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Decomposition kinetics are fundamental for quantifying carbon and nutrient cycling 
in terrestrial and aquatic ecosystems. Several theories have been proposed to 
construct process-based kinetics laws, but most of these theories do not consider that 
microbial decomposers can adapt to environmental conditions, thereby modulating 
decomposition. Starting from the assumption that a homogeneous microbial 
community maximizes its growth rate over the period of decomposition, we formalize 
decomposition as an optimal control problem where the decomposition rate is a 
control variable. When maintenance respiration is negligible, we find that the optimal 
decomposition kinetics scale as the square root of the substrate concentration, 
resulting in growth kinetics following a Hill function with exponent 1/2 (rather than 
the Monod growth function). When maintenance respiration is important, optimal 
decomposition is a more complex function of substrate concentration, which 
does not decrease to zero as the substrate is depleted. With this optimality-based 
formulation, a trade-off emerges between microbial carbon-use efficiency (ratio of 
growth rate over substrate uptake rate) and decomposition rate at the beginning 
of decomposition. In environments where carbon substrates are easily lost due to 
abiotic or biotic factors, microbes with higher uptake capacity and lower efficiency 
are selected, compared to environments where substrates remain available. The 
proposed optimization framework provides an alternative to purely empirical or 
process-based formulations for decomposition, allowing exploration of the effects 
of microbial adaptation on element cycling.
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1. Introduction

Organic matter decomposition and its subsequent mineralization by microbial decomposers 
regulate the flow of carbon and nutrients in both terrestrial and aquatic systems. Two different 
sets of assumptions have been proposed to describe the kinetics of decomposition in 
mathematical models. First, based on the observation that the relative mass loss is nearly 
constant, first-order decay models were initially proposed (Salter and Green, 1933; Olson, 1963). 
The same concept has been adopted in numerous later biogeochemical models (Manzoni and 
Porporato, 2009). Second, more recent developments acknowledged the role of microbial 
biomass as a driver of decomposition and accounted for extra-cellular enzymes in the reaction 
kinetics. These works assume that the degradation of soil organic matter can be treated as an 
enzymatic reaction that follows Michaelis–Menten (Michaelis and Menten, 1913) or other 
nonlinear kinetics laws involving both substrate and enzyme concentrations (Wang and Post, 
2013; Tang and Riley, 2019). Even without describing enzymatic reactions per se, nonlinear 
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decomposition models inspired by Monod’s results (formally similar 
to Michaelis–Menten kinetics), or other nonlinear functions, have 
often been used to include microbial biomass as a driver of 
decomposition (Monod, 1949; Wutzler and Reichstein, 2008; Manzoni 
and Porporato, 2009; Abramoff et al., 2018). Despite their differences 
and contexts of application, linear and nonlinear approaches rely on 
some a priori assumption on the mathematical form of the 
decomposition kinetics.

Biogeochemical reactions in soils are complicated by chemical and 
spatial heterogeneities and by the diversity of microbial metabolic 
strategies. Hence, it is difficult to achieve a theoretically sound 
representation of macro-scale kinetics laws to interpret experimental data 
at the field scale, and in ecosystem models at even larger scales. Therefore, 
one could question whether the underlying kinetics laws should 
be imposed (as currently done) or regarded as emerging properties of the 
soil system, and derived based on some physical constrain or ecological 
consideration. In this contribution, we  follow the latter approach by 
formulating a decomposition model from an optimization perspective, 
assuming that decomposition should proceed so that decomposers 
maximize their cumulative growth over the duration of decomposition.

Optimization principles are commonly used in ecology and plant 
science (Rosen, 1967; Harrison et al., 2021). Their underlying assumption 
is that evolution leads to optimally-adapted phenotypes by selecting the 
fittest organisms. The objectives of such evolutionary optimization are 
typically the maximization of reproductive effort, resource use, or net 
growth rate. An optimal strategy often exists because resources are 
limited and therefore need to be used or allocated in particular and timely 
manners. Moreover, physiological trade-offs and enzymatic capacity 
constrain the range of possible resource use strategies (Gudelj et al., 2010; 
Allison, 2012; Waldherr et al., 2015). For example, carbon use efficiency 
(i.e., the ratio of growth rate over uptake rate) tends to be lower in fast 
growing organisms (Lipson, 2015; Muscarella et  al., 2020). 
Mathematically, given the optimization objective (fitness maximization) 
and constraints (resources are limited; physiological trade-offs), and 
assuming that some traits can be varied thanks to selective pressures, it is 
possible to formulate organism growth as an optimal control problem.

This is also the case for microbial decomposers, which exploit 
resources accumulated in organic matter (in soil, litter, sediments, or 
water) that are not only limited, but also subject to consumption by 
competing organisms and loss due to physical processes. Therefore, 
microbes face an inherent dilemma. On the one hand, resources could 
be  consumed rapidly to ensure maximal use, but high rates of 
consumption are generally achieved over a short period and with low 
efficiency of conversion to biomass. On the other end, some microbes 
could aim at consuming resources slowly and efficiently, but in such a 
case, resources could be  lost before they are consumed, because of 
abiotic processes or other organisms. Finding the optimal foraging 
strategy and the decomposition kinetics emerging as outcomes of this 
optimization problem frames the scope of this contribution.

Specifically, we ask:

 1. Is there an optimal decomposition rate that maximizes total 
microbial growth for a given substrate amount?

 2. Are the optimal decomposition kinetics consistent with 
established empirical or theoretical decomposition kinetics?

 3. How does the optimal decomposition rate vary with 
microbial traits?

 4. Are any trade-offs between growth rate and carbon-use efficiency 
emerging from the optimal decomposition strategy?

These questions are addressed by interpreting organic matter 
decomposition as an optimal control problem, which is solved 
analytically. The problem is set up in a general way, so that the 
derived equations can be applied to different decomposition systems, 
but we  illustrate results for terrestrial litter decomposition as a 
case study.

2. Methods

A simple carbon (C) cycling model with a single substrate mass 
balance is presented first (Section 2.1), followed by the optimality 
conditions and the boundary conditions for the optimization (Sections 
2.2 and 2.3). The equations describing microbial physiology are 
presented next (Section 2.4). The following Sections 2.5 and 2.6 detail 
the derivation of the analytical solution. Finally, the efficiency of the 
decomposition system is defined in Section 2.7. The model schematic is 
shown in Figure 1 and the symbols are explained in Table 1.

