
Frontiers in Ecology and Evolution

OPEN ACCESS

EDITED BY

Chris Templeton,
Western Washington University,
United States

REVIEWED BY

Felipe N. Moreno-Gómez,
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Anthropogenic noise in marine and freshwater environments has increased

dramatically, with a range of negative impacts and detrimental consequences

on many aquatic animals across taxa. Benthic organisms, including many

invertebrates, can sense underwater sounds, yet the responses they trigger in

these organisms have received little attention. We conducted two laboratory-

based experiments to investigate the effect of underwater sound playback on the

movement behavior and feeding performance of the red cherry shrimp

Neocaridina davidi as a model of freshwater decapod. Movement speed

decreased significantly upon opening the divider in both the sound and

control treatments. However, there were no significant sound-dependent

changes overall between the control and sound treatments. The spatial

distribution of shrimp in response to the sound treatment showed significant

changes; shrimp spent more time at the farthest one-third position from the

sound source. Feeding latency (latency to find food) also increased in the sound

treatment compared to the control. Moreover, in terms of the number of

successes and failures in finding the food source in the control treatment,

significantly more shrimp succeeded in finding the food source. The number

of revisits to the food source decreased in the sound treatment compared to

control and more shrimp were significantly distracted in the sound treatment.

Our study highlights the potential for human-made sound to impact on

crustacean activity. Thus, they are prone to the impacts of anthropogenic

noise, causing negative impacts on their movement-swimming activities, and

feeding behavior. Behavioral changes observed, namely altered feeding and

locomotory behavior may have wider-reaching negative effects, including

detrimental impacts on animal fitness.
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behavior, ornamental shrimp, feeding performance, noise pollution, movement
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1 Introduction

Over recent decades, environmental pollution caused by human

activities has altered terrestrial and aquatic habitats globally (Kight

and Swaddle, 2011). Aquatic animals use signals and exploit cues to

explore their habitat and perform various biological activities (Kight

and Swaddle, 2011). In aquatic habitats, anthropogenic noise (Kunc

et al., 2015; Peng et al., 2015) have quite diversely changed acoustic

characteristics of the environment globally, and subsequently

encountered many species under threat of extinction. The ability

to exploit such habitat information is crucial and a prerequisite for

survival. Interference with these sensory systems due to introducing

novel stimuli may be detrimental to their feeding efficiency success,

communication with conspecifics, locating prey, avoiding

predators, and courtship performances (Dominoni et al., 2020).

Sound, as an informative sensory stimulus, is a key signal in the

aquatic environment and attenuates less over the same distance in

water than in air (Slabbekoorn et al., 2010). Sound can therefore be

propagated over long distances in aquatic habitats (Hawkins and

Myrberg, 1983). Sound pollution is omnipresent in aquatic habitats

and may affect large areas. It therefore may negatively affect aquatic

species not only at the individual level, but also at an environment

level changing species interactions (Slabbekoorn et al., 2010; Kunc

et al., 2016; Shannon et al., 2016; De Jong et al., 2018; Slabbekoorn

et al., 2019).

Anthropogenic noise has a wide range of impacts and cascading

effects at variety of trophic levels, that can reverberate at community

levels and increase soundscape complexity in aquatic ecosystems

(Slabbekoorn et al., 2010; Shafiei Sabet et al., 2016c; Kok et al., 2023;

Rojas et al., 2023). Aquatic animals need to optimize time allocation

with behaviors and enhance activity performance in behaviors that

are crucial for their success in survival and reproduction. Feeding

activity in animals is a complex process which involves several

sequences, and behavioral choices such as when, where, what and

how to feed (Galef and Giraldeau, 2001). Noise could play a

prominent role and act negatively as a stressor in a wide range of

animals (i.e. Wright et al., 2007b; Williams et al., 2015). Acoustic

events and elevation in ambient noise levels may influence a range

of feeding activates among species and consequently compromise

feeding performance in aquatic animals (Purser and Radford, 2011;

Wale et al., 2013; Voellmy et al., 2014). Noise could act as a

distracting stimulus, diverting an individual’s limited attention

from their primary tasks to the noise stimuli now present in the

environment (Chan and Blumstein, 2011). This could impair

foraging success if suitable feeding items are detected less

frequently or at lower finding speed, are assessed with lower

attention, or if food items are captured with more discrimination

and handling errors (Purser and Radford, 2011). Moreover, acoustic

stimulus can play an important role as habitat-specific cues in

orientation through heterogeneous habitats (Huijbers et al., 2012).

