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HOX genes play a central role in the development and regulation of limb patterns. 
For mammals in the order Carnivora, limbs have evolved in different forms, and 
there are interesting cases of phenotypic convergence, such as the pseudothumb 
of the giant and red pandas, and the flippers or specialized limbs of the pinnipeds 
and sea otter. However, the molecular bases of limb development remain largely 
unclear. Here, we studied the molecular evolution of the HOX9 ~ 13 genes of 14 
representative species in Carnivora and explored the molecular evolution of other 
HOX genes. We found that only one limb development gene, HOXC10, underwent 
convergent evolution between giant and red pandas and was thus an important 
candidate gene related to the development of pseudothumbs. No signals of 
amino acid convergence and natural selection were found in HOX9 ~ 13 genes 
between pinnipeds and sea otter, but there was evidence of positive selection 
and rapid evolution in four pinniped species. Overall, few HOX genes evolve via 
natural selection or convergent evolution, and these could be important candidate 
genes for further functional validation. Our findings provide insights into potential 
molecular mechanisms of the development of specialized pseudothumbs and 
flippers (or specialized limbs).
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Introduction

The order Carnivora plays important roles not only in wildlife conservation but also as an 
important model for the adaptive evolution of species (Shubin, 2002; Van Valkenburgh and 
Wayne, 2010). Morphological modifications of the axial skeleton and limbs in mammals have 
been broadly recognized as adaptive responses to changes in lifestyle and habitat (Martín-Serra 
et al., 2015). There are two very interesting changes in limb morphology in Carnivora: the 
specialized pseudothumbs in giant pandas and red pandas and the flippers or specialized limbs 
of marine species, including sea lions, seals, walruses, and sea otters.

Belonging to two different families, both the giant panda (Ailuropoda melanoleuca) and the 
red panda (Ailurus fulgens) possess ‘pseudothumbs,’ i.e., enlarged radial sesamoid bones, which 
contribute to the ability to grasp bamboo and facilitate foraging (Antón et al., 2006; Arnason 
et al., 2006). Marine Carnivora species are divided into two categories: pinnipeds, which include 
species in the Odobenidae, Otariidae, and Phocidae families (Arnason et al., 2006), and sea 
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otters, which are in the Mustelidae family and are more closely related 
to red pandas. Although sea otters and pinnipeds are relatively 
distantly related to each other, they all evolved flippers or specialized 
limbs to adapt to aquatic life (Reidenberg, 2007). Sea lions and fur 
seals (Otariidae) can walk on land by rotating their hind flippers 
forward under their body (Uhen, 2007). True seals (Phocidae) crawl 
on land because their front flippers are small and their hind flippers 
cannot rotate forward (Fish and Lauder, 2017). Walruses (Odobenidae) 
can rotate their hind flippers and walk on land (Berta et al., 2018). Sea 
otters (Enhydra lutris) are the only marine member of Mustelidae and 
the smallest marine mammals. In the specialized hindfeet of the sea 
otter, as in pinnipeds, the fovea capitis is absent from the femur, 
marking the absence of the teres ligament, and the biceps femoris 
muscle inserts onto the middle of the tibia and maintains the leg in a 
posterior position (Mori et al., 2015).

HOX genes belong to a large gene family that is responsible for the 
formation of animal body organs, tissues, bones and body segments. 
They are also responsible for the correct placement of animal body 
segments and determine the basic structure and orientation of animal 
forms (Roelen et  al., 2002). HOX genes clearly contribute to the 
development of secondary axes, particularly the regulation of limb 
patterns (Roelen et al., 2002; Casaca et al., 2014).

In the mammalian genome, there are 39 HOX genes that are 
subdivided into 13 paralogous groups (PGs) and are closely linked in 
four clusters: HOX A, B, C, and D (Ruddle et al., 1994). These HOX 
genes are evolutionarily conserved (Goodman, 2002). A small 
mutation in a HOX gene could lead to serious disease in humans 
(Quinonez and Innis, 2014). Previous studies have provided numerous 
examples. For example, hand–foot–genital syndrome is caused by 
polyalanine expansions or point mutations in HOXA13 and rare 
heterozygous deletions that affect this locus. The progressive reduction 
of gene expression in HOXA13 and HOXD11-HOXD13 in the Gli3-
null background results in progressively more severe polydactyly, with 
thinner and more densely packed digits (Sheth et al., 2012). HOXA11 
mutant mice exhibited abnormal sesamoid bone development in the 
forelimbs and enlarged sesamoid development in the hindlimbs 
(Small and Potter, 1993). HOXD11 mutant mice showed the presence 
of an aberrant sesamoid bone between the radius and ulna and a 
reduction in the size of a sesamoid bone located next to the tibiale 
mediale (Davis and Capecchi, 1994).