2.1. Carbon cycling model

We start from the premise that microbial decomposers aim at 
maximizing their growth rate (g) over a time interval tt  that is not 
prescribed, but allowed to emerge as a result of the optimization. Growth 
is achieved by assimilating organic C, which we assume is the main 
limiting substrate and energy provider (Figure 1). A single cohort of 
organic C is denoted by c (expressed as mass of C in the system), and its 
mass loss during decomposition is described. The C compartment is 
assumed chemically homogeneous for simplicity (well-mixed 
approximation). Mass loss is caused by microbial-driven decomposition 
at rate u , which is not specified a priori as typically done in 
biogeochemical models, but is instead derived as a result of the 
optimization. We assume that all decomposed C is taken up, so that 
decomposition and uptake rates are equal to u. Physical processes such 
as leaching and adsorption, or uptake by other organisms, also 
contribute to the depletion of substrate C, following first-order kinetics 
(with rate constant g ). The parameter g  is thus a measure of substrate 
C availability – higher g  implies faster losses due to abiotic or biotic 
factors that cannot be controlled by the microbial biomass. Microbial 
biomass is assumed in quasi-equilibrium, so that mortality equals 
growth. A fraction m  of microbial necromass production is assumed to 
be  recycled in the substrate compartment. Building on these 
assumptions, the mass balance equation of the organic matter cohort 
can thus be written as,

 
,= - - +

dc u c g
dt

g m
  

( ) 00 .=c c
 

(1)

2.2. Microbial growth as an optimal control 
problem

The microbial growth optimization problem can be formulated as 
the maximization of
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J g u dt

t
= ( )ò
0

t

,

 
(2)

with free terminal time tt  and no terminal gain, and subject to the 
mass-balance constraint in Equation (1). This constitutes an optimal 
control problem with control u bound to be  larger than  
zero.

Necessary conditions for the optimization can be expressed in terms 
of the Hamiltonian (H) and a Lagrange multiplier ( l ) as (Kirk, 1970; 
Lenhart and Workman, 2007)

 
H g dc

dt
g u c g= + = + - - +( )l l g m ,

 
(3)

 
0 1=

¶
¶

= + - +( )¢ ¢H
u

g gl m ,

 
(4)

 
- =

¶
¶

= -
d
dt

H
c

l
gl,

 
(5)

where we use the prime notation exclusively for derivatives with respect 
to u (e.g., ¢ = ¶ ¶g g u/ , ¢¢ = ¶ ¶g g u2 2

/ ) and continue with the Leibniz 
notation for other derivatives.

These necessary conditions are usually referred to as the Pontryagin 
Maximum Principle, in honor of the man who first proved the theorem 
in 1956. While the proof of the theorem is quite theoretical (Kirk, 1970), 
the basic idea is related to optimization in multivariable calculus. If a 
point x*  in n-dimensional space maximizes a function g x( )  subject 
to the constraint f x( ) = 0 , the Lagrange multiplier rule says that there 
exists a number l such that Ñ = Ñg fl  (where Ñ  indicates the 
gradient of the n-dimensional functions g and f).  
This can be  recast as a statement that x*  maximizes the so-called 
Hamiltonian function H g f= + l  (Equation (3)) for some l . The 
simplest proof of the version of the maximum principle we are using is 
based on elementary calculus (Lenhart and Workman, 2007).  Assuming 
the control variable u is the maximizer of the functional J u[ ]  (Equation 
(2)), we can choose any allowable variation v and assert that the function 
value  = 0  is the maximizer of the function J u v+[ ] . The conditions 
(4) and (5) follow from this maximization.

In Equations (4) and (5), the first equalities are the general necessary 
conditions for optimization, and the second equalities represent the 
optimization conditions specific to this model. The downward concavity 
of g(u) (Section 2.4) guarantees that the solution is the maximum of J.

Independent of the specifics of g(u), the temporal evolution of the 
Lagrange multiplier can be obtained by solving Equation (5),

 
l l gt e t( ) = 0 ,

 
(6)

where l0  represents the initial condition, to be determined from the 
boundary conditions of the optimization problem, as described in the 
following section.

A

B

C D

FIGURE 1

Schematic of the carbon cycling model (A), approaches to describe decomposition kinetics (B), main components of the microbial growth optimization 
problem (C), and optimal solutions (D). Symbols are defined in panel (A) and Table 1.

https://doi.org/10.3389/fevo.2023.1094269
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Manzoni et al. 10.3389/fevo.2023.1094269

Frontiers in Ecology and Evolution 04 frontiersin.org

2.3. Boundary conditions for the 
optimization problem

Equations (4) and (6) provide two conditions to determine the 
four unknowns c(t), u(t), l0 , and tt . Therefore, two additional 
conditions are required to mathematically close the problem. These 
conditions are specified at the terminal time tt . Because the terminal 
time is free, one of the conditions is given by setting the Hamiltonian 
to zero at t t= t . Moreover, at the terminal time, we assume that the C 
compartment is completely depleted. Taking c tt( ) = 0  into 
H tt( ) = 0  yields

 
g u gt t t tl m= -( ),  

(7)

where subscript t  indicates evaluation at the terminal time, so that 
u u tt t= ( ) , g g u tt t= ( )( ) , etc. Next, lt  in Equation (7) can 
be eliminated by using Equation (4) in the form,

 
l

m
=

-
¢
¢

g
g1
.

 
(8)

Then after evaluating at the terminal time and simplifying we find,

 g u gt t t= ¢ .  (9)

2.4. Growth model

The growth rate is expressed as a saturating function of the uptake 
rate, which as explained above equals the decomposition rate,

 
g u u

u
( ) = -

+
a

r
b

,
 

(10)

where a  is the maximum growth rate, b  is the half-saturation constant, 
and r  the rate of substrate uptake used for cellular maintenance. Because 
growth rate is by definition equal to the uptake rate times the microbial 
carbon use efficiency (CUE: ratio of growth rate over uptake rate), and 
CUE £ <emax 1 , the values of the half-saturation constant and the 
maximum growth rates must be  constrained to satisfy these limits. 
Specifically, we assume that the slope of the g(u) relation at small u (and 
for negligible r ) equals emax , so that a b= emax . The function g(u) is 
shown in Figures 2A,B for various parameter combinations.

