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Since State Council launched the Action Plan for Air Pollution Prevention 
and Control in 2013, national concentration of fine particulate matter (PM2.5) 
has continued to decline in China, while surface ozone (O3) pollution shows 
an obvious rise. To identity hot regions and develop targeted policy, the 
spatiotemporal O3 variation and its population-weighted exposure features 
were analyzed in 337 cities across China, using autocorrelation analysis and 
grid exposure calculation. In the identified hot urban agglomerations, the 
correlation analysis and geographic weighted regression model (GWR) were 
used to study related meteorological factors and socioeconomic driving 
factors. O3 pollution and its human exposure were found to have significant 
spatial aggregation characteristics, showing a need for regional management 
policy. Beijing-Tianjin-Hebei Urban Agglomeration (BTH-UA), Central Plains 
Urban Agglomeration (CP-UA), and Yangtze River Delta Urban Agglomeration 
(YRD-UA) were identified as hot regions where O3 concentration exceeded  
160 μg·m−3, exceedance rate was over 20% and population-weighted exposure 
risk was relatively high. Correlation analysis in the hot regions indicated high 
surface temperature, low relative humidity, and low wind speed were positive to 
O3 increase. Further, GWR results revealed that O3 in the majority of cities was 
positively related with population density (PD), the per capita GDP (Per_GDP), 
industrial soot emissions (ISE), industrial SO2 emissions (ISO2), and average annual 
concentration of inhaled fine particulate matter (PM10), and negatively related with 
total land area of administrative region (Administration) and area of green land 
(Green). From the regional driving factor difference, the targeted UA management 
policy was provided.
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1. Introduction

Since the implementation of the Action Plan for Air Pollution 
Prevention and Control in 2013, China’s environmental air quality has 
achieved remarkable results. Among the six major air pollutants, fine 
particulate matter (PM2.5), coarse particulate matter (PM10), sulfur 
dioxide (SO2), nitrogen dioxide (NO2), and carbon monoxide (CO) 
concentrations decreased significantly (Qu et al., 2020). Compared with 
2014, the average annual concentration of PM2.5, PM10, SO2, and NO2 
in 2015 decreased by 14.1, 11.4, 21.9, and 7.1%, respectively [Ministry 
of Ecology and Environment of the People’s Republic of China (MEE-
PRC), 2016]. While the ozone (O3) pollution prevention and control 
situation is gradually grim (Ziemke et al., 2019; Zhao et al., 2020), the 
90th percentile concentration of average of O3 daily maximum 8-h in 
2015 increased by 3.4% compared with 2014 [Ministry of Ecology and 
Environment of the People’s Republic of China (MEE-PRC), 2016]. 
And from 2015 to 2019, among the O3 exceedance days in 337 cities, 
the proportion of moderate and pollution above increased from 7.2 to 
11.4% (Yan et al., 2020). With enhancement of public awareness on 
environmental health and requirements of high quality urban 
development, O3 pollution has become the focus of the 14th Five-Year 
Plan governance, and it is also one of the key factors to test the success 
of the war to protect the blue sky. As a kind of greenhouse gas, surface 
O3 will produce a series of negative effects when it continuously 
increases in the troposphere, such as damaging human health (Liu 
et  al., 2018), causing serious harm to the ecological environment 
(Karlsson et al., 2017; Harmens et al., 2018; Li et al., 2018), etc.

Currently, the study regions of existing O3 pollution researches 
were mainly limited to certain administrative divisions or some 
regions of interest in China (Cheng et al., 2018; Liang et al., 2020; 
Yang, 2021). For example, Wei et  al. (2020) applied the spatial 
autocorrelation analysis and geographical detector to analyze the 
spatial and temporal changes of the O3 concentration in 35 cities in 
Northeast China from 2015 to 2018. Likewise, most studies on O3 
pollution were mainly based on the specific city clusters (Wang 
Z. B. et al., 2020; Zhan et al., 2021), a single city (Chen Z. Y. et al., 
2019), or a single year (Liu P. F. et al., 2020), and few studies explored 
the multi time scale variation patterns and exposure risk of surface O3 
at a national scale or the multiple urban agglomerations. Further, for 
O3 pollution driving factors, researchers firstly focused on 
meteorological factors (He et al., 2017; Zhou et al., 2019; Chang et al., 
2021), topographic (He et al., 2021), and precursor composition (Liu 
H. L. et al., 2020). Meanwhile, there are many socioeconomic factors 
affecting the O3 pollution level, such as population density, industrial 
soot, and SO2 emissions, etc. (Wang X. L. et al., 2020). Therefore, 
through multi spatiotemporal scale pollution features analysis, it is of 
significance to carry out a multiple driving factors identification and 
further provide regional differentiated control countermeasures.

The major aims of this study were (i) to analyze the spatiotemporal 
distribution and population-weighted exposure risk feature of O3 
using ground observations data of the daily maximum 8-h sliding 
average surface O3 (MDA8) from Chinese 337 cities in 2015 and 2018; 
(ii) to explore the relationship between meteorological factors and O3 
on seasonal scales using correlation analyses in the identified hot 
urban agglomerations; (iii) to further identify driving effects of 
sensitive socioeconomic factors and urban surface O3 in hot urban 
agglomerations via the geographic weighted regression model (GWR). 
Finally, the joint O3 management suggestions were developed from the 
perspective of urban agglomeration.

