 
reflectance products at the bottom layer of the atmosphere and 

FIGURE 1

Theoretical framework depicting grassland species diversity through horizontal community pattern, vertical structure variables, and SVH. Precipitation 
and grazing practices lead to variation in species diversity across α-, β- and γ-scales, while the SVH is expected to detect diversity variation in the 
horizontal and vertical categories. The horizontal community pattern shows the competitive relationship among species in a community, termed a 
mixed pixel in SVH. The vertical structure shows the grass height heterogeneity, which reflects the response of diversity to precipitation and grazing 
practice.
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acquired from the European Space Agency Copernicus Open Access 
Hub.1 The collected images were free of clouds and cirrus 
contamination over the study sites. The acquired multispectral 
images were dated 7 July for DS, 21 June for TS, and 11 July for MS, 
which aligns with the timing of the fieldwork in 2020. We extracted 
the pixel reflectance values from the four bands using the central 
coordination of quadrats in the R-package “raster” (Hijmans, 2022; 
R Core Team, 2022).

Grassland species were investigated during fieldwork in the 
mid-growing season in June and July 2020. Three 100 m*100 m 
plots were set up in each steppe type, oriented in a north–south 
direction, and quadrats (1 m*1 m) were demarcated along two 
diagonal lines within each plot at intervals of approximately 14 m 
(Figure 2). This interval of 14 m was selected to ensure that each 
quadrat aligns to one 10 m-pixel from the multispectral image. In 
total, there were 37 quadrats in MS, 49 quadrats in TS, and 47 
quadrats in DS. Each quadrat was situated around a central point 
identified by Real Time Kinematic- Global Navigation Satellite 
System (RTK-GNSS) to form a north–south oriented square with 
an accuracy of 0.01 m. After the demarcation, we recorded the name 
and individual count of each species falling into each quadrat. The 

1 https://scihub.copernicus.eu

height of individual species was measured in succession three 
times. The aboveground biomass of each species was weighed after 
harvesting and drying.

2.3. Methods

2.3.1. α-diversity metrics
α-diversity was measured by the Hill number and Pielou index 

(Table 1). The Hill number, considered the ideal for quantifying 
abundance-based species diversity (Chao et al., 2014), is delineated 
by a single formula and the scaling value of exponent “q” which 
thus result in species richness (q = 0), exponential of Shannon index 
(expShannon index; q = 1) and inverse of Simpson index 
(invSimpson index; q = 2; Hill, 1973). Species richness includes all 
species regardless of their abundance and therefore weights rare 
and dominant species equally. ExpShannon and invSimpson 
indices both account for the abundance of all species. InvSimpson 
index reports the dominant species in a quadrat. ExpShannon 
index is an indicator of common species in a quadrat, retaining the 
sensitivity of species richness and the robustness of the invSimpson 
index (Roswell et  al., 2021). The Pielou index describes the 
evenness of a quadrat (Pielou, 1966). These diversity metrics were 
computed using R-package “vegan” (Oksanen et al., 2022; R Core 
Team, 2022).

FIGURE 2

Overview of the study sites: meadow steppe (MS), typical steppe (TS), desert steppe (DS). Three landscape images are correspondingly presented on 
the right panel. Three 100 m*100 m plots were set up in each steppe type. Quadrats (1 m*1 m) in the north–south direction were located along two 
diagonal lines within each plot at an interval of approximately 14 m.
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2.3.2. Explanatory variables
Spectral angle and vegetation index were used as a proxy for 

SVH. Taking the reflectance of four spectral bands (i.e., blue, green, 
red, and near-infrared), we calculated the six spectral angles between 
each of the two bands (i.e., SAbg, SAbr, SAbN, SAgr, SAgN, and SArN). In 
addition, we computed normalized difference vegetation index (NDVI) 
and enhanced vegetation index (EVI) based on the red, NIR, and blue 
bands (Table 2). Eventually, six spectral angles and two vegetation 
indices were used to reflect the SVH properties. Vertical structure 
variation was depicted by interspecies height variation. The average 
(Hmean), standard deviation (Hstd), and coefficient variation (Hcv) of 
interspecific height were calculated for each quadrat during fieldwork.