Noise could cause spatial distribution of aquatic animals. Fishes that

live in the water column and are motile have some choice to adopt

and select where they live and they can show spatial preferences in a

way when they are in noisy areas (Holles et al., 2013; Shafiei Sabet
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et al., 2016a). They may move into quieter areas to avoid potential

impacts of elevated noise levels on their feeding activities.

There are well documented research outputs and assessments

on how anthropogenic noise affects marine mammals (Wright et al.,

2007a; Nowacek et al., 2007; Southall et al., 2008) and marine fish

species (Bruintjes et al., 2015; Simpson et al., 2016; Herbert-Read

et al., 2017). However, there has been limited attention paid to the

potential impacts of anthropogenic noise on aquatic invertebrates

(Wale et al., 2013; Roberts et al., 2015; Williams et al., 2015; Roberts

et al., 2016). Although invertebrates are quite diverse, important for

all trophic levels, and have a relatively large abundance in marine

and freshwater environments (Morley et al., 2014; Solan et al.,

2016), their capability to detect and potentially exploit sound is

relatively unknown. Marine decapods play an important role in top-

down control of prey populations and can significantly impact

community structure in aquatic habitats (Bell and Coull, 1978;

Reise, 1979). Yet, the potential effects of anthropogenic noise on

freshwater decapods and their role in regulating top-down and

button-up cascading impacts in aquatic food webs and predator–

prey interaction consequences are unknown (Azarm-Karnagh

et al., 2023).

The red cherry shrimp (Neocaridina davidi) is a tiny and

gregarious benthic freshwater invertebrate species of shrimp with

a wide distribution, occurring from Southeast Asia to Europe

(Liang, 2004; Wowor et al., 2004; Klotz et al., 2013; Onuki and

Fuke, 2022). Although this species is an ornamental crustacean and

provides an important link between trophic levels and food webs

(Kelly et al., 2012; Weber and Traunspurger, 2016), its behavioral

responses to stress stimuli are still poorly understood. In contrast to

marine habitats, given the broad-ranging diet of the red cherry

shrimp, it is likely that this species also influences food webs in

freshwater habitats. However, there is currently a general lack of

knowledge concerning how anthropogenic noise may affect their

biological and ecological performance.

In the current study, two experiments were conducted to

analyse the effect of sound playbacks on the locomotor behavior

and feeding activities of the red cherry shrimp under laboratory

conditions. In the first experiment we evaluated the initial releasing

movement speed, spatial distribution, food-finding latency (the

time to find the food source), the number of successes and

failures in finding the food source, and the number of revisits to

the food source in response to ambient noise conditions (control

treatment) and an elevated generated sound (anthropogenic) level.

In the second experiment we investigated sound-related feeding

distraction in response to ambient noise conditions as a control

treatment and an elevated generated sound level.
2 Material and methods

2.1 Study animals and husbandry

Subjects were 140 (70 females; 70 males) red cherry shrimp

(Neocaridina davidi). All shrimp were purchased from a local
frontiersin.org
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aquatic pet dealer in Rasht city, Iran. Due to the COVID-19