2. Materials and methods

2.1. Data sources

The O3 concentration data were derived from the daily values of 
urban surface O3 concentration monitoring released by the Ministry 
of Ecology and Environment of the People’s Republic of China in 2015 
and 2018. Compared with 2014, the average concentration of O3 and 
the proportion of days exceeding the standard both increased in 2015 
[Ministry of Ecology and Environment of the People’s Republic of 
China (MEE-PRC), 2016], and the end of Action Plan for Air Pollution 
Prevention and Control in 2017 and the first year of the Blue Sky 
Protection Campaign in 2018, so 2015 and 2018 was chosen as the 
study years of this paper. The study areas were 337 cities of Chinese 
mainland, including 333 prefecture-level cities and 4 municipalities. 
According to the Environmental Air Quality Standard (GB3095-2012) 
issued by the MEE-PRC [Environmental Protection Department 
(EPD), 2012], the surface O3 “daily average” concentration means the 
daily maximum 8-h sliding average (MDA8), and “quarterly average” 
means the calculated mean of each daily average concentration in a 
calendar season (spring is March–May, summer is June–August, fall 
is September–November, and winter is December, January, and 
February). Environmental air functional areas are divided into Class 
I and Class II: ① Class I consists of nature reserves, scenic spots, and 
other areas requiring special protection, with a limit of 100 μg·m−3 for 
MDA8 concentration; ② Class II includes residential areas, mixed 
areas for commercial traffic residents, cultural areas, industrial areas, 
and rural areas, with a limit of 160 μg·m−3 for MDA8 concentration. 
According to the Technical Specification for Environmental Air Quality 
Evaluation (Trial; HJ663-2013) issued by the MEE-PRC, “Annual 
evaluation” is determined by the 90th percentile of average of O3 daily 
maximum 8-h (MDA8-90%). The exceedance rate discussed in this 
study refers to the O3 daily evaluation is the percentage of the 
exceedance over a certain period of time.

The related series of meteorological data, including temperature 
(°C), wind speed (m·s−1), and relative humidity (%) were obtained 
from the China Meteorological Administration (http://data.Cma.cn; 
Liu P. F. et al., 2020; Hu et al., 2021). Further, the socioeconomic data 
were derived from the China Statistical Yearbook. A total of 14 related 
statistical metrics indicators were selected and extracted following the 
Delphi method and the published literature review (Huang et al., 2019; 
Chen et al., 2020; Wang X. L. et al., 2020; Wang et al., 2021): total 
population at year-end (TP), population density (PD), the gross 
domestic product (GDP), and the per capita GDP (Per_GDP), share 
of the primary industry in GDP (%; Primary), share of the secondary 
industry in GDP (%; Secondary), share of the tertiary industry in the 
GDP (%; Tertiary), industrial soot emissions (ISE), annual average 
population (AP), total land area of administrative region 
(Administration), area of green land (Green), industrial SO2 emissions 
(ISO2), average annual concentration of inhaled fine particulate matter 
(PM10), and annual electricity consumption (AEC).

2.2. Methods

2.2.1. Global and local autocorrelation analysis
Global Moran’s I is the best known and used method to reflect the 

similarity of spatial adjacent or adjacent regional cell property values 
(Chen, 2021). Moran’s I is calculated as the following Eq. (1):
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where n is the number of monitoring cities; xi and xj refer to the 
attribute values of city i and j, respectively; wij is the spatial weight 
matrix between the regional units i and j.

ZI is used to test the significance of global Moran’s I, and the 
calculation formula is as follows:
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where ZI is the Z test value for the global Moran’s I; EI and VarI are 
the mathematical expectation and covariance of the global Moran’s I, 
respectively.

The global spatial autocorrelation index can only reflect the 
overall process or trend, while it cannot reveal local differences. 
Therefore, it cannot specifically reflect the correlation and correlation 
between a city and its neighboring city (Zhou et al., 2020). To more 
accurately grasp the aggregation and differentiation characteristics of 
O3 spatial agglomeration, the local Moran’s I  (Anselin, 2010) is 
presented by Eq. (3):
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where S is the standard deviation; If Ii is positive and significant, 
the position i is hot spot (high value agglomeration), if Ii is negative 
and significant, the position i is cold point (low value agglomeration).

2.2.2. Exposure risk assessment methods
To more scientifically and reasonably reflect the population 

exposure risk of O3 in the study area; this paper calculates the 
population-weighted O3 concentration value of a single grid by using 
a grid calculator (Fu and Kan, 2004). The calculation formula is 
as follows:
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(4)

where PWELi is the population-weighted O3 concentration 
average value, μg·m−3; i is the number of grid cells; Pi is the number of 
population in the grid; Ci is the O3 concentration in this grid/(μg·m−3).

2.2.3. Meteorological factors and correlation 
analysis

The Pearson correlation coefficient test was used to determine the 
correlation between the O3 concentration and the meteorological 
factors (Dong et al., 2021). Correlation coefficient r can be calculated 
using Eq. (5):
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where Xi, Yi are the values of two random variables X and Y with 
linear relations, respectively; i is the number of samples, i = 1, 2, …, n; 
SX and SY are the standard differences of the variable X, Y, respectively.