The concave shape of the g(u) relation implies declining CUE as 
the decomposition rate u increases. This decline can be caused by 
different factors that are not included in this model, but that are 
surrogated by the g(u) relation: (i) The marginal return on 
investment in extra-cellular enzymes decreases with increasing u 
because enzyme synthesis is energetically costly (del Giorgio and 
Cole, 1998) and hydrogen peroxide required for oxidative enzyme 
functioning may cause cell damage, thereby reducing CUE 
(Manzoni et al., 2021). (ii) When the microbial population reaches 
a steady state, the rate of growth will become limited by the 
enzymatic capacity in the cell and on cell walls (Waldherr et al., 

2015). (iii) At high rates of enzyme release, the substrate binding 
sites may become saturated (Tang and Riley, 2013). (iv) Diffusion of 
the reaction products eventually becomes limiting (Vetter et  al., 
1998). (v) In the case of nitrogen-poor substrates, fast decomposition 
requires intense nitrogen immobilization, and when inorganic 
nitrogen sources are unavailable either microbial metabolism slows 
down due to nutrient limitation, or overflow respiration increases 
(Manzoni et al., 2021). In all these cases, net growth is expected to 
stabilize around a maximum value that allows cells to grow within 
their stoichiometric constraints.

With growth described by Equation (10), we can also define the 
microbial CUE as,

 
CUE = =

-( )
+( )

g
u

e
u

u umax .
b r
b

 
(11)

Higher values of maintenance respiration r  decrease CUE, potentially 
causing it to become negative when u < r . At high values of u 
compared to r  and b  (plentiful resources), CUE » e umax /b . In 
general, the maximum CUE is attained at intermediate values of u, but 
it remains below emax .

2.5. Nondimensionalization

Before beginning the analysis, it is helpful to nondimensionalize the 
problem, which reduces the number of parameters by two. To that end, 
we define dimensionless variables (see also Table 1):

C c
=
g
b

 (and initial condition C c
0

0=
g
b

),

U u
=
b

,

 T t= g  (and terminal time T tt tg= ),

 

0
0and initial condition ,bl bl

a a
æ öL = L =ç ÷è ø  

(12)

growth rate.

 
G g G g= =æ

è
ç

ö
ø
÷¢ ¢

a
b
a

and its derivative ,
 

(13)

and parameters

 
,r

b
=R

 
,am

b
=M

 
(14)

With these changes, the problem consists of an initial value problem 
in the nondimensional substrate concentration C (from Equation (1))
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( ) 0, 0 ,+ = - + =

dC C U G C C
dT

M
 

(15)

an optimality condition (from Equation (4))

 ( )1 0,+ - + =¢ ¢G GL M  
(16)

and terminal conditions (from Equation (9))

 G U Gt t t= ¢ ,

 
C Tt( ) = 0,  

(17)

where the subscript t  indicates the terminal time as before. We also 
define the nondimensional growth rate (from Equation (10)) and its 
derivative with respect to U,

 
( ) ,

1
-

=
+

UG U
U
R

 
( )

( )2
1 ,

1
¢

+
=

+
G U

U

R

 

(18)

A B

C D

E F

FIGURE 2

Effects of the half saturation constant of the microbial growth rate ( b , left panels) and of the first-order decay constant ( g , right panels), for two values of 
maintenance respiration ( r ) and maximum growth efficiency ( maxe ) on: (A,B) the relation between growth rate and decomposition rate, g(u); (C,D) the 
temporal trajectory of the optimal decomposition rate, u(t); and (E,F) the temporal trajectory of the substrate carbon, c(t). In all panels: 0c = 1 g, m = 0.5. In 
(B), curves with the same g value overlap, because g(u) does not depend on g . Parameter units are as in Table 1.
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and the nondimensional Lagrange multiplier (from Equation (6))

 ( ) 0 .L = L TT e  
(19)

The problem must be solved for parameters Ut , 0L , and Tt  and the 
variables U and C, after which the dimensional variables and functions 
can be determined from Equations (12)–(14).

2.6. Analytical solution

We start by substituting the formulas for G and ¢G  (Equation (18)) 
into the boundary condition in Equation (17) to obtain an  
equation for decomposition rate at the terminal time,

 

( )( )1
.

1¢

- +
= =

+
U UGU

G
t tt

t
t

R
R

 
(20)

TABLE 1 Symbols and units.

Symbol Explanation Units Nondimensional form

Variables and functions

c, 0c Substrate C mass g ,=
cC g
b  

00
cC g
b

=

CUE C-use efficiency, CUE 
g G
u U

= = 1

g Microbial growth rate g y−1 gG
a

=

H Hamiltonian function g y−1

S
Reverse nondimensional time, S T Tt= - 1

t Time y T tg=

u Decomposition rate g y−1
uU
b

=

V Auxiliary variable, V = 1 + U 1

l , 0l Lagrange multiplier 1
,bl

a
L =

 
00

bl
a

L =

Parameters

maxe Maximum microbial growth efficiency 1

m Parameter combination, ( )1= +m M R 1

k Decomposition rate constant in linear kinetics (only used in Figure 7) y−1

K Half saturation constant in monod-type kinetics (only used in Figure 7) g

v Maximum decomposition rate in Monod-type kinetics (only used in Figure 7) g y−1

a Maximum microbial growth rate, maxea b= g y−1

b Half saturation constant of the g(u) relation g y−1

g Rate constant for C losses that are not controlled by the decomposers y−1

h Overall system efficiency 1

m Fraction of necromass production recycled as substrate 1
=
amM
b

r Microbial maintenance respiration rate g y−1

=
rR
b

Subscripts and superscripts

¢ Differentiation with respect to u or U

0 Subscript indicating initial conditions (t = 0 or T = 0)

t Subscript indicating evaluation at the terminal time ( t tt= , T Tt= , or S = 0)
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Solving for Ut  we obtain

 
2 ,= + +Ut R R R  (21)

 ( )2
1 .