pandemic and social distance limitations at University of Guilan,

all experiments were run at the home of SAK. For acclimation to the

new tank conditions, the animals were transferred to a glass holding

tank (see Figure S1 in the Supplementary Materials) (48 × 28 ×

32 cm and 4 mm wall thickness) for one week equipped with a

150 watts heater, sponge biofilter, Java moss, natural plant, a 12

watts LED light, and sandy bed and plant soil. Water temperature

was kept at 26 ± 1°C, aeration 5 L/min, and the light period was 14

D: 10 L. Shrimp were fed every 12 hours with Spirulina algae tablets,

with any excess cleared from the holding tank during tank

maintenance no more than 4 h after feeding. Although there was

a constant water change within the holding tank, 25% of water was

removed by siphon with excess food and waste; this water was

replaced by normal tank flow-through. Water changes and the flow-

through system ensured the maintenance of constant oxygen levels

and the removal of any metabolic waste materials. The physical and

chemical conditions, such as ambient acoustics, water temperature,

water changes, for both tanks (holding and experimental), were

similar. The sex ratio of shrimp was 1:1, and all mature shrimp had

a body length ranging from 2 to 2.5 cm.
2.2 General experimental design

Both experiments were conducted in a tank (40 × 30 × 30 cm)

with 4 mm thick walls, two divider plates, and a dewatering surface

of 20 cm. Water temperature, pH, total dissolved solids (TDS), light

intensity, and NO3
−, NO2

−, NH4
+ were measured (see Table S1 in

the Supplementary Materials). Light intensity was recorded daily at

the beginning and end of each treatment. Light intensity was

measured 20 cm above the water level and in the bottom-middle

of the tank. The other parameters were measured daily before each

treatment. In each experiment, 35 shrimp were used for each

treatment with an alternation of both males and females. The

playback speaker was placed behind a vertical partition 6 cm

from one short side of the tank. The experimental tank was

placed on a 5 cm thick foam pipe lagging to minimize sound

transfer and its sides were covered with opaque black paint to

minimize distraction from visual reflections.
2.3 Sound characteristics

The sounds used for both experiments in this study were created

using specialized software (Audacity-win-vr 2.3.1), based on Shafiei

Sabet et al. (2015). Two synthetic acoustic stimuli including elevated

sound treatment and silent playback control hereafter ambient noise

treatment (20 min duration each treatment) were used in these

experiments, presenting frequencies that fall within the likely

hearing range of the red cherry shrimp. The ambient noise

frequency (control) was 400 to 2000 Hz with an intensity of 96.54

± 1 dB in WAV format. For the elevated sound treatment, a sound

with a continuous pattern (Broad band white noise) and frequency of

400 to 2000 Hz, intensity of 110.40 ± 1, and inWAV format was used

(For acoustic stimuli validation see Figure 1 and Supplementary
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Material). A 30-watt hand-built underwater speaker with a frequency

of 0 to 3000 Hz, a model laptop (Lenovo-V110), an amplifier, and a

12 V sealed battery were used to supply the required power. The

frequency range of auditory sensitivity for invertebrates varies

(Morley et al., 2014; Solé et al., 2023) and there are no data for the

red cherry shrimp. However, we expected their sensitivity to overlap

the lower frequency range offish hearing and our current stimuli (see

Figure 1). We randomized the order of two trials per individual for

the sound treatment and one control to avoid the effect of treatment

being confounded by an order effect.
2.4 Sound measurement and analysis

The sound emitted in the experimental tank environment was

measured using a sound measuring device (TASCAM-DR-

100MK2) equipped with a calibrated hydrophone by a specialized

standard method (Shafiei Sabet et al., 2015). The sound data were

imported into R (RStudio Team, 2020; v.3.6.3) for analysis under

specialized acoustic programming and the sound intensity (dB ref

1 µPa), frequency (Hz), sensitivity and sample rate were measured

(see Figure S2 in the Supplementary Materials). Graph of sound

pressure level or SPL per unit (dB ref 1µPa2/Hz) were drawn by the

R software (The R Foundation for Statistical Computing, Vienna,

Austria, http://www.r-project.org) using packages: devtools and

ggplots2 and also a custom-made R-package. (Figure 1).
2.5 Analysis of behavior

Following the one-week acclimation period, the behaviors of the

red cherry shrimp (video recordings) were analyzed using Logger

Pro® software (Vernier Software & Technology, Beaverton, OR,

USA, version 3.14.1). To analyze behavioral observations in all

trials, the temporal resolution of the recorded videos were reduced

to 1 frame per second (due to the slow movement of the shrimp and

the ease of recording the movement points and the movement speed

and spatial distribution. All processing behavioral data were done

without the audio track to ensure the treatment sequence was blind

for the observer (SAK).
2.6 First experiment: movement speed,
spatial distribution, feeding latency, food
finding success and number of times the
shrimp revisited the food source