However, despite their functional importance, the genetic 
mechanisms controlling limb and digit morphology remain poorly 
understood. Using a comparative genomics strategy, Hu et al. (2017) 
identified the adaptively convergent genes DYNC2H1 and PCNT as 
candidate genes responsible for pseudothumb development in giant 
and red pandas. However, they did not find any signatures of HOX 
genes. One possible cause for this was that they analyzed only 16 
HOX genes, and potentially adaptively convergent HOX genes may 
be  missing from their analysis. In this study, we  focused on the 
natural selection (positive selection, rapid evolution, and negative 
selection) and convergent evolution of the HOX9 ~ 13 genes between 
giant and red pandas and between pinnipeds and sea otter within 
Carnivora. The aims were to identify the possible candidate HOX 
genes responsible for the development of pseudothumbs and 
flippers. In addition, we explored the molecular evolution of other 
HOX genes. These findings provide insights into HOX gene evolution 
and the potential relationship with specialized limb development 
in Carnivora.

Materials and methods

HOX gene sequence data collection

Fourteen Carnivora species were chosen for evolutionary analysis 
based on the completeness of genome data, with humans as the 
outgroup (Figure  1). Initially, we  obtained the full-length coding 
sequences (CDSs) of 39 HOX genes of 12 species, except for the red 
panda and northern fur seal, from the Orthologous Mammalian 
Markers database1 (Douzery et al., 2014). Then, we examined the 
completeness of the start and stop codons, excluded potential 
pseudogenes, and eliminated sequences with any deletions or 
ambiguous sequences.

Identification of the HOX genes in the red 
panda and northern fur seal

We obtained the hidden Markov model (HMM) corresponding 
to the HOX gene family (PF00046) (Finn et al., 2014) and used 
HMMER (version 3.1b2) (Prakash et  al., 2017) for sequence 
alignment analysis of CDSs of the red panda. To identify 
homologous pairs of HOX genes, sequence alignment was 
performed using BLASTN (NCBI-blast-2.6.0+) (Chen et al., 2015) 
and BLASTP (NCBI-blast-2.6.0+) (Jacob et  al., 2008). The 
database and query alignment included four rounds of mutual 
alignment. Walrus was used as the reference to identify the HOX 
genes of the northern fur seal. Similarly, to predict red panda 
HOX genes that were not annotated in the previous genome 
version, we performed homology prediction. We extracted the 
human HOX proteins from Ensembl (release 79) (Zerbino et al., 
2018) and aligned them to the red panda genome using TBLASTN 
(version 2.2.23) (Gertz et  al., 2006). Then, we  extended the 
alignment regions by 10 kb at both ends and predicted the gene 
structure using GeneWise (version 2.2.0) (Birney et al., 2004). The 
optimal result was taken as the final HOX gene set of the red 
panda (Figure 2). Sequence analysis was carried out to check the 
integrity and lengths of all the predicted HOX genes.

Sequence alignment and phylogenetic 
analysis

Multiple alignments of the DNA and amino acid sequences of 
the HOX gene set were performed with two methods, MAFFT 
(version 7) (Katoh and Standley, 2013) and PRANK (Löytynoja, 
2014) plus PAL2NAL (Suyama et al., 2006), to form the final gene 
set alignment. We defined the fourfold degenerate (4D) sites in the 
alignment sequence using custom scripts. The conserved sequence 
blocks were extracted from the outputs of multiple sequence 
alignment by Gblocks (version 0.91) (Castresana, 2000). The 
selection of the best substitution model for alignment was performed 
by ProtTest (version 3.4) (Darriba et al., 2011). The phylogenetic tree 
of the concatenated genes was generated in PhyML (Guindon et al., 

1 http://www.orthomam.univ-montp2.fr/orthomam/html/
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2010). The amino acid substitution model was specified as GAMMA 
+ JTTF. The obtained phylogenetic tree was visualized using FigTree 
viewer v1.4.1.2

Detection of positive selection

To identify positively selected genes (PSGs), we  conducted 
selective pressure analyses using CodeML from PAML 4.8 (Yang, 
2007), with branch-site models employed (Yang and dos Reis, 2011). 
We  divided our dataset into two large groups (G1 and G2): G1 
included 10 species after removing four pinniped species and the sea 
otter and focused on the evolutionary analysis of HOX genes related 
to limb development of bamboo-eating giant and red pandas; G2 
targeted the evolution of HOX genes associated with limb development 
in pinnipeds and sea otter and included 13 species after removing the 
giant and red pandas.