2.2.4. Variance inflation factor
To better quantify the contribution of each socioeconomic factor 

to the O3 concentration variety, the collinearity between explanatory 
variables should be first eliminated (Guo et al., 2016). The variance 
inflation factor (VIF) test is a classical method used to test the 
probable multicollinearity (Zhao et al., 2016; Che et al., 2019). In this 
study, multicollinearity was judged by statistics (T), robust probability 
(P), and variance inflation factor (VIF). Judgment methods were as 
follows: the larger the T is, the more significant the representation is; 
the smaller the p value is, the more useful variable is; if 0 < VIF < 10, 
there is no multicollinearity, and vice versa.

2.2.5. Geographic weighted regression
When establishing econometric models with cross-section data, 

the impact of explanatory variables on the interpreted variables may 
be different between regions due to the complexity, autocorrelation, 
and variability that this data exhibits. The GWR model can address the 
problem, which assumes that the economic behavior between regions 
is spatially heterogeneous and more realistic (Wang S. J. et al., 2020). 
The GWR model is as follows:

 
y u v u v xj j j

i

k
i j j ij j= ( ) + ( ) +

=
∑β β ε0

1

, ,

 
(6)

where x, y are independent and dependent variables, respectively; 
k is the number of independent variables; j is sample point; ε is 
regression residue; β0 (uj, vj) is the intercept; and βi (uj, vj) is the 
regression coefficient, changing with the sample point location. Each 
local βi (uj, vj) is used to estimate its adjacent spatial observations.

3. Results and discussion

3.1. Spatiotemporal distribution 
characteristics of O3

3.1.1. Annual distribution characteristics
Figure 1 shows the national distribution and the daily average 

exceedance rate of urban MDA8-90% in 2015 and 2018. In 2015 and 
2018, the average annual concentration range were 62–202 and 
74–215 μg·m−3, with a total of 60 and 111 cities exceeding the standard 
value (160 μg·m−3), accounting for 17.8% (60/337) and 32.9% 
(111/337), respectively. O3 pollution distribution showed similarity to 
a certain extent in 2015 and 2018 and heavily polluted area was mainly 
concentrated in eastern China, such as Liaoning, Shandong, Hebei, 
Henan, and Jiangsu. Specifically, compared with 2015, O3 distribution 
was more concentrated and serious in 2018. The polluted cities in 
severely polluted areas increased and the polluted areas gradually 
spread, for example, Shanxi, Shaanxi, and Anhui also began to suffer 
O3 pollution.

https://doi.org/10.3389/fevo.2023.1103503
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Kong et al. 10.3389/fevo.2023.1103503

Frontiers in Ecology and Evolution 04 frontiersin.org

As shown in the Figure 1, the areas with high O3 exceedance rate 
were mainly concentrated in the eastern coastal areas of China, and it 
gradually spread to the central region. In 2015, the exceedance rate range 
of O3 concentration was 0.00–24.93%. Among the studied 337 cities, the 
exceedance rates of 28 cities were above 15%, and those of four cities 
were above 20%, and these cities mainly located in Jiangsu, Shandong, 
Hebei, and Beijing. In 2018, the exceedance rate range of O3 
concentration was 0.00–30.14%, and the exceedance rates of 67 cities 
were above 15%, and those of 32 cities were above 20%. Generally, the 
Chinese O3 concentrations and pollution area in 2018 have both 
increased compared with that in 2015; hence, it is of great significance to 
explore the spatial agglomeration and seasonal distribution characteristics.

3.1.2. Seasonal spatiotemporal distribution 
characteristics

Figure 2 shows the seasonal distribution of O3 concentration in 
Chinese cities. Generally, the O3 pollution in spring and summer was 
more serious, and the pollution scope were wider than that in fall and 
winter. Specifically, the high incidence areas of O3 pollution in spring 
were mainly concentrated in central and eastern provinces, including 
Jiangsu, Shandong, Hebei, and Henan. In summer, pollution had 
spread to the western provinces, including Shaanxi, Gansu, Qinghai, 
Sichuan, and Inner Mongolia. The O3 pollution areas decreased in fall 
compared with spring and summer, and these areas were mainly 
concentrated in Shandong, Jiangsu, and Anhui. In winter, O3 pollution 
areas was mainly concentrated in the central and western provinces, 
including Sichuan, Qinghai, and Gansu.

3.2. Spatial agglomeration characteristics

To explore the presence of spatial dependence in observations, 
ArcGIS 10.2 Desktop’s Spatial Autocorrelation Model tool was used to 
test the annual and quarterly data of O3 concentration in 337 cities in 
2015 and 2018, respectively. The annual and quarterly Moran’s I index 
were shown in Table 1. The results showed that annual Moran’s I were 

both above 0.00 and Z(I) exceeded 2.58, and they all passed the 
significance test of 0.01 level in 2015 and 2018. It indicated a significant 
spatial positive correlation of O3 concentration in China. Moran’s 
I and Z(I) were higher in 2018 (0.72, 49.89) than those in 2015 (0.29, 
20.04), which reflected the O3 pollution was more concentrated and 
serious in 2018. It could be due to that the similar emission control 
measures were adopted by different regions, which reduced the spatial 
differences of O3 precursor’s emissions in a certain extent. In addition, 
the seasonal characteristics of Moran’s I were also relatively obvious 
(summer > fall > spring and winter), which indicated that the 
correlation of urban O3 in summer was the highest.