To access the community pattern of each quadrat, we captured 
true-color photos vertically with the camera. Each true-color photo was 
digitally interpreted by experts according to the color, texture, and 
shape in the ArcGIS 10.6 software (ESRI, 2017 Redlands, California, 
United States). Then interpreted photos were transformed into .fbt file 
format, and FRAGSTATS 4.2 (McGarigal and Marks, 1995) was used 
to obtain community pattern variables. Five variables were used to 
depict the community pattern, including the largest patch index (LPI), 
landscape division index (DIVI), patch richness (PR), landscape 
Shannon’s diversity index (SHDI), and landscape Simpson’s diversity 
index (SIDI) (Table 2). LPI is the percentage of the largest heterogeneous 
patch area comprised within the plot. As the largest patch area 
increases, LPI approaches 100%. DIVI represents the probability of two 
randomly chosen pixels in the quadrat belonging to the same patch 
type. PR is the number of different patch types presented in the quadrat.

2.3.3. ANOVA analysis
We used multivariate analysis of variance (ANOVA) to examine 

whether α-diversity differed significantly between steppe types along a 
precipitation gradient. ANOVA analyses were repeatedly implemented 
over the region and the individual steppes. The dependent variables 
were the three Hill numbers (i.e., species richness, expShannon, and 

invSimpson indices) and the Pielou index, and the fixed factor was the 
steppe type. The results of ANOVA with p < 0.05 were considered 
statistically significant. Duncan’s multiple comparisons were used as a 
post hoc analysis to test for significant differences among all steppe types.

2.3.4. Correlation and regression analysis
Pearson correlation with a two-tailed significance test was used to 

explore the relationship between the α-diversity index and each 
explanatory variable. Relationships were statistically significant at 
p < 0.05. A simple linear model with two-variable regression was used 
to examine the relationship of the three categorized variables against 
each diversity index across the three steppes. Pearson correlations were 
conducted for each explanatory variable across the three steppes as 
part of the variable selection process. To cross-compare the strength of 
the three categories of variables in characterizing α-diversity metrics, 
all data were normalized by subtracting the average and then dividing 
by the standard deviation prior to the regression modeling. An F-test 
was used to see if the linear regression was significant (p < 0.05). A 
higher regression coefficient of explanatory variables indicated a more 
competitive candidate for depicting variation in α-diversity.

2.3.5. Structural equation modeling analysis
Structural equation modeling (SEM) can be used to explore the 

direct and indirect influences among multiple variables as well as 
their integrated contribution to the independent variable (Rosseel, 
2012). By constructing the SEM, we  can examine the significant 
connections between exploratory variables and the α-diversity index 
as well as analyze the dependent relationship between exploratory 
variables through the standardized path coefficient (rp). As illustrated 
by Figure 3, there are three major pathways that reflect the direct 
effects of SVH on α-diversity and another two pathways that reflect 
the dependent effects of vertical structure and community pattern on 
spectral variables. The quality of the SEM was evaluated by 
comparative fit index (CFI) > 0.9, root mean square error of 
approximation (RMSEA) < 0.05, and standardized root mean square 

TABLE 1 Overview of the α-diversity metrics used in this study.

α-diversity metric Formula Definition Reference

Hill numbers ( )æ ö
ç ÷=
ç ÷è ø

-

=
åD Pi

1/ 1 qS
q

q
i 1

Hill diversity is a unifying concept to link different 

measures of diversity by scaling rarity.

  Hill (1973)

S = number of species in the sample.

Pi = proportion of the biomass occupied by species i.