Furthermore, selective pressure analyses were performed using 
nine small groups under the same conditions: G1-a: setting the giant 
panda as the foreground branch; G1-b: the red panda; G1-c: both 
pandas; G2-a: the Weddell seal; G2-b: the Hawaiian monk seal; G2-c: 
the walrus; G2-d: the northern fur seal; G2-e: the Weddell seal, 
Hawaiian monk seal, walrus and northern fur seal; and G2-f: the sea 
otter. Two categories were used to set different foreground branches 
in pinnipeds (Figure  3): G2-e1, setting the most recent common 
ancestor of pinnipeds and the four pinniped species as the foreground 
branch; and G2-e2, setting only the four pinniped species as the 
foreground branch.

To confirm the positively selected genes identified in PAML analysis, 
we further used four models implemented in HyPhy from Datamonkey 
(Weaver et al., 2018) to examine the signatures of positive selection at 

2 http://tree.bio.ed.ac.uk/software/figtree/

three levels (site, gene and branch levels) based on the dN/dS ratio (ω). 
The analyses at the site level include three methods, which were used to 
identify individual sites subject to positive selection along subsets of 
phylogenetic tree branches: (1) FEL (Pond et al., 2005), (2) FUBAR 
(Murrell et al., 2013), and (3) MEME (Murrell et al., 2012). At the gene 
level, BUSTED analysis (Murrell et al., 2015) was used to identify genes 
for episodic diversification. At the branch level, the aBSREL method 
(Murrell et al., 2015) was used to identify positive selection on individual 
branches. Finally, to reduce false-positive results, only PSGs detected by 
both PAML and any one of the Datamonkey methods were considered.

Identification of genes subject to 
convergent evolution

We identified convergent amino acid substitutions between giant and 
red pandas and among marine mammals with the following rules: (i) the 
amino acid residues of both extant lineages were identical, and (ii) amino 
acid changes were inferred to have occurred between the extant lineage 
and its most recent ancestor lineage (Hu et  al., 2017). In this study, 
calculation of frequencies and rates for the categories and reconstruction 
of ancestral protein sequences were performed by the CodeML program 
in PAML 4.8. The relative evolutionary rates of all sites within the gene 
followed the gamma distribution of sitewise rate variation and the 
frequency of all amino acids in each site of the gene. We also counted the 
convergent substitution events and calculated the convergence probability 
for each branch pair. To filter out noise resulting from chance amino acid 
substitutions, we performed a Poisson test to verify whether the observed 
number of convergent substitutions of each gene was significantly greater 
than the expected number caused by random substitution under the 
JTT-f gene and JTT-f site amino acid substitution models. 
We reconstructed the substitutions on all branches in a mammalian 
phylogeny containing the 15 mammals studied. We  then tallied all 
convergent amino acid substitutions on the giant and red panda branches 
for all HOX genes, including all possible strictly convergent changes. To 

FIGURE 1

Phylogenetic analyses of Carnivora species based on the concatenated HOX gene family. The phylogenetic tree topology is the same as that of other 
large-data studies at the family level (Nyakatura and Bininda-Emonds, 2012; Upham et al., 2019). All 39 HOX genes collected from 15 species are 
shown on the right side.
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further check the strictness of the convergent amino acids, we  took 
advantage of the 100 prealigned vertebrate genomes in the University of 
California Santa Cruz genome browser.3

Finally, we detected the common amino acid substitutions that 
considered only the terminal branches rather than the ancestral 
branches. Specifically, giant and red pandas have the same amino acids 

3 https://hgdownload.soe.ucsc.edu/goldenPath/hg19/multiz100way/

that differ from those of other species, and the Weddell seal, Hawaiian 
monk seal, walrus, northern fur seal and sea otter have the same 
amino acids that differ from those of other species.

Rapid evolution and negative selection of 
HOX genes in Carnivora

To evaluate the signatures of rapid evolution on each HOX gene, 
we employed a branch model implemented in the CodeML module of 

FIGURE 2

Multiple sequence alignment of 14 reannotated HOX genes in Ailurus fulgens. Three species (Homo sapiens, Mustela putorius, and Enhydra lutris kenyoni) 
were aligned to show the consistency of HOX gene reannotation. The sequence identity (%) between Homo sapiens and Ailurus fulgens is shown in each 
panel. The identical amino acid residues are shown in gray, in contrast to the different residues among species, which are colored green and yellow.
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PAML 4.8. Two different tests were conducted to identify lineage-
specific effects in the evolution of clades: a two-ratio model versus a 
one-ratio model and a two-ratio model versus a free-ratio model. The 
overlap of significant genes from the two tests was thought to be under 
rapid evolution.