3.2.1. Annual spatial agglomeration 
characteristics

The annual spatial agglomeration feature of national O3 
concentration is shown in Figure 3. The distribution areas of cold and 
hot spots were similar in 2015 and 2018 to a certain extent, which 
indicated that Chinese cities have formed a relatively stable and 
continuous pollution area. Hot spots were mainly distributed in eastern 
and central provinces, including Shanghai, Jiangsu, Anhui, Shandong, 
Beijing, Hebei, Shanxi, and Henan. Moreover, compared with 2015, 
Shaanxi, Inner Mongolia, Hubei, and Zhejiang have gradually become 
hot agglomeration areas in 2018. Cold points were mainly distributed in 
Guangxi, Guangdong, Hainan, Xinjiang, and Heilongjiang. The causes 
of the distributions are regional transport of O3 and similar large-scale 
meteorological conditions. This phenomenon suggests that joint efforts 
among urban agglomerations are crucial to control O3 pollution in the 
region, rather than just to control O3 emissions in individual cities.

3.2.2. Seasonal spatial agglomeration 
characteristics

Spatial agglomeration characteristics of the O3 concentration in 
spring, summer, fall, and winter in 2015 and 2018 are shown in Figure 4. 
In terms of season, in spring and summer, hot spots were mainly 
distributed in eastern, northern, and central provinces, including Inner 
Mongolia, Liaoning, Beijing, Hebei, Shanxi, Shandong, Henan, Anhui, 

FIGURE 1

Spatiotemporal distribution of MDA8-90% and daily average exceedance rate in Chinese 337 cities.
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Jiangsu, Shanghai, and Shaanxi. Therefore, the spring and summer were 
a critical period for O3 pollution control in these provinces. Cold spots 
were mainly distributed in southwestern provinces, including Sichuan, 

Chongqing, Hunan, Jiangxi, Fujian, Yunnan, Guizhou, Guangxi, 
Guangdong, and Hainan. In fall, hot spots expanded in the southeast and 
were mainly concentrated in Hebei, Beijing, Shanxi, Shandong, Henan, 

FIGURE 2

Seasonal spatiotemporal distribution of MDA8 in Chinese 337 cities: (A) spring, (B) summer, (C) fall, and (D) winter.

https://doi.org/10.3389/fevo.2023.1103503
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Kong et al. 10.3389/fevo.2023.1103503

Frontiers in Ecology and Evolution 06 frontiersin.org

Anhui, Jiangsu, Zhejiang, Jiangxi, Fujian, and Guangdong. Cold spots 
areas were gradually concentrated in the central provinces, including 
Sichuan, Chongqing, Guizhou, and Yunnan. Overall, O3 pollution scale 
was large and these areas mainly concentrated in the central and eastern 
urban agglomerations, and showed distinct seasonal characteristics. 
Therefore, it is necessary to deeply strengthen the joint control measures 
between urban agglomerations in the central and eastern regions, and 
strengthen seasonal regulation, especially in spring and summer.

3.3. Population-weighted O3 exposure risk

Only analysis of the spatiotemporal distributions of O3 concentration 
cannot reflect the actual exposure risk of residents. To more scientifically 
reflect its potential residents’ exposure impact and screen the regions of 
particular concern, the population-weighted O3 exposure risk evaluation 
was conducted based on formula (4) and shown in Figure  5. The 
population-weighted O3 concentration values were calculated using a 
grid calculator, and a 1/2 standard deviation classification was used to 
divide the resulting population-weighted concentration values into eight 
levels. With the higher the rank, the higher the exposure risk of O3. Low 
exposure risk was judged as level I and II, medium exposure risk was 
level III, IV, and V, and high exposure risk was level VI, VII, and VIII. It 

can be seen that the areas with high exposure risk of O3 in 2015 and 2018 
are quite similar and mainly concentrated in the central and eastern 
regions of China, such as Beijing, Tianjin, Hebei, Henan, and Anhui. In 
addition, the low exposure risk is mainly distributed in Tibet, Xinjiang, 
Qinghai, and other western regions.

Considering the spatiotemporal distribution characteristics of O3 
and the population-weighted exposure risk. O3 pollution has 
significant spatial aggregation characteristics, among them, O3 
concentration is more than 160 μg·m−3, exceedance rate more than 
20% and high population-weighted exposure risk are mainly 
concentrated in the BTH-UA, CP-UA, and YRD-UA. To provide more 
accurate meteorological factors and socioeconomic driving factors 
analysis results in different regions, this study selected the 67 cities of 
BTH-UA, CP-UA, and YRD-UA as identified cities. Figure 6 shows 
location distribution of the BTH-UA, CP-UA, and YRD-UA in this 
study. The detailed list of 67 cities was shown in Supplementary Table S1.

3.4. Meteorological factor analysis

The concentration of O3 was significantly affected by 
meteorological conditions. The main effects were divided into two 
aspects: first, meteorological conditions promoted the chemical 
conversion of precursors, such as NOx, CO, and VOCs, by affecting 
the photochemical reaction conditions of the O3 (Huang et al., 2019), 
therefore, mading the O3 concentration rise. Second, by affecting the 
local horizontal and vertical diffusion conditions (Blanchard and 
Fairley, 2001), and the O3 concentration increase and decrease due to 
the volume fraction change.