1
¢ +
=

+
G

U
t

t

R

 

(22)

The terminal (nondimensional) decomposition rate is therefore only a 
function of the maintenance respiration rate, and Ut = 0  when 
maintenance respiration is negligible. The result U Pt >  is somewhat 
surprising, as it means that G does not approach 0 at the end of the 
decomposition process. This will be a noteworthy feature in graphs of 
the results. In the subsequent analysis, it is helpful to define an additional 
function V = 1 + U and parameter ( )1= +m PM . Substituting V into 
Equation (22) yields the slightly simpler formula

 
2

1 ,¢ +
=G

V
t

t

R

 
(23)

where Vt  is found from the definition of V and Equation (21) as,

 
V P P Pt = + + +( )1 1 .

 
(24)

To find L0 , we combine the optimality condition of Equation (16) 
with the solution for L  of Equation (19), and evaluate at the 
terminal time,

 
0 2 2

1 .
1

¢
- -

¢
+

L = =
- -

T TG e e
G V m

t tt

t t

R
M  

(25)

We now turn to the quantities that are functions of time: ¢G , V, U, and 
C in turn. These quantities are best understood in reverse time, 
defined by

 S T T= -t .  (26)

¢G  follows from the optimality condition of Equation (16), since L  is 
fully known. After clearing the fractions, we obtain

 
( )2 2 2

.1

t

+
=

-
¢

+S
G

V m e m
R

 

(27)

The definition of ¢G  (Equation (18)) then yields

 
V V m e mS2 2 2 2= -( ) +t ,

 
(28)

 
U V m e mS= -( ) + -t

2 2 2
1.

 
(29)

To obtain the time trajectory of C, we first write the differential 
equation in reverse time, along with the reverse time initial condition 
(i.e., applied at S = 0 , corresponding to T T= t ). Substituting V for U 
and simplifying, we have

 
( ) ( )

2
1 , 0 0.= + - + + =

dC mC V C
dS V

M
 

(30)

This initial value problem has the surprisingly simple solution

 

2
2 1.

1
= - +

+
VC V
R  

(31)

which can be obtained using the integrating factor method and can 
be confirmed directly from the differential equation by applying the 

chain rule dC
dS

dC
dV
dV
dS

= , with dV
dS

 from Equation (28).

At this point, we still do not know the terminal time Tt  or the initial 
value of the decomposition rate U0 . By substituting V = 1 + U into the 
last result, we can obtain solutions for U and G in turn as functions  
of C,

 ( )( )1 ,= + + +U CR R R
 

(32)

 
.

1
+

=
+ + +

CG
C
R

R R  
(33)

From the first of these, we obtain the value of initial U,

 ( )( )0 01 .= + + +U CR R R
 

(34)

and the corresponding V U0 0 1= + ,

 
V P P C P0 01 1= + + + +( ).

 
(35)

Equations (32)–(35) show that the (nondimensional) decomposition 
rate can be expressed as a function of substrate C and maintenance 
respiration rate only.

Next, Vt  (Equation (24)) and V0  (Equation (35)) are substituted 
into Equation (28), evaluated at S T= t , to obtain

 

0 02 1 .
2 1
+ + -

=
+ -

T C Ue
U

t

t

M
M  

(36)

Taking the logarithm yields the terminal time

 

0 02 1ln .
2 1

æ + + - ö
= ç ÷+ -è ø

C UT
Ut
t

M
M  

(37)

Particularly compact solutions are found when 0=M  and/or 0=R  
(Table 2).
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2.7. Efficiency of the decomposition system

We define the overall efficiency of the decomposition system as the 
fraction of initial substrate C that is transferred to other compartments 
in the form of necromass. This definition is motivated by the argument 
that stabilized soil organic C is largely composed of microbial necromass 
(Liang et al., 2017), so that decomposition is efficient from the point of 
view of C storage when it results in a large net export of necromass. 
Accordingly, we define

 

( ) ( ) ( )( )max

0 0 0

1 1
,

- -
h = = ò

TJ e
G U T dT

c C

tm m

 
(38)

where J is the cumulative growth rate, which is maximized in the 
optimization problem (Equation (2)). Using this definition, we find

 

( )

( )
max

0 2 2 2

1 12 ln .

1
--

ì üé ù
ï ïê ú- + +ï ïê úh = -í ýê úï ïê ú- - +ï ïê úë ûî þ

T
T

e V mT
C m

V m e me
t

t

t
t

t

m R

 

(39)

More compact formulas for h  are reported in Table 2 for the simpler 
cases with 0=M  and/or 0=R .

2.8. Model parameters

The model is meant to represent a generic system where 
decomposers forage on a single cohort of a chemically homogeneous 
substrate in the absence of additional C inputs. For illustration, we chose 
parameter values broadly representing the decomposition of 1 g C of 
plant litter by microbial saprotrophs (for conciseness, in the following 
we do not specify ‘C’ in the units).

We expect that litter is decomposed over time scales of years, so that 
0 1< £g  y−1 (when studying CUE-growth trade-offs, we allow g  to 
reach as high as 104 y−1 for illustration). Consistent with these 

characteristic timescales and initial substrate C values, b  is allowed to 
vary in the range 0 1< £b  g y−1. The maximum growth efficiency is set 
to emax = 0.5, but we also consider values within the plausible range 
0 < £emax 0.8 (Manzoni et al., 2017). The maintenance respiration rate 
is varied in the range 0 0 4£ £r .  g y−1. There is no consensus on the 
fraction of decomposer necromass that is recycled as a substrate. 
Depending on the specific microorganism and environmental context, 
necromass can be labile or recalcitrant, but can also be stabilized via 
adsorption and occlusion within soil aggregates. For labile necromass 
that is re-used as substrate, m =1 , whereas for recalcitrant or otherwise 
not bioavailable necromass, m = 0 . Therefore, we  explore the full 
range 0 1£ £m .

Empirical and optimization models for decomposition were 
compared using a litterbag decomposition time series. To meet the model 
assumptions, we selected litter of Swida controversa, which is characterized 
by relatively low lignin content (to ensure a relatively homogeneous 
substrate) and high initial nitrogen content (to avoid nutrient limitation), 
and that was almost completely degraded by the end of the field incubation 
(data from “upper site” in Osono and Takeda, 2005). Linear ( u kc= ), 

Monod-type ( u vc
K c

=
+

), and optimization-based kinetics were used to 

fit the time series of remaining litter C. The three models shared the same 
structure (including respiration and necromass recycling, as in Figure 1A), 
and only varied by their decomposition kinetics. Parameters k (linear 
model), v and K (Monod model), and b  and r  (optimization model) 
were estimated by nonlinear least square fitting. For all models, we set 
g = 0 8.  y−1, emax = 0.5, m = 0.5.