Negative selection plays an important role in maintaining the 
long-term stability of biological structure and function by purging 
deleterious mutations. We  identified negatively selected genes 
according to the following criteria: dN/dS of the selected foreground 
branch is lower than dN/dS of all branches or the background branch, 
and the p value must be lower than 0.05.

Prediction of protein 3D structure and 
evaluation of mutation effect

To explore the structural effects of candidate sites, the predicted 
3D structure of candidate HOX genes was generated using the 
trRosetta algorithm (Yang et al., 2020). To evaluate the impacts of 
amino acid changes on the overall protein structure, we calculated the 
predicted changes in folding free energy (ΔΔG) between ‘wild-type’ 
and ‘mutant-type’ amino acids using DynaMut (Yang et al., 2020). 
We  predicted the effects of mutations on protein stability and 
flexibility. We  obtained the PDB files from trRosetta and applied 
DynaMut on the online website.4 All of the protein 3D structure 
figures were generated using PyMOL.5

To characterize the functional impact of the mutant, we initially 
used Protein Variation Effect Analyzer (PROVEAN) (Choi and Chan, 
2015) to predict the potential effect of an amino acid substitution. 
Second, we also obtained the 3D structure of particular proteins. The 
3D structure of the wild-type protein was built in silico.

Results

Carnivora HOX gene dataset and 
phylogeny

After a series of strict screenings and integrations, we obtained the 
HOX gene set from 14 Carnivora species with humans as the outgroup. 
All HOX gene sequences from the above species were intact, without 
premature stop codons or frame-shift mutations, indicating the 
presence of functional HOX proteins. The number of HOX genes 
varied among the 15 species (Supplementary Table S1), and not all 15 
species included all members of the HOX gene family (Figure 1). 
These genes belong to four HOX gene clusters, each of which contains 
different numbers of HOX genes. Specific information on HOX genes, 
such as start codons, stop codons and gene lengths, is available in 
Supplementary Table S1.

For the red panda, only 25 genes could be downloaded from the 
previously published genome (Hu et al., 2017; Supplementary Table S1). 
We annotated an additional 14 HOX genes from the genome of the red 
panda. The results of sequence alignment showed high identities 

4 http://biosig.unimelb.edu.au/dynamut/

5 https://pymol.org

(average > 90%) to corresponding genes in humans (Figure 2). In total, 
we  obtained 39 HOX genes of the red panda for subsequent 
evolutionary analysis.

Based on the concatenated CDSs of HOX genes of 15 species, 
we constructed an ML phylogenetic tree to decipher the evolutionary 
relationships of Carnivora species. We constructed a neighbor-joining 
phylogenetic tree using 4Dtv sites (Figure 1), which was consistent 
with the phylogenetic tree constructed based on nuclear and 
mitochondrial genes (Flynn et al., 2005) or on large-scale integrated 
analyses (Nyakatura and Bininda-Emonds, 2012; Upham et al., 2019).

Positive selection of HOX genes

By manually checking the multiple sequence alignment, 
we  removed potential false-positive selection sites detected by 
PAML. When the giant panda, red panda, or both pandas were used 
as the foreground branch (G1-a; G1-b; G1-c), positive selection was 
detected for HOXA3 with one positively selected site (176:G:0.811, 
ω = 280.90, p < 0.001), HOXB4 (174:S:0.55, ω = 999, p < 0.001), HOXA3 
(150:G:0.976*, ω = 97.02, p < 0.001) and HOXD4 (38,G:0.822, 
ω = 178.24, p < 0.001) (Figure 3A; Table 1).

For marine Carnivora species, when the sea otter was the 
foreground branch, only HOXA6 was detected to be under positive 
selection with one positively selected site (102:S:0.902, ω = 999, 
p < 0.001) (Figure 3A; Table 1). When the Weddell seal, Hawaiian 
monk seal, walrus or northern fur seal were used as the foreground 
branch separately, no significant PSGs were detected. However, 
we  found several potential PSGs that were marginally significant, 
including HOXA6 (102:S:0.871; 211:D:0.813, p = 0.061) and HOXD12 
(154:L:0.703, p = 0.067) when setting the Weddell seal as the 
foreground branch and HOXD3 (111:Q:0.833, p = 0.059) when the 
northern fur seal was used as the foreground branch (Figure  3A; 
Table 1).

Interestingly, the results of the two categories for the evolution 
of pinniped species were disparate (Figure 3A). Two HOX genes 
were identified under positive selection, with no common genes in 
the two categories. In category 1 (G2-e1), HOXB1 was identified as 
a PSG with one positively selected site (270:P:0.844, ω = 289.12, 
p < 0.05) during the origin and evolution of the pinnipeds. In 
category 2 (G2-e2), HOXB6 was identified as a PSG, with two 
positively selected sites (92:G:0.795; 140:S:0.998**, ω = 110.09, 
p < 0.001) (Figure 3A, Table 1).