3.4.1. Temperature
Table 2 shows that the correlation between O3 concentration and 

temperature in different seasons. The annual O3 concentration of the 
three urban agglomerations was significantly positively correlated 
with the temperature and the correlation is significant in the different 

TABLE 1 Spatial autocorrelation index of O3 concentration in Chinese 337 
cities.

Year
2015 2018

Moran’s I Z(I) Moran’s I Z(I)

Annual 0.29 20.04 0.72 49.89

Spring 0.25 17.69 0.63 43.42

Summer 0.42 29.11 0.78 53.97

Fall 0.37 26.06 0.72 50.15

Winter 0.26 18.05 0.28 19.57

FIGURE 3

Annual spatial distribution of cold and hot spot of MDA8-90% across Chinese 337 cities in 2015 and 2018.
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seasons. In addition, seasonal differences were obvious. The 
correlation coefficient of the three urban agglomerations in spring and 
autumn was significantly higher than that in summer and winter. 

Among them, the CP-UA failed the confidence (bilateral) significance 
test of 0.01 in the winter in 2018 and the summer in 2015. One reason 
is possible that O3 photochemical reaction is inefficient due to the 

FIGURE 4

Seasonal evolution of MDA8 spatial agglomeration in 2015 and 2018: (A) spring, (B) summer, (C) fall, and (D) winter.
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influence of other factors, such as weak solar radiation in winter, 
rainfall and wind speed in summer (Chen X. P. et al., 2019).

3.4.2. Relative humidity
Table 3 shows the correlation between O3 concentration and relative 

humidity in different seasons. The annual relative humidity of the three 
urban agglomerations were significantly negatively correlated with O3 
concentration. In the three urban agglomerations, the absolute value of 
the correlation coefficient increased from north to south. The 
correlation was the most significant in summer, and the ranking of 
absolute value of correlation coefficient increased from north to south, 
which was the same as the annual ranking. It was due to that when the 

atmospheric relative humidity increases, it is accompanied by an 
increase in cloud cover, which leads to an increase in precipitation. 
These meteorological conditions are not conducive to the formation 
and accumulation of O3, which leads to the decrease of O3 concentration 
(Liang et al., 2019; Bai et al., 2022). In addition, it may be that when the 
RH is high, the photochemical decomposition of water vapor will 
produce more reactive groups and react with O3, which reduces the 
concentration of O3 (Tan et al., 2007). And this inhibition effect was 
more significant in the summer of the central and northern regions. 
Among them, the seasonal correlation coefficient of BTH-UA fluctuated 
significantly. The CP-UA was summer > spring and fall > winter, and the 
correlation coefficient was quite different, especially in summer and 

FIGURE 5

O3 exposure risk rating under population-weighted conditions.

FIGURE 6

Location distribution of the BTH-UA, CP-UA, and YRD-UA.
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winter. The YRD-UA was summer > fall > spring > winter in 2015, and 
fall > spring > summer > winter in 2018, and the correlation coefficient 
fluctuation was small.

3.4.3. Wind speed
Wind speed, especially near-ground wind speed, determines the 

speed of pollutant handling and dilution (Yang et al., 2021). The 
correlation between O3 concentration and wind speed in different 
seasons was shown in Table 4. The annual O3 concentration of the 

CP-UA and the YRD-UA showed significantly negative correlation 
with the wind speed. While annual O3 concentration of the 
BTH-UA was significantly positively correlated with the wind 
speed. From the seasonal point of view, the O3 concentration in 
spring, summer, and autumn of the three urban agglomerations all 
showed significantly negative correlation with wind speed, while 
the O3 concentration in winter showed significantly positive 
correlation with wind speed. It might have the reasons of O3 
increasing were the elevation of atmospheric boundary height and 

TABLE 2 Correlation between O3 concentration and temperature in different seasons.

Urban 
agglomeration

Season
2015 2018

p r p r

BTH-UA Spring 0 0.628** 0 0.633**

Summer 0 0.323** 0 0.165**

Fall 0 0.619** 0 0.619**

Winter 0 0.125** 0 0.102**

Annual 0 0.726** 0 0.713**

CP-UA Spring 0 0.606** 0 0.563**

Summer 0.055 0.037 0 −0.085**

Fall 0 0.603** 0 0.474**

Winter 0 0.227** 0.236 0.023

Annual 0 0.661** 0 0.661**

YRD-UA Spring 0 0.384** 0 0.423**

Summer 0 0.173** 0.017 0.049*

Fall 0 0.478** 0 0.322**

Winter 0.005 0.058** 0 −0.147**

Annual 0 0.485** 0 0.506**

**Significant correlation at 0.01 level (bilateral).
*Significant correlation at 0.05 level (bilateral).

TABLE 3 Correlation between O3 concentration and relative humidity in different seasons.

Urban 
agglomeration

Season
2015 2018

p r p r

BTH-UA Spring 0 0.111** 0.075 −0.05

Summer 0 −0.198** 0 −0.422**

Fall 0 −0.109** 0 0.114**

Winter 0 −0.397** 0 −0.203**

Annual 0.004 −0.041** 0 0.173**

CP-UA Spring 0.01 −0.050* 0 −0.323**

Summer 0 −0.304** 0 −0.556**

Fall 0 −0.244** 0 −0.220**

Winter 0 −0.109** 0 −0.221**

Annual 0 −0.061** 0 −0.094**

YRD-UA Spring 0 −0.246** 0 −0.409**

Summer 0 −0.330** 0 −0.365**

Fall 0 −0.285** 0 −0.448**

Winter 0 −0.172** 0 −0.312**

Annual 0 −0.142** 0 −0.285**

**Significant correlation at 0.01 level (bilateral).
*Significant correlation at 0.05 level (bilateral).
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the increase of vertical momentum transport due to the increase of 
wind speed, which then promotes the transfer of O3 to the ground 
(Chen et al., 2022; Liu et al., 2022). The reason for the O3 decrease 
may be  that the wind speed increases the horizontal diffusion 
movement of O3.