3. Results

In the Results section, the solutions are shown in dimensional form 
for ease of interpretation, and to illustrate the role of individual parameters 
on optimal u, and corresponding g and c, during the decomposition 
process. We  start by presenting solutions as a function of time and 
remaining substrate C (Section 3.1). Next, we illustrate variations in initial 
decomposition rate and terminal time as microbial traits encoded in 
model parameters are changed (Section 3.2). Last, we present evidence of 

TABLE 2 Analytical solutions of the optimal decomposition problem when 0=M  or 0= =M R .

Simplified scenarios: 0,=M  0>R 0,=M  0=R
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CUE-growth rate trade-offs and describe patterns in system efficiency 
when microbes face increasingly large abiotic C losses (Section 3.3).

3.1. Optimal decomposition kinetics and 
substrate C trajectories

The optimal decomposition rate decreases through time, but it 
reaches zero at the terminal time only if maintenance respiration is set to 
zero (Figures 2C,D). Increasing the rate of uncontrolled losses g  or the 
half saturation constant b  (proportional to the maximum growth rate) 
increases the initial values of u (from dashed to solid lines in Figure 2). 
However, this more rapid initial depletion of the substrate causes u to 
decrease faster at higher g  or b . As a direct consequence of the patterns 
in u in combination with the uncontrolled losses, substrate C decreases 
faster with higher values of g  or b  (Figures 2E,F). Decomposition is 

also faster at any time point when maintenance respiration is larger than 
zero, because decomposition is promoted to compensate for maintenance 
C costs, compared to a scenario without maintenance respiration 
(compare colored and black lines in Figures 2C,D). Lower maximum 
growth efficiency ( emax ) slows down microbial growth, but marginally 
affects u and substrate C decline (orange vs. blue curves in Figure 2). 
Notably, necromass recycling does not affect u (Equation (32)), but 
slightly delays the decline in substrate C thanks to the partial recycling of 
C that would be otherwise lost from the system (not shown).

The shape of the optimal decomposition kinetics is best illustrated 
by plotting u as a function of substrate C (with time progressing as c is 
depleted). The u(c) function is concave downward, scaling approximately 
as c1 2/  with an intercept larger than zero at c = 0 when maintenance 
respiration is present (Figures  3A,B). This means that the optimal 
decomposition rate does not reach zero at the terminal time. Consistent 
with the time trajectories in Figure 2, increasing g  or b  shifts the u(c) 

A B

C D

E F

FIGURE 3

Effects of the half saturation constant of the microbial growth rate ( b , left panels) and of the first-order decay constant ( g , right panels), for two values of 
maintenance respiration ( r ) and maximum growth efficiency ( maxe ) on: (A,B) the relation between optimal decomposition rate and substrate carbon, 
u(c); (C,D) the relation between optimal growth rate and c, g(c); and (E,F) the relation between microbial C-use efficiency (CUE) and c. In all panels: 0c =
1 g, m = 0.5. Parameter units are as in Table 1.
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D E

C

F

FIGURE 4

Effect of half saturation constant ( b , left column), maintenance respiration rate ( r , central column), and maximum microbial growth efficiency ( maxe , 
right column) on initial optimal decomposition rate ( 0u , top row) and terminal time ( tt , bottom row), for two values of the first-order decay constant ( g , 
dashed vs. solid) and the necromass recycling fraction ( m , black vs. blue). Other parameters: 0c = 1 g (all panels), r  = 0.1 g y−1 (A,C,D,F), b  = 0.5 g y−1 
(B,C,E,F), maxe = 0.5 (A,B,D,E). In (A–C), lines with different values of m  overlap because 0u  is independent of m . In all panels: 0c = 1 g. Parameter units 
are as in Table 1.

FIGURE 5

Trade-off between initial microbial C-use efficiency ( CUE0 ) and initial 
growth rate ( 0g ), when varying the C loss rate constant ( g , increasing 
from 10−4 to 104 y−1 left to right along the curves). Line styles refer to 
different combinations of the half saturation constant ( b ), maintenance 
respiration rate ( r ), and maximum microbial growth efficiency ( maxe ). 
Other parameters: 0c =  1 g, m = 0.5. Parameter units are as in Table 1.

FIGURE 6

Whole system efficiency ( g ) as a function of the C loss rate constant  
( g ). Line styles refer to different combinations of the fraction of 
necromass recycled ( m ), maintenance respiration rate ( r ), and 
maximum microbial growth efficiency ( maxe ). Other parameters: 

0c = 1 g, b = 0.5 g y−1. Parameter units are as in Table 1.

curves upwards. The optimal growth rate broadly follows the patterns of 
u, but the decline of g near c = 0 is delayed compared to u (Figures 3C,D). 
As a result, the CUE increases during decomposition (i.e., with 
decreasing c) in the absence of maintenance costs, while it remains 
approximately stable otherwise (Figures 3E,F). Lower emax  decreases 
both g and CUE (orange vs. blue curves in Figure 3).

3.2. Initial decomposition rate and terminal 
time

The initial u increases with g  and b , whereas it is independent of 
emax  and m  (Figures 4A–C). The terminal time tt  also depends on g  
and b , showing inverse trends compared to u because faster 
decomposition implies shorter tt  (Figures 4D–F). When necromass is 
recycled, the time to consume all the substrate increases (blue vs. black 
curves in Figures 4D,F). Similarly, higher values of emax  – by promoting 
C retention in the system – lengthen the decomposition process, 
although this effect appears only when m > 0  (Figure 4F).

3.3. C-use efficiency-growth trade-offs and 
system efficiency

Varying the rate of C losses g  drives changes in the initial 
decomposition rate, growth rate, and CUE. As both these rates increase, 
initial CUE decreases (Figure 5 shows the relation between CUE and 
growth rate), implying a rate-efficiency trade-off along environmental 
gradients where resource losses vary. The trade-off is stronger when 
r = 0  (black curves in Figure 5), because maintenance respiration tends 

to reduce variations in CUE (Figures 3E,F). Moreover, decreasing emax  
shifts the trade-off relations towards lower CUE values and lower initial 
growth rates (orange vs. blue curves in Figure 5).