We further analyzed the data using an additional method 
implemented in HyPhy of Datamonkey (Supplementary Figure S1 
and Supplementary Table S2). When the giant panda was set as 
the foreground branch, three, seven and nine genes were detected 
at the gene, branch, and site levels, respectively. After integration, 
five genes, including eight sites, were detected under positive 
selection (Supplementary Tables S2–S4). In particular, HOXB3 
was detected at all three levels. When the red panda was set as the 
foreground branch, we detected only one PSG (HOXB3), including 
two sites, at the branch and site levels (Supplementary Table S3). 
When both the giant and red pandas were set as the foreground 
branch, the integrated results showed that four PSGs were 
detected, including HOXA3, HOXB3, HOXD11, and HOXD12 
(Supplementary Table S2). Within these genes, 7 sites were 
detected by at least two site-based methods (Table  1 and 
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Supplementary Table S4). Codon 150 of HOXA3 was also detected 
in the PAML analysis.

When the sea otter was set as the foreground branch, HOXA6 
was detected as a PSG by gene-level and branch-level HyPhy 
analyses (Supplementary Table S2) and in the PAML analysis 
(Table  1). When the Weddell seal was used as the foreground 
branch, two PSGs, HOXB6 and HOXC13, were detected by 

integrated methods (Supplementary Table S2). No PSGs were found 
when the Hawaiian monk seal, northern fur seal or walrus was set 
as the foreground branch.

When combining the pinniped species together, we  detected 
common PSGs (HOXA6, HOXB6 and HOXC13) in either category 1 
or category 2 (Supplementary Table S2). Additionally, codon 270 of 
HOXB1 was detected both in our site-based results and in PAML, and 

A

B C

FIGURE 3

Positively selected genes in 15 species. (A) The red lines (left) represent the foreground branches used in this analysis. Two categories with different 
foreground branch setting are shown. (B) The 3D structures of HOXA3 for the giant panda and red panda built using a deep-learning-based method, 
trRosetta. The amino acids are colored according to the vibrational entropy change upon mutation. Blue represents rigidification of the structure, and 
red represents a gain in flexibility. 150 (338), 150 represents the 150th codon when performing the PAML analysis, and 338 indicates the 338th amino 
acid using the human gene sequence as the reference (C) The results of interatomic interaction prediction. Wild-type and mutant residues are colored 
light green and are also represented as sticks alongside the surrounding residues that are involved in any type of interaction.
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codon 140 of HOXB6 was found in the integrated analysis and in 
PAML (Table 1; Supplementary Tables S2–S4). All the above results 
suggested that a small number of HOX genes and sites were under 
positive selection in Carnivora.

Convergent evolution between giant and red 
pandas and between pinnipeds and sea otter

To determine whether there was convergent evolution of HOX genes 
between the giant and red pandas and between the pinnipeds and sea 
otter, we identified the signatures of amino acid convergence in the above 
pairs. For the giant and red pandas, only one convergent amino acid 
change was detected for HOXC10. The observed number of convergence 
events (1) was significantly higher than the number of convergence 
events expected based on the phylogenetic distance (0.2771; p = 0.0307). 
The amino acid sequence alignment identified an amino acid substitution 
of Lys236Gln, with a codon change from AAA to CAA in the giant 
panda and from AAA to CAG in the red panda (Figure  4A). This 
substitution was also found to be unique to both pandas when not 
considering the amino acids of ancestral branches 
(Supplementary Table S5). In addition, in the gene alignment of 56 
mammals, the amino acid at the 236 position is Gln only in the giant and 
red pandas, whereas this position is Lys in other species, highlighting the 
potential functional role (Figure 4A).

For the pinnipeds and sea otter, we did not detect convergent 
amino acid changes in any HOX gene. They did not have any common 
amino acids when only the extant lineages were compared. However, 
the four pinniped species had 13 common amino acids from 10 genes 
that distinguished them from other species, including the limb 
development-related genes HOXA10, HOXA13, HOXB9, HOXB13, 
HOXC10, and HOXD12 (Supplementary Table S5).