D Pi Sq=0,
S

00
i 1

= =
=
å

Species richness

D exq=1 Pi, p Pi ln
S

1
i 1

æ ö
ç ÷= -
ç ÷
è ø=
å

Exponential of Shannon index

D 1 /q= , Pi2
S

22
i 1

=
=
å

Inverse of Simpson index

Pielou index
Pielou Pi ln Pi / ln D

S
0

i 1

æ ö
ç ÷= -
ç ÷
è ø=
å

The evenness of the individuals distributed in a sample 

weighted by species relative abundance or biomass, 

which is more influenced by species interactions.

Pielou (1966)
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residual (SRMR) < 0.05 (Hooper et al., 2008). The significance level 
of modeling is graded by p < 0.05. The “lavaan” package in R was used 
to establish the SEM based on maximum likelihood estimation 
(Rosseel, 2012). All data used in the SEM were normalized by 
subtracting the average and then dividing by the standard deviation 
before modeling to compare the rp between the three categorized 
variables. Given the availability of sample data for the study, the 
modeling of species diversity using SEM was implemented for the 
entire region, aggregating the three steppes together.

3. Results

3.1. Variation in α-diversity metrics

Significant differences were observed in the four metrics of 
α-diversity along the precipitation gradient, which ranged from 
332.5 mm for MS to 309.2 mm for TS to 279 mm for DS (p < 0.05; 
Figure 4). V-shaped patterns were observed in the three Hill numbers 
(i.e., species richness, expShannon, and invSimpson indices). There were 

large differences in species richness between steppes, and the TS was the 
least diverse (Figure 4A). When expShannon index was used, there was 
an insignificant difference between MS and DS (p > 0.05; Figure 4B), but 
when invSimpson index was used, the difference between MS and TS 
was insignificant (p > 0.05; Figure 4C). With the three Hill numbers, 
which evaluated rarity to a lesser degree than the Pielou index, MS, 
which had many rare species, became less diverse compared to TS and 
DS. DS had higher species richness in the expShannon and invSimpson 
indices than TS. The Pielou index showed the opposite pattern with the 
peak in TS (Figure  4D). Overall, the α-diversity metrics followed 
divergent patterns of variation over the region.

3.2. Correlation between α-diversity 
metrics

A negative relationship was observed between species richness 
and Pielou index (r = −0.37, p < 0.001; Figure  5A) over the three 
steppes. In particular, there was a strong negative relationship between 
species richness and the Pielou index in TS (r = −0.54, p < 0.001; 

TABLE 2 Summary of the variables in the three-categories: SVH, vertical structure, and community pattern.

Category Feature Variable Formula Definition

SVH Vegetation indices NDVI ( ) ( )NDVI N r / N r= - + NDVI: Normalized Difference Vegetation Index

EVI ( ) ( )EVI 2.5 N r / N 6 r 7.5 b 1= * - + * - * + EVI: Enhanced Vegetation Index

Spectral Angle Values SAbg SA: Spectral angle between each pair of reflectance 

bands,

SAbr RSA atan 180 /
L

pæ ö= *ç ÷
è ø

where b, r and N represent reflectance in blue, red, 

and near-infrared region of the electromagnetic 

spectrum, respectively.
SAbN

SAgr R represents the difference between two band 

reflectance

SAgN L represents the difference between two band 

wavelengths

SArN

Vertical structure Height Hmean Hmean is the mean height among species

Hstd Hstd is the standard deviation in height among species

Hcv H H / Hcv std mean= *100%
Hcv is the coefficient of height variation among 

species

Community pattern Patch LPI LPI=1–max(aij)/A*100% LPI is the largest patch index,