The overall system efficiency ( h ), decreases as substrate C 
losses increase (Figure 6). Such a decrease can be compensated by a 
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A B C

FIGURE 7

Comparison of linear ( u kc= ), Monod-type (
vcu

K c
=

+ ), and optimal decomposition kinetics to describe litter C mass loss: (A) temporal trajectory of litter C 
(c) and model fitting performance (RMSE: root mean square error; R2: coefficient of determination), (B) decomposition rate as a function of litter C (u(c)), 
and (C) microbial growth rate as a function of litter C (g(c)). Data are from Osono and Takeda (2005); see details on model fitting in Section 2.8 (linear 
model parameter: k = 0.94 y−1; Monod model parameters: v = 1.68 g y−1, K = 1.00 g; optimization model parameters: b = 0.3 g y−1, r =  0.002 g y−1).

lower fraction of necromass recycled (dashed vs. solid lines), a lower 
rate of maintenance respiration (black vs. colored lines), or a higher 
emax  (blue vs. orange curves in Figure  6). The strong effect of 
necromass recycling is explained by our definition of system 
efficiency as the fraction of initial C that is transferred to stabilized 
forms (i.e., that is not recycled as a labile substrate). The latter two 
parameters ( r , emax ) instead regulate C retention in biomass, and 
thus how much of the C that microbes take up can 
be eventually stabilized.

4. Discussion

We proposed an optimization approach to define decomposition 
kinetics, based on the idea that decomposition is an emergent 
property of complex microbial dynamics that might be difficult to 
capture with prescribed kinetics. In our approach, maximum growth 
is attained by balancing C gains from substrate uptake and C costs 
for substrate acquisition, maintenance, and growth. This simple 
principle has already been applied to describe various aspects of 
decomposition (see a short review of the literature in Section 4.1), 
but not to our knowledge to define the shape of the decomposition 
kinetics or changes in decomposition rate through time. The 
advantage in doing so is that the optimal kinetics structurally 
account for environmental conditions (resource limitation setting 
constraints on the optimization) and physiological trade-offs. In 
contrast, models with prescribed kinetics can only account for these 
effects through time invariant parameter which might not offer 
sufficient flexibility to capture microbial adaptations. This advantage 
might prove particularly important when studying microbial 
responses to combined climate and land use changes, which 
challenge microbial communities in ways difficult to replicate 
in experiments.

4.1. Is there an optimal decomposition rate 
that maximizes total microbial growth for a 
given substrate amount?

Describing the decomposition process as an optimal control 
problem allows for determining the decomposition rate that maximizes 

microbial growth over the decomposition period. This approach builds 
on the Darwinian principle that organisms able to maximize their fitness 
(reproductive success, which translates into biomass growth for soil 
microbes) should be selected by evolutionary processes (Harrison et al., 
2021). This idea has been exploited in previous theoretical works. For 
example, enzyme synthesis for competing cellular processes (Baloo and 
Ramkrishna, 1991), cell wall transporter abundance (Casey and Follows, 
2020), internal cell composition (Franklin et al., 2011; Maitra and Dill, 
2015), allocation to extra-cellular enzymes (Vetter et al., 1998; Averill, 
2014; Wutzler et  al., 2017; Calabrese et  al., 2022), rates of specific 
metabolic reactions (Vallino et al., 1996), or allocation of C to growth 
vs. respiratory processes (Manzoni et  al., 2017) can be  optimized. 
However, in most of these approaches, the growth rate was maximized 
at a given time and for given conditions, neglecting an essential feature 
of decomposition systems – the limiting resources are finite and 
maximizing growth or consumption rates can lead to a rapid, and 
suboptimal, resource depletion. Here we approach the problem from the 
alternative perspective of optimal decomposition rate constrained by 
limited resource availability.

We found that there is indeed an optimal decomposition rate that 
allows microbes to effectively ‘compete’ with biotic or abiotic processes 
that remove C substrate from the system. Decomposition rates higher 
than the optimal would result in faster growth, but for a shorter time and 
at a relatively lower CUE. In contrast, slower rates would leave more 
substrate to the competitors or to abiotic processes removing resources 
from the system, leading to lower growth over the whole decomposition 
period. As substrate losses decrease (lower g ), the optimal decomposition 
rate is reduced while decomposition time (i.e., terminal time) increases, 
maximizing the cumulative growth. Notably, the optimal decomposition 
rate tends to zero in the absence of substrate losses ( g = 0 ). This 
mathematical result suggests that microbes invest energy and nutrients in 
the production of extra-cellular enzymes as long as there is an evolutionary 
pressure to do so – if the substrate always remained available through 
time, microbes would not evolve costly acquisition strategies.

An optimal balance between resource use and time to deplete the 
resource emerges also in other ecological contexts. For example, plant 
transpiration rate can be  optimized (via regulation of stomatal 
conductance) to maximize plant net C assimilation. This problem has 
been formulated – as for decomposition models – as an instantaneous 
maximization problem (e.g., Bassiouni and Vico, 2021 and references 
therein) or an optimal control problem including the constraint that soil 
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water is limited (Manzoni et al., 2022). The advantage of formulating 
resource consumption problems by formally accounting for resource 
availability constraints (limited substrate C, or soil water in the case of 
plant growth) is that the optimal solution naturally captures the 
consumption rate-time trade-off that is inherent in these problems. 
Approaches based instead on instantaneous maximization can lead to 
sub-optimal solutions (Feng et al., 2022).

4.2. Are the optimal decomposition kinetics 
consistent with established empirical or 
theoretical decomposition kinetics?

Most optimization approaches focused on finding optimal model 
parameter values for prescribed kinetics of decomposition (Baloo and 
Ramkrishna, 1991; Averill, 2014; Wutzler et  al., 2017; Casey and 
Follows, 2020; Calabrese et al., 2022). Here instead we do not prescribe 
any specific kinetics of decomposition, but let that emerge from the 
optimization. The optimal decomposition rate is in fact obtained 
analytically as a function of C availability during decomposition.