Rapid evolution and negative selection of 
HOX genes

We detected rapid evolution and negative selection of HOX genes 
(Table 2; Supplementary Tables S6–S9). With the giant panda as the 
foreground branch, we identified two rapidly evolving genes, HOXA3 
and HOXD4. With the red panda as the foreground branch, HOXD4 
was shown to be under rapid evolution. When both giant and red 
pandas were used as the foreground branch, HOXA3 was detected to 
be rapidly evolving. When any one of four pinnipeds (Weddell seal, 
Hawaiian monk seal, walrus, northern fur seal) or sea otter was set as 
the foreground branch, no rapidly evolving genes were detected. 
When four pinniped species were used as the foreground branch 
simultaneously, HOXC13 was detected to be under rapid evolution 
(Supplementary Tables S6, S7).

We identified four genes under negative selection (Table  2; 
Supplementary Tables S8, S9), including HOXC12 for the giant panda, 
the red panda, both pandas, and the sea otter as the foreground 
branch; HOXA6 for both giant and red pandas; HOXD4 for four 
pinniped species, the walrus, and northern fur seal, respectively; and 
HOXA3 for the walrus.

Predicted 3D structures of HOXA3 and 
HOXC10 and assessment of mutation 
effects

For the positively selected gene HOXA3, the effect of the amino 
acid mutation was predicted to be neutral using either the giant 
panda or red panda protein sequence. The ‘neutral’ outcome was 
also predicted for HOXC10, a gene convergently evolved between 
giant and red pandas (Table 3). According to the Pfam database, the 

TABLE 1 Detection of positively selected genes (PSGs) using PAML and Datamonkey.

Group PAML-
PSG

Foreground 
branch

Omega(w) 2D-lnL P value Selected site Datamonkey

Gene 
based

Branch 
based

Site 
based

G1-a HOXA3 Giant panda 280.90 146.56 0.00E+00 176:G:0.811; Yes Yes No

G1-b HOXB4 Red panda 999 106.82 0.00E+00 174:S:0.550; No Yes No

G1-c
HOXA3

Giant panda/Red 

panda
97.02 89.38 0.00E+00 150:G:0.976*;

Yes Yes No

G1-c
HOXD4$

Giant panda/Red 

panda
178.24 26.99 2.05E-07 38:G:0.822;

No No No

G2-f HOXA6 Sea otter 999 13.42 2.49E-04 102:S:0.902; Yes Yes No

G2-e-1 HOXB1$ Pinnipeds 289.12 3.93 4.75E-02 270:P:0.844; No No No

G2-e-2 HOXB6 Pinnipeds 110.09 9.45 2.11E-03 92:G:0.795;140:S:0.998**; Yes Yes Yes

G2-a HOXA6# Weddell seal 999 3.50 6.14E-02 102:S:0.871;211:D:0.813; No Yes No

G2-c HOXD12$# Weddell seal 999 3.35 6.71E-02 154:L:0.703; No No No

G2-c HOXD3$# Walrus 69.86 3.56 5.91E-02 111:Q:0.833; No No No

G2-b
NA

Hawaiian monk 

seal
- - - -

- - -

G2-d NA Northern fur seal - - - - - - -

$Indicates that this gene was detected to be under positive selection by PAML but not by any one of the Datamonkey methods, #indicates that this gene was marginally significant for PAML 
analysis. *indicates that the posterior probability is > 0.95; **indicates that the posterior probability is > 0.99.
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FIGURE 4

The convergent evolution of HOXC10 in the giant panda and red panda. (A) Left: The phylogenetic tree with the giant and red pandas highlighted by 
red branches. Right: Multiple sequence alignment of HOXC10 and the convergent amino acid change (Lys236Gln) between the two pandas indicated 
by the red arrow. (B) Left: The 3D structure of HOXC10 built by using a deep-learning-based method, trRosetta. The amino acids are colored 
according to the vibrational entropy change upon mutation. Blue represents rigidification of the structure, and red represents a gain in flexibility. Right: 
The results of interatomic interaction prediction. Wild-type and mutant residues are colored light green and are also represented as sticks alongside 
the surrounding residues that are involved in any type of interaction.
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convergent amino acid substitution is not located in the 
Homeodomain. Furthermore, we constructed the 3D structure of 
HOXA3 and HOXC10 proteins using trRosetta modeling, a deep-
learning method, and predicted the dynamic effects of the 
mutations. For HOXA3, the giant panda G338S mutation 
destabilized the HOXA3 protein by increasing the molecular 
flexibility (0.319 kcal/mol/k) and shifting the Gibbs free energy 
(ΔΔG) value to the negative range (−0.374 kcal/mol) (Figure 2B; 
Table 3). When using the red panda protein sequence, the G338A 
mutation decreased molecular flexibility (−0.547 kcal/mol/k) and 
stabilized the protein. For HOXC10, the K236Q mutation 
destabilized the protein (−0.085 kcal/mol) but decreased the 
molecular flexibility (−0.159 kcal/mol/k) (Figure 4B; Table 3).