aij = area of patch ij; A = total area

DIVI
a

DIVI 1
A

2
ijn

j 1
æ ö

= - ç ÷ç ÷
è ø=å

DIVI is the landscape division index

PR PR is the number of different patch types

SHDI
SHDI Piln PiS

i 1= - =å
SHDI represents Shannon’s diversity index

SIDI
SIDI 1 PiS 2

i 1= - =å
SIDI represents Simpson’s diversity index

Pi = proportion of the landscape occupied by 

patch type (class) i.
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Figure 5C). In contrast, species richness and the Pielou index had 
insignificant relationships in MS (r = 0.09, p = 0.585; Figure 5B) and 
DS (r = 0.09, p = 0.526; Figure 5D). The aggregate data representing the 
full region showed that the expShannon index correlated most to 
species richness (r = 0.56, p < 0.05; Figure 5A), and the invSimpson 
index correlated most to the Pielou index (r = 0.68, p < 0.05; Figure 5A). 
Specifically, the expShannon and invSimpson indices correlated to the 
Pielou index more strongly than to species richness in MS (r = 0.94 
and 0.94, p < 0.05; Figure  5B) and DS (r = 0.76 and 0.85, p < 0.05; 
Figure 5D). In contrast, the expShannon index correlated to species 
richness more than to the Pielou index in TS (r = 0.61, p < 0.05; 
Figure 5C). This implies that the relationship of α-diversity indices at 
a local scale could strongly influence the overall relationship across 
the region.

3.3. Strength of variables in characterizing 
α-diversity metrics

Correlations between α-diversity indices and the many variables 
varied in their strength, with r ranging from 0.01 to 0.69 (Figure 6). 
Hmean, Hstd, SArN, and PR significantly explained the variation in species 
richness, with r-values of −0.69, −0.63, −0.64, and 0.61, respectively. 
Hmean, Hstd, PR, NDVI, and EVI significantly correlated to the 
expShannon index, with r-values of −0.45, −0.45, 0.49, −0.46, 
and − 0.46, respectively. Hmean, Hstd, PR, and EVI significantly explained 
variation in the invSimpson index, with r-values of −0.24, −0.26, 0.35, 
and − 0.30, respectively. The Pielou index was significantly explained 
by Hmean, DIVI, LPI, and SIDI, with r-values of 0.32, 0.44, −0.41, and 
0.41, respectively. Vertical structure and SVH variables explained 
species richness variation among α-diversity metrics well, while 
community pattern variables characterized the Pielou index better.

Responses of vertical structure and community pattern variables 
to species richness and the Pielou index were asynchronous. Hmean and 
Hstd correlated strongly and negatively to species richness (r = −0.69 
and  − 0.63, p < 0.001), but they correlated slightly positively to the 
Pielou index (r = 0.32 and 0.25, p < 0.01). Meanwhile, PR and LPI 
correlated moderately and positively to species richness (r = 0.61 and 
0.35, p < 0.001), but they correlated negatively to the Pielou index, with 
r-values of −0.11 and − 0.41, respectively. The scenario also appeared 
in SVH variables. Overall, SArN, NDVI, and EVI correlated strongly 
and negatively to species richness (−0.64 < r < −0.46, p < 0.001) but 
weakly and positively to the Pielou index (0.06 < r <  0.20, 
0.02 < p < 0.50).

3.4. Effect of single categorized variables 
on α-diversity variation

The slopes of the two-variable regressions also indicated the 
asymmetrical responses of explanatory variables (i.e., vertical 
structure, community pattern, and SVH) to variation in α-diversity 
(Figure 7). The fitted surfaces of species richness were negatively 
related to those of the Pielou index (Figures 7A,D). In contrast, slopes 
of the fitted surfaces of the expShannon and invSimpson indices are 
gentle compared to the sharp and opposite slopes for species richness 
and evenness (Figures  7B,C). Variation in species richness 
(0.44 <  R2  < 0.51; Figure  7A) and the expShannon index 
(0.20 <  R2  < 0.24; Figure  7B) were better explained than the 
invSimpson (0.05 <  R2  < 0.15; Figure  7C) and Pielou indices 
(0.088 <  R2  < 0.14; Figure  7D). Hmean negatively related to species 
richness (slope = −0.69, p < 0.001) and positively affected the Pielou 
index (slope = 0.53, p < 0.01). Hstd was more influential on the Pielou 
index (slope = −0.23, p = 0.25). Hmean and Hstd were important and 
complementary in describing α-diversity. For the community pattern 
variables, SHDI was better at describing the Pielou index (slope = 0.38, 
p < 0.001). In addition, NDVI outperformed other SVH variables in 
characterizing the variation in Pielou index (slope = 0.76, p < 0.001) 
and Hill numbers, with the slope of −1.59, −0.71, and − 0.18 for 
species richness (p < 0.001), expShannon index (p < 0.001) and 
invSimpson index (p = 0.37), respectively.