In the first experiment, before starting the main experiments,

shrimp (n = 70; 35 individuals per treatment) were denied access to

food for 48 hours in the holding tank. Then, in order to acclimate to

the experiment tank (see Figure S3 in the Supplementary Materials),

1 hour before the test, they were individually transferred to the

starting area behind a divider plate. All transferring procedures

were gentle and remained the same for all trials. At this time, the

food source was added to the other side of the divider plate. In the

ambient noise treatment, the ambient noise was played (20 minutes
frontiersin.org
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duration) at the same time as the divider plate was removed (2 cm

upwards from bottom of the aquarium, with minimal physical

movement of the divider plate so that less stress is applied to the

shrimp and it can pass through it). In the sound treatment (20

minutes duration; the same duration as the ambient noise

treatment), the sound file was played at the same time as the

divider plate was removed.

For both treatments, to use the same protocol in behavioral

analysis, each shrimp was given a maximum of 10 minutes to find

the food source and shrimp that did not find the food source were

excluded from the trials and further analysis because of a potential

difference in food-finding motivation. Each shrimp was used in a

trial once. Between trials we syphoned the aquarium to clean it. For

all trials, the divider plate was always removed at the same time as

the acoustic treatment was started (20 minutes of sound/control

treatment) (see Figures 2A, B).

The behavioral indicators measured are described as follows:

Movement speed: Mean distance moved by the center point of the

subject per unit time was calculated from the last 10 mins before the

divider plate was removed to 10 mins immediately after the divider

plate was removed with onset of either control or sound playback.

Spatial distribution: We calculated spatial preference in terms of

time spent (seconds) by the shrimp in different areas of the

aquarium. The mean attendance of individuals in the specified

area (left one-third and right one-third of the tank horizontally) was

calculated from the last 10 mins before the divider plate was

removed to 10 mins immediately after the divider plate was

removed with onset of either control or sound playback
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(see Figures 3A, B). Food-finding success: We calculated number

of individuals that successfully found the food source during 10

minutes in each treatment. Feeding latency (latency to find food):

We calculated mean time to find the food source during 10 minutes

in each treatments. Number of times the shrimp revisited the food

source: We calculated the number of times the shrimp revisited the

food source within each 20 minute observation period (from the last

10 mins before the divider plate was removed to 10 mins

immediately after the divider plate was removed) (i.e. Wale et al.,

2013) (see Table S2 in the Supplementary Materials).
2.7 Second experiment: feeding distraction

In the second experiment, before the start of experiments,

shrimp (n = 70; 35 individuals per treatment) were denied access

to food for 48 hours in the holding tank (see Figure S4 in the

Supplementary Materials). For both experiments, the animal size

and sex ratio, feeding regime and feed restriction period were the

same to avoid any confounding factors affecting behaviors

unintentionally. In the control treatment, after 1 hour acclimation

behind the divider plate in the experiment tank, the divider plate

was removed and shrimp were allowed to search for food without

playing any sound treatments. As soon as the shrimp found the

food and started feeding, the control treatment (ambient noise) was

played for 20 minutes and each reaction was recorded in real time

by the camcorder (Figure 2C). In the same manner for the sound
FIGURE 1

Mean power spectrum (Power Spectral Density; PSD) of 5 s recordings of all sound (red line) and experimental tank ambient (blue line) stimuli.
Sound Pressure Level expressed in dB re 1 µPa2/Hz (Welch’s method, Hann window, FFT length 1024). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article). The recordings were made in water depth 3 cm and 3 cm far from the
right aquarium wall (longitude plane view).
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playback treatment, after 1 hour of acclimation behind the divider