Discussion

HOX genes regulate many aspects of embryonic body plan 
development and patterning in vertebrates (Casaca et al., 2014). They 
not only ensure the individual developmental program but also 
regulate and change small developmental traits to adapt individuals to 
their living environment (Akam, 1998). Our analysis detected rare 
natural selection in HOX genes in Carnivora, which reflected the 

strong conservation of HOX genes across a number of species. The 
findings also provide insights into the common and divergent 
molecular evolutionary features of HOX gene evolution in Carnivora.

Convergent evolution of HOXC10 between 
giant and red pandas

HOXC10, a DNA-binding transcription activator, plays a key role 
in anterior/posterior pattern specification, proximal/distal pattern 
formation, embryonic limb morphogenesis, and skeletal system 
development. Similar to other HOX genes, the expression of HOXC10 
has a very broad pattern in terms of temporal and spatial extent at 
different stages of embryonic development depending on the cell 
environment and internal state (Wellik and Capecchi, 2003). HOX9 
and HOX10 function together to pattern forelimb stylopods, and 
HOX10 also affects certain phenotypes in zeugopods (Wellik and 
Capecchi, 2003). Based on Bgee (Bastian et al., 2021), HOXC10 is 
highly expressed in the triceps brachii, biceps brachii, cartilage tissue, 
trabecular bone tissue, and upper arm skin in humans.

The two pandas are not closely related, and their sharing of 
adaptive traits reflects convergent evolution. Sesamoid bones are small 
auxiliary bones that form near joints and contribute to their stability 
and function (Antón et al., 2006). Thus far, providing a comprehensive 
developmental model or classification system for this highly diverse 
group of bones has been challenging. Based on the latest research, 
sesamoid bones are regulated by both TGFβ and BMP signaling 
pathways, and both genetic and mechanical regulation are involved in 
facilitating developmental diversity (Eyal et al., 2019). All types of 
sesamoid bones originate from SOX9+/SCX+ progenitors under the 
regulation of TGFβ and are independent of mechanical stimuli from 
muscles (Eyal et al., 2019). Similarly, HOXC10 and SOX9 were found 
to be enriched in the knee at some overlapping time points (Pazin 
et al., 2012), and HOXC10 is involved in the TGFβ/BMP and Wnt 
signaling pathways. In addition, PITX1 also strongly associates with 
many functionally verified limb enhancers that exhibit similar levels 
of activity in the embryonic mesenchyme of forelimbs and hindlimbs 
(Park et al., 2014). PITX1 can induce the expression of TBX4, HOXC10 
and HOXC11 in chick forelimbs and the expression of TBX4 and 
HOXC10 in mouse forelimbs (Logan and Tabin, 1999). TBX4, TBX5, 
and HOX cluster genes are crucial for forelimb development, and 
mutations in these genes are responsible for congenital limb defects 

TABLE 2 Rapid evolution and negative selection based on the test results 
of both the two-ratio vs. one-ratio model and the two-ratio vs. free-ratio 
model.

Foreground branch Type and genes 
(REG = rapidly evolved gene; 

NSG = negatively selected 
gene)

Giant panda REG [HOXA3; HOXD4]; NSG [HOXC12]

Red panda REG [HOXD4]; NSG [HOXC12]

Giant and red pandas REG [HOXA3]; NSG [HOXA6; HOXC12]

Pinnipeds REG [HOXC13]; NSG [HOXD4]

Weddell seal None

Hawaiian monk seal None

Walrus NSG [HOXA3; HOXD4]

Northern fur seal NSG [HOXD4]

Sea otter NSG [HOXC12]

TABLE 3 Predicted effects for variants of two HOX genes.

Gene Type Species Variant Provean 
score

Prediction 
(cutoff = −2.5)

ΔΔG Δ Vibrational 
entropy 
energy

HOXA3
Positive 

selection
Giant panda G338S −0.216 Neutral

−0.374 kcal/mol 

(Destabilizing)

0.319 kcal/mol/k 

(Increase in 

molecular flexibility)

HOXA3
Positive 

selection
Red panda G338A −1.283 Neutral

1.512 kcal/mol 

(Stabilizing)

−0.547 kcal/mol/k 

(Decrease in 

molecular flexibility)

HOXC10
Convergent 

evolution

Giant panda/

Red panda
K236Q 1.118 Neutral

−0.085 kcal/mol 

(Destabilizing)

−0.159 kcal/mol/k 

(Decrease in 

molecular flexibility)
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(Jain et al., 2018). TBX4 and HOXC10 interact directly in limbs and 
synergistically activate transcription via a T-box–HOX composite 
DNA sequence, and the transcriptional activities of TBX4 and 
HOXC10 depend on their DNA-binding sites (Jain et al., 2018). This 
suggests that HOXC10 might play a role in the development of 
pseudothumbs. In addition, pinnipeds and manatees (belonging to the 
family Trichechidae) underwent parallel evolution of HOXC10 (Li 
et al., 2018), which implies a potential important function.