3.5. Integrated explanation of three 
categorized variables on α-diversity 
variation

By integrating three categorized variables using SEM, the 
explanations were improved by 5, 1, and 14% for species richness, 
the expShannon, and Pielou indices, respectively (Figure 8). As with 
the negative relationship between richness and Pielou index 
(Figure 5), the SHDI variable showed a strongly opposite response 
to species richness compared to the Pielou index (rp = −0.20 versus 
0.33), but a diminished relationship was observed in both the 
expShannon and invSimpson indices (rp = 0.14 and 0.21) in the 
category of community pattern. As for the vertical structure 
category, Hmean and Hstd achieved the highest path coefficient with 
species richness and evenness (rp = −0.97 and 0.72). Meanwhile, 
similar situations with asymmetrical and disproportional 
relationships among these four metrics were observed 

FIGURE 3

Model framework illustrating causal relationships between vertical 
structure, community pattern, SVH, and α-diversity. The impact of 
SVH on α-diversity is co-influenced by community pattern and 
vertical structure. SVH is described by vegetation indices (VIs) and 
spectral angle values (SAs), while community pattern is described by 
the largest patch index (LPI), landscape division index (DIVI), patch 
richness (PR), landscape Shannon’s diversity index (SHDI) and 
landscape Simpson’s diversity index (SIDI). The vertical structure was 
represented by interspecies height heterogeneity, including the 
average (Hmean), standard deviation (Hstd), and coefficient variation 
(Hcv).
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(−0.97 < rp < 0.72). In contrast, NDVI in the SVH category showed 
moderate performance in explaining variation in the four metrics of 
α-diversity. As for the interplay of three categorized variables per se, 
we found that NDVI was strongly dependent on vertical structure 
(rp = 0.87). Variation in R2, which ranged from 0.13 to 0.56, indicated 
that the responses of the explanatory variables were inconsistent and 
mirrored the complexity of the α-diversity description. Overall, the 
variation in species richness and Pielou index (R2 = 0.56 and 0.28) 
were modeled better by SEM than the expShannon and invSimpson 
indices were (R2 = 0.25 and 0.13).

4. Discussion

4.1. Underlying mechanism in α-diversity 
variation

Precipitation has been demonstrated to be  a dominant 
environmental factor influencing the species diversity of grassland 
ecosystems by promoting species richness, heterogeneity, evenness, 
functional divergence, and biomass (Kang et al., 2007; Reynaert et al., 
2021). However, species are idiosyncratic and highly depend on their 
local plant community in their response to precipitation variation 

across various heterogeneous patches and niches (Tsafack et  al., 
2021). This exposes the intrinsic complication in predicting how 
grassland communities respond to climatic change (Barnett and 
Facey, 2016). Up from the prior meteorological observations of 2010–
2019, the precipitation in 2020 increased by 30.96% in TS and 22.18% 
in DS (Figure  9A). As a result, the proportion of annual species 
increased by 27.27 and 28.57% (Figure 9B), respectively. This strong 
and disproportional response of annual species to precipitation 
fluctuation between TS and DS bloated species richness and the 
expShannon index to abnormally high levels. This scenario was 
especially promising in DS, resulting in higher species richness, 
expShannon, and invSimpson in DS compared to TS. The same 
process also occurred in the abundance of dominant species for TS 
and DS (Figure 9B). The concurrent increases in annual species and 
abundance of dominant species led to evenness (i.e., Pielou index) 
declining, emerging the negative relationship between species 
richness and evenness in TS. The differing sensitivity of species 
diversity to precipitation fluctuation in DS and TS and the adverse 
variations in species richness and evenness highlight the complexity 
and variability of α-diversity in response to climate change (Zhang 
et al., 2014).