The meteorological factors alter the O3 concentration through 
physical and chemical processes. Among the meteorological factors, 
temperature was most associated with O3 concentration in 2015 and 
2018 (Tables 2–4). Temperature was directly affecting O3 concentration 
by affecting the photochemical reaction generation efficiency of the 
O3 (Chen et al., 2017), higher temperature, more frequent molecular 
collisions, and accelerated photochemical reaction rates. The wind 
speed and relative humidity had a negative effect on the O3 
concentration in BTH-UA, YRD-UA, and CP-UA. It was due to that 
high wind speed can promote horizontal diffusion and reduce the 
accumulation of air pollutants in headwind areas (Wang et al., 2019), 
indicating that the enhanced atmospheric diffusions efficiently 
reduced O3 concentration levels. Moreover, O3 pollution has changed 
significantly along with the season, so the seasonal O3 pollution 
response measures should be  strengthened. First, continue to 
strengthen the O3 response in summer, and spring and fall should also 
be valued. Specifically, avoid or reduce VOCs process production in 
March–November, and stagger the peak emission in the O3-prone 
period (12:00–17:00). Second, formulate a positive inventory of 
seasonal VOCs intensive emission reduction measures and 
implemented differentiated emission reduction measures. Enterprises 
that conform to the conditions of the positive inventory may not 
implement strengthened emission reduction. Third, in the critical 
areas such as BTH-UA, YRD-UA, and CP-UA, formulate pollution 
control plans for key industries, such as painting, printing, and textile, 
to help enterprises effectively carry out comprehensive control 
of VOCs.

3.5. Socioeconomic factors

3.5.1. Analysis of the VIF results
This study conducted multicollinearity tests of 14 socioeconomic 

factors of agglomeration regions in 2015 and 2018, including total 
population at year-end (TP), population density (PD), the gross 
domestic product (GDP), the per capita GDP (Per_GDP), share of the 
primary industry in GDP (%; Primary), share of the secondary 
industry in GDP (%; Secondary), share of the tertiary industry in the 
GDP (%; Tertiary), industrial soot emissions (ISE), annual average 
population (AP), total land area of administrative region 
(Administration), area of green land (Green), industrial SO2 emission 
(ISO2), average annual concentration of inhaled fine particulate matter 
(PM10), and annual electricity consumption (AEC). The ArcGIS 10.2 
analysis results were shown in Supplementary Table S2. The VIF of TP, 
GDP, Primary, Secondary, Tertiary, AP, and AEC were more than 10, 
which indicated that these seven factors had strong multicollinearity 
by themselves or with other factors, so these seven factors should 
be discarded. While PD, Per_GDP, ISE, Administration, Green, ISO2, 
and PM10 do not exist seriously multicollinearity, which can be used 
for GWR.

3.5.2. Analysis of the GWR results
The GWR model was fitted with seven socioeconomic factors 

(PD, Per_GDP, ISE, Administration, Green, ISO2, and PM10). The 
number of conditions on the sample points in 2015 and 2018 were all 
lower than 30, showing that there was no local collinearity. The 
coefficients of variables were all significant at the level of 1%, and the 
model estimation results were credible. The R2 and adjusted R2 were 
0.46 and 0.31 in 2015, 0.66 and 0.56 in 2018 respectively, indicating 
the model had a better fit for both metrics in 2018. The standardized 
residual distribution was shown in Figure  7. The residue in the 

TABLE 4 Correlation between O3 concentration and wind speed in different seasons.

Urban 
agglomeration

Season
2015 2018

p r p r

BTH-UA Spring 0.956 −0.001 0.001 −0.096**

Summer 0.734 −0.009 0.061 0.052

Fall 0 −0.113** 0.351 −0.026

Winter 0 0.309** 0 0.196**

Annual 0 0.056** 0.004 0.041**

CP-UA Spring 0 −0.117** 0 −0.214**

Summer 0.001 −0.063** 0 −0.132**

Fall 0 −0.155** 0 −0.071**

Winter 0 0.204** 0 0.117**

Annual 0.045 −0.019* 0.006 −0.027**

YRD-UA Spring 0 −0.087** 0 −0.251**

Summer 0 −0.106** 0 −0.311**

Fall 0 −0.111** 0.786 −0.006

Winter 0 0.106** 0 0.123**

Annual 0 −0.044** 0 −0.095**

**Significant correlation at 0.01 level (bilateral).
*Significant correlation at 0.05 level (bilateral).
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regression residue spatial distribution diagram was spatially random, 
demonstrating that the regression residue obeyed to the normal 
distribution. The regression results of normalized residual ranges were 
−2.51 to 2.07 in 2015, −3.11 to 1.63 in 2018, and values in the range 
of −2.00 to 2.00 accounted for 92.42 and 93.94% of the total results 
respectively, revealing the GWR model fit well. To further analyze the 
spatial changes of the various socioeconomic factors and the 
significance level of the O3, Supplementary Table S3 reports the 
descriptive statistical results of the various socioeconomic factors of 
the GWR regression model.