The optimal kinetics of decomposition scale as the square root of 
substrate C (Figures 3A,B; Table 2). As a consequence, the optimal 
growth rate resembles the Monod-type decomposition functions 
often used in models of microbial growth in cultures (Monod, 1949) 
and then re-purposed for soil C cycling models (see Manzoni and 
Porporato, 2009 for a review), although in our optimal solution 
substrate C appears under square root. The Monod form emerges 
from the combination of transport and uptake limitations or 
competing chemical reactions and physical processes (Liu, 2007; 
Tang and Riley, 2019). In contrast, here the curvature of the optimal 
decomposition rate vs. C concentration relation is due to two factors: 
decreasing returns at high decomposition rates (Equation (10)) and 
higher rates required to compete with other processes removing 
substrate C from the system.

It is noteworthy that even without prescribing specific 
mechanisms of C release from the substrate (enzymatic reaction 
kinetics, extra-cellular enzyme synthesis) and transport from the site 
of decomposition to the cells (diffusion, advection), we  obtain 
optimal kinetics that have similar downward concavity as previously 
proposed kinetics laws. This similarity is apparent when fitting 
empirical and optimal kinetics to the same litter decomposition 
dataset (Figure 7). The optimal kinetics perform as well as linear or 
Monod-type kinetics, at least in the case study of a relatively 
homogeneous and labile litter we selected for illustration (Figure 7A). 
The optimal and Monod-type u(c) and g(c) relations share some 
qualitative similarities – e.g., downward concavity and convergence 
to u ~ 0 at low c. However, they both differ from the simpler linear 
kinetics that do not saturate at high values of c.

In contrast to Monod-type relations, as the substrate concentration 
decreases, the optimal kinetics tend to zero only when maintenance 
respiration is negligible, whereas in general they converge to a value 
larger than zero, and for small values of maintenance respiration, 
u ~ r . This behavior is due to the presence of maintenance costs that 
require fast decomposition at low substrate to maintain positive growth 
even at the end of the decomposition process. This result can 
be contextualized by recalling that our model describes dynamics in 
homogeneous conditions. We  can then consider a collection of 
homogeneous litter (or soil) patches that are internally homogeneous, 
but that differ in initial C or environmental conditions. The terminal 

times in each of these patches will differ, resulting in the superposition 
of patch-scale u(c) curves that could cause a tapering off of the C decay 
trajectory at the macroscopic scale when some patches have very long 
terminal times. Other processes not included here, such as dormancy, 
could also lengthen the decomposition process. We speculate that these 
effects could explain why empirical kinetics reach zero at low substrate 
concentrations and thus appear to be sub-optimal.

Moreover, different from classical microbial growth kinetics, the 
optimal decomposition rate increases with increasing rate of resource 
loss. While there is a clear ecological explanation for this effect 
(Section 4.1), we can also interpret g  from a physical perspective for 
the case study of terrestrial litter decomposition. Leaching of organic 
C could be  modelled as the product of the medium hydraulic 
conductance and C concentration, so that g  is interpreted as 
hydraulic conductivity for a given litter layer thickness. In turn, soil 
hydraulic conductivity scales as medium water content to a power 
typically higher than 10 for soils (Rodriguez-Iturbe and Porporato, 
2004), suggesting a strong nonlinear control of water content on C 
losses in moist conditions. Because optimal decomposition scales as 
the square root of g , we can expect it to also scale as water content 
to a power ~ 5. This result suggests that decomposition rates in wet 
– but still oxic – environments should have evolved in such a way as 
to increase more than linearly with water content just to contrast 
hydrological-driven C losses.

The similarities of the optimal and empirical kinetics suggest that 
the proposed equations could be tested in soil C cycling models as an 
alternative to currently employed kinetics (Figure 1B). There are major 
differences between the idealized model structure we adopted and the 
multi-compartment structures of most C cycling models, and the 
parameters in our formulation (e.g., b  and r ) are not widely 
available, hindering a direct application of our solutions in C cycling 
models. However, it would be interesting to test if kinetics with the 
same functional form as the optimal solution, but with parameters to 
be  calibrated, perform well once included in the more complex C 
cycling models. This approach rests on the assumption that each 
compartment of these models behaves like one substrate-microbial 
biomass pair as conceptualized here. An application of this approach is 
illustrated in Figure 7 for a relatively homogeneous litter type.

4.3. How does the optimal decomposition 
rate vary with microbial traits?

Microbial traits encoded in model parameters affect the optimal 
decomposition rate mostly via the half saturation constant of the 
growth function ( b ) and the rate of maintenance respiration ( r ). 
Higher maximum microbial CUE and the fraction of recycled 
necromass increase the terminal time of decomposition because they 
promote C retention in the system, but they do not affect the optimal 
decomposition rate per se (Figure 4).

The effect of b  can be explained by recalling first that growth is 
also rescaled by b  to ensure that CUE remains lower than one. This 
means that b  also regulates the maximum growth rate. Therefore, 
microbes with higher growth capacity should evolve a matching 
decomposition capacity, even if the relation between these two traits is 
predicted to be nonlinear, with decomposition rate scaling as the square 
root of b  (Table 2). Higher maintenance costs require an increased 
decomposition rate to ensure positive net growth (Section 4.2), so 
increasing r  promotes faster decomposition (Figure 4B; Table 2), even 
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though microbial CUE is decreased. Moreover, if both b  and r  
exhibit similar sensitivities to environmental conditions, that sensitivity 
will be retained in the decomposition rate, because u scales linearly 
with r  and br  (Table 2). For example, physiological responses to 
warming in terms of changes in r  and b  should be  reflected by 
similar temperature dependence of the overall decomposition rate.