Consistently, MacDonald et al. (2017) also noted asymmetric 
variation in α-diversity in response to annual precipitation and the 

A B

C D

FIGURE 4

α-diversity metrics distribution and the one-way ANOVA result for three steppes. Upper case and lower case letters indicate significance at p < 0.01 and 
p < 0.05, respectively. ALL is an aggregate metric including all three steppe types; (A) species richness, (B) expShannon index, (C) invSimpson index, and 
(D) Pielou index. The error bars indicate the standard deviation (std).
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growing season temperature, and this resulted in an increased 
abundance of rare species as well as a disproportionally increased 
abundance of common species. These cases demonstrate the 
prevalence of the effect of environmental change on the pattern of 
α-diversity (Kang et al., 2007; Wilsey and Stirling, 2007; Smith et al., 
2022). In contrast to precipitation increases in TS and DS, annual 
species were constrained in MS due to declining precipitation (4.80% 
decrease), which aligned with the significantly reduced aboveground 
biomass (AGB) (Supplementary Table S1). These above findings 
speak to the first objective, where the differing sensitivity of 
α-diversity metrics and interactive behavior between richness and 
evenness reflect intricate and asynchronous responses of α-diversity 
to precipitation variation across various heterogeneous patches and 
niches. In addition, herbivores tend to prefer perennial and tall plants 
to annual and short plants (Díaz et al., 2007), which accordingly leads 
to a decrease in the abundance of perennial forbs but is insignificant 
for the perennial bunchgrasses (Liang et  al., 2018). When 
precipitation is in short supply, increased consumption of net primary 
production by grazing herbivores aggravates the community more 
strongly (Liang et al., 2018). However, due to the lack of investigation 

on grazing practices over the region, we are limited in our ability to 
examine the integrated effects of grazing on variation in 
species diversity.

4.2. Sensitivity of explanatory variables

The community pattern can be conceptualized as a horizontal 
space that individual plant emergence, aggregation, and the 
physical arrangement relevant to resource facilitation and/or 
competition (Wesuls et al., 2013). Based on the empirical regression 
and SEM analysis (Figures 7, 8), we found that the community 
pattern significantly correlated with species richness, invSimpson, 
and Pielou indices. In contrast, vertical structure partly reflected 
the variation in species diversity because of the height heterogeneity 
existing among species (Torresani et  al., 2020). The 
underperformance of vertical structure can be  inferred to the 
grazing impact of large herbivores, which leads to a homogeneous 
plant height and then constrain the effort on differentiating 
α-diversity variation (Zhu et al., 2012). SVH has been widely used 