The impact of PD, Per_GDP, ISE, Administration, Green, ISO2, and 
PM10 on O3 pollution of urban agglomeration could be measured by the 
estimated coefficient of the influencing factors in various regions derived 
from the GWR model. The greater the coefficient of factor is, the greater 
the influence is, and the positive and negative of the coefficient 
represents the directionality of this factor. The parameter of the seven 
variables selected by the GWR differed in each region, indicating a 
spatial variation in the influence of each variable on the O3 concentration.

3.5.3. The driving of urbanization factors
The urbanization factors included PD, Administration, and 

Green, and the adjusted R2 were 0.42, 0.39, and 0.34  in 2015 
respectively, and those were 0.57, 0.54, and 0.54  in 2018. This 
statistically demonstrated that the O3 concentration distribution was 
closely related to the degree of urbanization. Figure  7 shows the 
distribution of the urbanization factors (PD, Administration, and 
Green) regression coefficient in 2015 and 2018.

Areas with high population density tend to have more pollution 
sources and pollution activity. Standardized residues for GWR 
between O3 and PD ranged from −2.88 to 1.96 in 2015, and − 3.23 to 
1.70 in 2018, values in the range of −2.00 to 2.00 accounted for 93.94 

and 95.45% of the total results, respectively. Figure  7 shows that 
population density was positively associated with O3 concentration in 
the majority cities, namely O3 concentrations increased with the 
density of the population. The top five cities with the greatest 
correlation influence in 2015 were Chuzhou, Bengbu, Suzhou, Hefei, 
and Ma’anshan, located in the east of the CP-UA and the west of the 
YRD-UA. The top five cities with the highest correlation influence in 
2018 were Qinhuangdao, Tangshan, Chengde, Xinyang, and Wuhu, 
mainly located in the BTH-UA. It was due to densely populated areas 
where human activity was more intense, and O3 pollution was closely 
related to precursor emissions, such as VOCs, CO, and NOx. 
Therefore, the future control policies should be deeply concentrated 
in BTH-UA areas with high population density.

As shown in Figure 8, O3 pollution was negatively correlated with 
Administration and Green in the majority of cities. Standardized 
residues for GWR between O3 and Administration ranged from −2.85 
to 2.12 in 2015, −3.72 to 2.32 in 2018, values in the range of −2.00 to 
2.00 accounted for 92.42 and 92.42% of the total results, respectively. 
Standardized residues for GWR between O3 and Green ranged from 
−3.05 to 1.70 in 2015, −2.84 to 1.74 in 2018, values in the range of 
−2.00 to 2.00 accounted for 93.94 and 95.45% of the total results, 
respectively. The high-value area was located in the YRD-UA, and the 
low-value area was located in the BTH-UA and the area between the 
border of the BTH-UA and CP-UA, which shows that the larger the 
green space area in this area is, the more it was conducive to reduce 
O3 pollution. While some cities in the BTH-UA such as Tangshan, 
Qinhuangdao, Hengshui, Xingtai, Handan, and CP-UA such as 
Liaocheng, Puyang, Xinxiang, Zhengzhou, Administration, and 
Green were positively related to O3 pollution in the majority cities. It 
was due to that the high O3 concentration caused a certain degree of 
damage to plants, and greening did not play a role in reducing O3 

FIGURE 7

Standard residual error distribution of O3 and socioeconomic factors.
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pollution. Overall, green space could help to improve air pollution 
and it was necessary to further expand green space in various cities.

To alleviate O3 pollution caused by urbanization, the government 
needs to enhance the role of spatial allocation in urban planning, and 

create a spatial intensive urban pattern. Although central cities with 
high population density help to give full play to the advantages of 
agglomeration economy, high population will increase the ecological 
and environmental pressure and drive O3 pollution. The reasonable 

FIGURE 8

The distribution of the urbanization factors regression coefficient in 2015 and 2018. Population density (2*), total land area of administrative region 
(10*), and area of green land (11*).
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layout and design of urban architectural could promote the dispersions 
of O3 and improve the air quality. With the acceleration of urbanization 
in China, there were a large number of construction activities in 
developed and developing cities. Therefore, reasonable development 
plan of the administrative area and green space will be conducive to 
reduce O3 pollution and improve the urban air quality.

3.5.4. The driving of economic structural factor
According to the analysis of GWR model, the adjusted R2 of Per_

GDP in 2015 and 2018 was 0.38 and 0.59, respectively 
(Supplementary Table S3). And as shown in Figure 9, O3 pollution was 
positively correlated with Per_GDP in the majority cities. Standardized 
residues for GWR between O3 and Per_GDP ranged from −2.76 to 
1.66 in 2015, and − 2.83 to 1.71 in 2018, values in the range of −2.00 
to 2.00 accounted for 93.94 and 95.45% of the total results, respectively. 
The high-value area was located in the YRD-UA, and the low-value 
area was located in the BTH-UA.