Furthermore, no direct studies have shown that HOXC10 interacts 
with PCNT or DYNC2H1, two genes that were identified as possibly 
related to pseudothumb development in a previous convergent 
evolution study of giant and red pandas (Hu et  al., 2017). Thus, 
HOXC10 could be  another candidate gene for pseudothumb 
development for future functional verification.

Evolution of HOX genes in giant and red 
pandas

Generally, the rates of nonsynonymous and synonymous 
substitutions in HOX genes are relatively low due to the strong 
conservation of the HOX gene family. In this study, we identified only one 
gene, HOXA3, under positive selection in pandas. HOXA3 mutations may 
be related to parathyroid gland organogenesis and pharyngeal organ 
development (Gordon, 2018). Furthermore, rapid evolution analysis 
found that giant and red pandas had a common rapidly evolving gene, 
HOXD4. Previous studies suggested that HOXD4 acts in parallel to 
regulate the expression of target genes directing skeletogenesis (Folberg 
et al., 1999). HOXD4-transgenes are specifically activated in chondrocytes, 
and mutations in this gene cause severe cartilage defects due to delays in 
cartilage maturation (Kruger and Kappen, 2010).

For the negatively selected gene HOXC12, there have been few 
relevant studies. HOXC12 has undergone strong purifying selection, 
which suggests that mutations in this gene may be harmful to organisms. 
In addition, HOXA6 was detected to be under purifying selection when 
both pandas were considered as the foreground branch. Previous studies 
reported that HOXA6 is expressed at a high level in several types of 
malignant tumors (Dickson et  al., 2013). Whether these genes are 
involved in body or limb development needs further study.

Evolution of HOX genes in marine 
Carnivora species

We found no signatures of positive selection or convergent amino 
acid substitutions of HOX genes between the sea otter and pinnipeds. This 
suggests that the phenotypic convergence of marine Carnivora species 
may be achieved through gene expression or regulatory region variations 
of HOX genes or the evolution of other relevant genes. Similarly, few 
signatures of common positive selection on HOX genes were detected 
across three marine mammalian lineages (pinnipeds, cetaceans, and 
sirenians), and convergence occurred at a functional level of HOX genes 
(Nery et al., 2016).

However, focusing only on the pinnipeds, HOXB1 was identified to 
be under positive selection during the origin and evolution of pinnipeds. 
This gene is part of a developmental regulatory system that provides cells 
with specific positional identities on the anterior–posterior axis (from the 
UniProt database). HOXB6 was identified as a positively selected gene 

when each pinniped species was set as the foreground branch. Regarding 
purifying selection, HOXC13 was detected as a negatively selected gene in 
the ancestral linage of four pinniped species. Studies have shown that 
HOXC13 has high expression in integument development, and its 
mutations are associated with skin and appendage development (Wu 
et al., 2013). Interestingly, this gene showed a rapid evolution signature in 
the order Sirenia (Wang et al., 2009). A cetacean study showed that the 
evolution of the cetacean forelimb may be associated with the positive 
selection or selective relaxation of HOXD12 and HOXD13 (Li et al., 2018).

Although selection pressure appears to have varied among different 
lineages, HOXD4 was under strong purifying selection in the northern 
fur seal and walrus lineages, even in the ancestral linage of the four 
pinniped species, suggesting that HOXD4 may have been under purifying 
selection over a long evolutionary time. HOXA3 was detected as a 
negatively selected gene for the northern fur seal. HOXC12 was subject to 
negative selection in the sea otter lineage and was also a negatively selected 
gene for both pandas, suggesting that its functional relaxation could 
be more strictly constrained.

In summary, our study explored the molecular evolution of 
HOX genes in Carnivora and focused on the potential relationship 
between HOX9 ~ 13 genes and limb development, providing 
insights into the potential molecular evolutionary mechanisms of 
Carnivora limb development. Overall, a few HOX genes undergo 
positive selection or convergent evolution, most likely because of 
the functional importance and evolutionary conservativeness of 
HOX genes. In our study, the identified PSGs and convergently 
evolved genes among HOX9 ~ 13 genes could be  important 
candidate targets for further functional verification. A 
combination of evolutionary analyses and functional verification 
would illuminate the mechanisms of evolutionary developmental 
biology for specialized limbs or appendages (Hu et al., 2023).
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