A B

C D

FIGURE 5

Correlation heat map of the species diversity metrics across the study sites. Pearson’s correlation coefficients are shown in each square. The yellow-
red color indicates a negative correlation, and the green-blue color indicates a positive correlation. Correlation coefficients with p > 0.05 are marked 
with a cross. (A) The aggregate of three grassland types, (B) MS, (C) TS, and (D) DS.
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to detect plant biodiversity in a broad range of ecosystems, 
primarily by linking spectral properties to species and habitat 
distribution (Wang and Gamon, 2019). Currently, spectral 
variation is utilized to identify the plant functional group related 
to plant light absorption, and scattering is used to detect plant 
spectral properties (Cavender-Bares et al., 2017). In addition, the 
grassland community composition (e.g., species richness, 
evenness) can be  sensitive to spectral variation, indicating that 
species richness and evenness together yield a more robust SVH 
relative to either diversity metric alone (Wang et al., 2018). Here, 
we  found that SVH variables only explained 21 and 7% of the 
variation in the expShannon and invSimpson indices 
(Figures 7B,C). This weak explanation was attributed to the strong 
collinearity with properties of community pattern and vertical 
structure, which led to the insensitivity of spectral recognition. 
Accordingly, we questioned the value of exclusively using SVH to 
model α-diversity metrics. Additional factors for determining SVH 
are considerably constrained by atmospheric influence (Myneni 
and Asrar, 1994), limitations of spatial and spectral resolution 
(Bannari et al., 2002), the influence of topography (Zarnetske et al., 
2019), soil background and the nature of optical saturation (Aneece 
et al., 2017). Altogether, the many limitations of SVH signify the 
caution of using SVH to explain α-diversity variation. This speaks 
to the last two objectives, where overall asynchronous variations in 
α-diversity metrics due to precipitation variation result in the 
asymmetric performance of the three categorized explanatory 
variables, thus demonstrating the limitations of using SVH to 
model variation in α-diversity metrics.

4.3. Interactive effects on α-diversity 
characterization

The common mission to depict the number of species and their 
relative abundances across different scales and biomes has led to the 
creation of multiple metrics of species diversity (Pielou, 1966; Hill, 
1973). Among α-diversity metrics, the Hill numbers were meant to 
characterize α-diversity by focusing on the abundance of rare and 
common species (Chao et al., 2014; Roswell et al., 2021). A robust 
explanation of the expShannon and invSimpson indices is shown in 
Table 3, as a linear function of species richness and evenness, with 
uniform positive regression coefficients achieved over the region. 
MacDonald et al. (2017) suggested that coupling species richness with 
evenness can broaden the knowledge of the trends of fluctuating 
species diversity. However, we emphasize that the negative correlation 
between species richness and evenness led to unpredictable and 
inconsistent interpretations of α-diversity variation in the resulting 
models. Furthermore, richness in TS strongly affected the variation in 
the expShannon and invSimpson indices, while evenness in MS and DS 
contributed more to the variation in the expShannon and invSimpson 
indices (Table 3). This means that drawing out the distinctions between 
α-diversity metrics can be paramount for improving the performance 
of the integrated SEM scheme for depicting α-diversity variation, 
regardless of various heterogeneous patches and niches.

4.4. Challenges and opportunities

Climate change and anthropogenic activity have led to precipitous 
biodiversity loss and rampant variation in biodiversity distribution and 
composition (Ryabov et  al., 2022), affecting the underlying 
mechanisms of biodiversity variation (Wilsey et  al., 2005). Local 
species loss averages up to 14% (Newbold et al., 2015), while globally, 
over 20% of vascular plant species face severe threat of extinction 
(Schweiger et al., 2018). These losses have raised concerns about the 
consequential changes in ecosystem functioning and services, 
including nutrient cycling, climate regulation, and food production 
(Qiu and Cardinale, 2020). The accelerating declines in wild species 
and the complexity of the involved dynamics have sparked a concerted 
effort to answer the question about the distribution of biodiversity and 
the identification of high-priority areas for conservation to maintain 
essential ecosystem functioning and services (Wang and Gamon, 2019).

Airborne remote sensing techniques are widely utilized by 
scientific communities to model biodiversity variation (Coops et al., 
2021). A solid method is needed for monitoring biodiversity variation 
over temporal and spatial scales. However, the existing theories that 
have been proposed based on spectral variation are still limited in 
addressing these issues. Ultra-resolution data portrayed by high-
resolution airborne satellites (e.g., worldview 3) or unmanned aerial 
vehicles (UAVs) offer more information, reflecting subtle properties 
in plants (Wang and Gamon, 2019). State-of-the-art machine 
learning algorithms, such as support vector machine classification 
(SVM) and decision tree models, have been widely used to explore 
this data, and desirable results have been achieved (Delalieux et al., 
2012; Lopatin et al., 2017). Meanwhile, high-density point clouds, 
scanned using the emerging technology of Light Detection and 
Ranging (LiDAR), are used for phenotypic property inversion 
through three-dimensional reconstructions (Sankey et  al., 2021). 