Yang (2021) argued that China’s economic growth and 
environmental pollution showed a “U-shaped” relationship, that was, 
when the economic level was low, pollution improves with economic 
growth, and when it reaches an “inflection point,” pollution will 
deteriorate with economic growth. In this study, with the rapid 
development of economy from 2015 to 2018, O3 pollution deteriorated. 
It could be seen that the BTH-UA, CP-UA, and YRD-UA were all in 
this “U-shaped” climbing period. With the further growth of the 
economy, regional O3 pollution had a trend to deteriorate. Per_GDP 
was an important indicator reflecting the level of regional economic 
development. To realize the sustainable development of environmental 
protection and economic growth, the BTH-UA, CP-UA, and YRD-UA 
(especially YRD-UA) needed to build a joint pollution prevention and 
control model dominated by economic coordination and 
supplemented by policy and management coordination.

3.5.5. The driving of industrial production
In this study, the anthropogenic factors included ISE, ISO2, and 

PM10. The adjusted R2 of ISE, ISO2, and PM10 were 0.34, 0.45, and 
0.31 in 2015, and those were 0.56, 0.59, and 0.6 in 2018, respectively 

(Supplementary Table S3). Standardized residues for GWR between 
O3 and ISE ranged from −3.25 to 1.73 and −2.81 to 1.57 in 2015, 2018, 
values in the range of −2.00 to 2.00 accounted for 95.45 and 93.94% 
of the total results, respectively. Standardized residues for GWR 
between O3 and ISO2 ranged from −2.80 to 1.79 in 2015, and − 2.83 
to 1.78 in 2018, values in the range of −2.00 to 2.00 accounted for 
93.94 and 96.97% of the total results, respectively. Standardized 
residues for GWR between O3 and PM10 ranged from −3.19 to 1.63, 
values in the range of −2.00 to 2.00 accounted for 93.94% in 2015, and 
ranged from −2.96 to 2.00 and values in the range of −2.00 to 2.00 
accounted for 95.45% of the total results in 2018. O3 pollution was 
positively correlated with the anthropogenic factors (ISE, ISO2, and 
PM10) in the majority cities as shown in Figure 10. It indicated that 
industrial soot emissions, industrial SO2 emissions, and inhaled fine 
particulate matter increased O3 pollution. The high-value area was 
located in the CP-UA and YRD-UA, and the low-value area was 
located in the BTH-UA.

Compared with 2015, the impacts of ISE on O3 pollution in 2018 
were reduced, while the impacts of ISO2 and PM10 emission were more 
significant. These mean that the upcoming industrial emission control 
policy should place greater emphasis on limiting the SO2 and PM10 
emissions in the CP-UA and YRD-UA. Specifically, SO2 emissions 
should be strictly controlled in the YRD-UA. And to control PM10 
emissions, all kinds of open-air incineration should be  strictly 
controlled and the government should strengthen the main 
responsibility of CP-UA governments for straw burning at all levels. 
In addition, the major sources of pollution in SO2, soot, and PM10 were 
industrial emissions. Therefore, the government needs to grasp the 
development direction of environmental protection technology of the 
“Made in China 2025” strategy, and encourage industrial enterprises 
to research, develop and introduce environmental protection 
technology, and accelerate the adjustment and optimization of the 
industrial structure in the BTH-UA, CP-UA, and YRD-UA. It will help 
to reduce the environmental burden. Specifically, control of exhaust 
pollution from mobile pollution sources should be strengthened and 
rigid industrial emission standards should be established, factories, 
which could not meet the standards, should be thus eliminated.

FIGURE 9

The distribution of the economic structural factor regression coefficient in 2015 and 2018. The per capita GDP (4*).
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FIGURE 10

The distribution of the anthropogenic factors regression coefficient in 2015 and 2018. Industrial soot emissions (8*), industrial SO2 emissions (12*), and 
average annual concentration of inhaled fine particulate matter (13*).
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4. Conclusion

Spatiotemporal variation of urban surface O3 and population-
weighted exposure risk characteristics were analyzed across China 
and the three typical urban agglomerations (BTH-UA, YRD-UA, and 
CP-UA) were identified as the hot regions, where their O3 
concentration exceed 160 μg·m−3, exceedance rate more than 20% and 
relatively high population-weighted exposure risk. The correlation 
analysis results in the hot regions show that high surface temperature, 
low relative humidity, and low wind speed were positive to O3 
increase and O3 pollution has changed significantly along with the 
season. So continue to strengthen the O3 response in summer and 
formulate a positive inventory of seasonal VOCs intensive emission 
reduction measures and implemented differentiated emission 
reduction measures. Moreover, GWR results revealed that O3 in 
majority cities were positively related with PD, Per_GDP, ISE, ISO2, 
and PM10, while negatively related with Administration and Green. 
Then, the urban agglomerations management strategies were 
established: (i) reasonable development plan of the administrative 
area and green space will be conducive to reduce O3 pollution and 
improve the urban air quality; (ii) the BTH-UA, CP-UA, and 
YRD-UA (especially YRD-UA) needed to build a joint pollution 
prevention and control model dominated by economic coordination 
and supplemented by policy and management coordination; and (iii) 
the upcoming industrial emission control policy should place greater 
emphasis on limiting the SO2 and PM10 emissions in the CP-UA and 
YRD-UA. And control of exhaust pollution from mobile pollution 
sources should be  strengthened and rigid industrial emission 
standards should be established, factories, which could not meet the 
standards, should be thus eliminated.
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