4.4. Are any trade-offs between growth rate 
and CUE emerging from the optimal 
decomposition strategy?

It has been hypothesized that CUE could exhibit an inverse relation 
with decomposition or growth rate when comparing different microbial 
resource use strategies, due to increasing inefficiencies at high rates 
(Roller and Schmidt, 2015). The occurrence of such a relation is 
debated – there is both supporting (Muscarella et  al., 2020) and 
contrasting (Calabrese et al., 2021) evidence of CUE-growth rate trade-
offs across isolates grown in laboratory studies. However, this trade-off 
can occur in whole soil microbial communities (Lipson et al., 2009) 
that have adapted to a range of competition pressures (Lipson, 2015). 
High CUE and low resource acquisition are expected to be selected in 
high-resource environments (high yield strategy, ‘Y’), while high 
resource acquisition and low CUE would be selected in low-resource 
and highly competitive conditions (acquisition strategy, ‘A’) (Malik 
et al., 2020). Consistent with this conceptual understanding, we found 
that microbial CUE decreases with increasing optimal decomposition 
or growth rate when the risk of losing C is higher (increasing g ; 
Figure 5) or when initial C is lower (results not shown) – i.e., when the 
long-term resource availability decreases.

The tradeoff we found is also consistent with results from another 
optimization approach, where the allocation of resources to growth 
(equivalent to our CUE) was the control variable (Frank, 2010). In that 
framework, microbial populations with lower CUE were selected when 
the expected survival time of the population was shorter, suggesting 
that environments with high rate of resource loss (high g ) or subjected 
to frequent disturbances should select strains with fast, but 
inefficient, growth.

The shape of the CUE-growth trade-off varies with r . Higher 
maintenance costs, by promoting high optimal decomposition rates, 
also keep microbes far from the high-efficiency growth that would 
occur at low decomposition rate and r  = 0. As a result, the CUE-rate 
inverse relation flattens as r  is increased. This result is qualitatively 
consistent with empirical evidence that the CUE-growth rate relation 
is negative in microbes with high efficiency (low maintenance costs) 
and relatively flat in microbes with low efficiency (high maintenance 
costs) (Muscarella et al., 2020).

4.5. Model limitations and extensions

The proposed model, with a single substrate pool and a single 
microbial pool, is relatively simple to analyze, allowing full analytical 
tractability. While this ‘minimal’ model offers clear insights on the 
optimal kinetics and their consequences on the substrate C balance, it 
misses potentially important biological, biochemical, and ecological 
factors. From a biological perspective, we did not study how specific 
metabolic processes might be  optimized, but focused on the 
macroscopic effect of such processes on decomposition capacity 

(expressed through the control variable u). As a first step towards 
improved biological realism, maintenance respiration could be coupled 
to decomposition capacity by assuming that higher capacity is possible 
thanks to higher respiratory costs for synthesizing enzymes (as in 
Calabrese et al., 2022, but in a temporally dynamic context). As an 
alternative, complex metabolic networks have been analyzed using 
optimization methods to predict biomass growth and substrate 
consumption rates (Vallino, 2010; Waldherr et al., 2015; Giordano et al., 
2016). While less mechanistic, our approach shows the kinetics of 
decomposition that would emerge had the decomposers been 
optimally adapted.

Perhaps the main limitation of our approach is that it postulates 
that the whole microbial community adapts in the same way. Clearly, 
competition, mutualism, and predation shape microbial community 
dynamics (Allison, 2014; Abs et al., 2020; Sokol et al., 2022), providing 
evolutionary pressures to exploit different niches. However, one could 
argue that as a first approximation, the (optimal) behavior of a 
representative organism in the community could be identified and 
used to characterize the average system dynamics. Studying the 
aggregated dynamics instead of letting it emerge from the underlying 
interactions is prone to aggregation errors (Chakrawal et al., 2020), 
but at least it allows identifying the main controlling factors in a 
transparent way. For example, CUE at community level varies along 
nutrient availability gradients as predicted by a community level 
optimality criterion (Manzoni et al., 2017). In plant communities, 
most species exhibit traits converging towards the community 
weighted mean, also suggesting some degree of coordination in the 
way plants within the community acclimate and adapt (Muscarella 
and Uriarte, 2016). This evidence supports our assumption that – as 
a first approximation – optimality criteria can be  applied at the 
community level.

This interpretation, however, can be  problematic when 
investigating long-term processes such as decomposition. In fact, as 
litter is decomposed, the microbial community undergoes 
successional dynamics (Berg and McClaugherty, 2003). 
We  incorporated shifts in community composition from 
low-efficiency, fast-growing organisms (r-strategists) to high-
efficiency, slow-growing ones (K-strategists) through the shape of 
the g(u) relation. Therefore, rather than predicting the outcome of 
succession, our model is constrained by its occurrence in terms of 
varying CUE. The optimal u we obtain should then be interpreted 
as the realized decomposition rate that maximizes the community-
level growth over the decomposition process, regardless of the 
specific actors involved at any particular time during the process.

Previous contributions have explored optimal allocation to enzymes 
targeting different compounds (Averill, 2014; Wutzler et al., 2017), but not 
in a dynamic context where the goal function is cumulative biomass growth, 
as done here. Other efforts focused on the selection process per se, by 
modelling interacting microbial taxa (Allison, 2014; Abs et al., 2020), but 
translating those results into easily applicable kinetics laws is difficult. 
Including multiple substrate pools and enzymes targeting specific substrates 
in our optimal control framework would thus complement these previous 
works. Moreover, microbial biomass dynamics could be  explicitly 
represented by an additional mass balance constraint. Along these lines, 
considering also different microbial functional groups would allow 
addressing the current limitation that optimization is performed at the 
community level, but would also raise additional questions – should all 
groups behave optimally given the presence of the other groups? Or should 
we postulate an ‘ecosystem level’ optimality criterion (Dewar, 2010)?
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5. Conclusion

Starting from the assumption that the decomposition rate is 
optimized to maximize microbial growth, we have developed an 
analytical model of organic matter decomposition. When neglecting 
maintenance respiration, the optimal decomposition kinetics scale 
as the square root of the substrate C content, so that the growth rate 
follows a Hill function with exponent ½. In a more general case, 
including maintenance respiration, optimal kinetics diverge from 
typical Hill functions, for example by prescribing high 
decomposition rates even when substrates are nearly exhausted. The 
evolutionary pressure for performing rapid decomposition is 
provided here by the risk of losing resources to abiotic processes or 
other organisms. When such a risk increases, the optimal microbial 
foraging strategy shifts from high efficiency growth and slow 
decomposition rates to low efficiency growth and fast rates. 
Therefore, a growth efficiency-rate trade-off emerges along 
gradients of increasing pressure to use limiting resources.
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