FIGURE 6

Pearson correlations between SVH, community pattern, vertical 
structure variables, and α-diversity metrics across three steppes. 
Pearson correlation coefficients are shown in each square. The 
yellow-red color indicates a negative correlation, and the green-blue 
color indicates a positive correlation. Correlation coefficients at a 
significance level of p > 0.05 were marked with a cross.
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Successful applications have emerged in forest ecosystems with 
species diversity detection by height heterogeneity (Marselis et al., 
2020; Torresani et al., 2020), but applications in grazing ecosystems 
are still nascent. To understand the responding and interactive 
mechanism of these biodiversity metrics to climate change, it will 
be necessary to expand investigations into a heterogeneous grassland 

ecosystem (Gholizadeh et  al., 2022). Further, grazing practices 
imposed by humans are another factor that should be assessed. The 
theoretical SEM proposed in this study is expected to combine 
emerging methods and techniques in a way that sheds light on 
biodiversity variation in various grassland ecosystems, coexisting 
with the above two forcing scenarios.

A

B

C

D

FIGURE 7

Scatter 3D map plotting α-diversity metrics against vertical structure, community pattern, and SVH across study sites. Vertical structure panel A–D 
shows the vertical structure predictor, with Hmean and Hstd as x and y, respectively; Community pattern panel A–D shows the community pattern 
predictor, with SHDI and PR as x and y, respectively; SVH panel A–D shows the spectral predictor, with SAgr and NDVI as x and y, respectively. 
The z-axis represents the α-diversity metric of species richness (A), expShannon (B), invSimpson (C), and Pielou (D) indices. The surface was fitted 
using a linear regression model, and the formulas of models with the standardized coefficients are presented with R2 and value of p.

https://doi.org/10.3389/fevo.2023.1108739
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Yan et al. 10.3389/fevo.2023.1108739

Frontiers in Ecology and Evolution 12 frontiersin.org

5. Conclusion

To identify the underlying interactions between α-diversity metrics 
and their influence on the modeling of α-diversity variation, 16 physical 

variables categorized into three perspectives (i.e., community pattern, 
vertical structure, and SVH) were used to model α-diversity variation 
in meadow, typical and desert steppes. We found that species richness 
(increase) and evenness (decline) have a strong negative response to 

A B

C D

FIGURE 8

SEMs for four α-diversity metrics across three steppes. (A) Species richness, (B) expShannon index, (C) invSimpson index, and (D) Pielou index. Solid 
blue and red single-headed arrows indicate significant positive and negative effects (p < 0.05), respectively. The dashed black arrows indicate 
insignificant effects (p > 0.05), and the number of asterisks (*) indicates an increasing level of statistical significance from p < 0.05 to 0.01.

A B

FIGURE 9

Effects of precipitation variation on community species composition across the three steppes. (A) Precipitation and its percent variation in 2020 relative 
to the prior period 2010–2019. (B) The abundance of dominant species and percentage of annual species. The error bars indicate the standard 
deviation.
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precipitation variation in the typical steppe. An increase in annual 
species and a shift in the abundance of the dominant species, which are 
both associated with precipitation variation, are responsible for the 
negative relationship that we observed. More importantly, we found that 
the modeling of expShannon and invSimpson indices over the region 
was substantially influenced by the negative relationship, evidenced by 
a diminished ability to deploy SEM. Overall, community pattern 
variables explained the variation in species richness, invSimpson, and 
Pielou indices well, whereas SVH variables were more limited due to 
the strong collinearity with the properties of community pattern and 
vertical structure. This study emphasizes the substantial impact of the 
variability of α-diversity metrics in response to environmental change 
on the modeling of α-diversity variation over heterogeneous ecosystems.
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