plate in the experimental aquarium, the divider plate was removed

and shrimp were allowed to search for food, yet without any sound

treatment playbacks (Figure 2D). As soon as the shrimp found the

food and started feeding, the sound treatment was played for 20

minutes and each reaction was recorded in real time by the

camcorder. A feeding distraction event is defined as a shrimp

stopping eating, freezing and moving away from the food source

(was calculated for 10 minutes) (Wale et al., 2013). The number of

shrimp whose feeding performance was disturbed versus

undisturbed was recorded in each of the control and

sound treatments.
2.8 Statistical analysis

Statistical analysis of behavioral data was performed using SPSS-

25 and Excel-2019 software. Kolmogorov-Smirnov test and Levene’s

tests were used to test the normality and variability of the data. For

movement speed, paired sample t-test was used. A single sample t-test

with a reference mean of 12.5 was performed for the position of the

left/right one-third of the tank. Because the food partition is 25 cm (as

shown in Figure S3), the theoretical mean representing a random

choice (null hypothesis) between the left and right sides of the

partition is 12.5 cm. The 0.05 level is often the alpha level, used as

a benchmark for the significance of statistical tests. For the x-position

spatial distribution, the number of revisiting and feeding latency

(latency to find food), independent two sample t-test was used at the
Frontiers in Ecology and Evolution 05
level of 0.05. Chi-square test of independence was also used for food-

finding and feeding distraction.
3 Results

3.1 First experiment

3.1.1 Movement speed
As soon as the divider was opened, the initial movement speed

in the sound and control treatments, showed a significant decrease

(P<0.001, df=34) (Figure 4A). However, there were no significant

changes between averaged total movement speed for the control

and sound treatments (Figure 4B) (P>0.05, df=34).

3.1.2 Spatial distribution
Shrimp in the control treatment were distributed equally in the

available space before opening the divider. After opening the divider

and allowing the shrimp to enter the new environment they were again

equally distributed throughout the whole space (Figures 5A, B). In the

sound treatment, before opening the divider, the shrimp were equally

distributed in the available space, but when the divider was opened and

the shrimp were exposed to the sound, they dispersed to the left of the

tank (farthest point from the sound source) (Figures 5C, D).

Figures 3A, B, shows the spatial distribution time of 70 shrimp

in the right third of the tank (near the sound source) and the left

third of the tank (away from the sound source). In the control

treatment, the distribution of shrimp on both sides of the tank was
B

C

D

A

FIGURE 2

Timeline view of first (A, B) and second (C, D) experiments in (A, C) control and (B, D) sound treatments. the shrimp, food source,

opening divider, start filming, ambient noise exposure, elevated sound exposure.
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the same and no significant changes were observed (df=69,

P=0.391). In the sound treatment, the horizontal distribution of

shrimp on the left side of the tank (the farthest distance from the

sound source) significantly increased (df=69, P=0.003).

3.1.3 Feeding activities
In the sound treatment, individuals found the food source

significantly later than the control treatment (Figure 6A, df=57,

P=0.005). One individual in the control treatment and 9 in the

sound treatment were not successful in finding the food source

during the entire 10 minutes. The number of revisits to the food

source was significantly reduced in the sound treatment (Figure 6B,

df=68, P <0.0001), and significantly more individuals succeeded in

finding the food source in the control treatment compared to the

sound treatment (Figure 6C, df=1, P=0.006).
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3.2 Second experiment

3.2.1 Feeding distraction
In the sound treatment significantly more individuals (df=1,

P=0.0001) were distracted during feeding than in the control

treatment (Figure 7).
4 Discussion

The present study highlights that invertebrates are likely to

perceive sound and be susceptible to the impact of sound as a source

of stress. This makes them important candidates for further

investigation into the effects of anthropogenic noise pollution.

Experimental sound playback resulted in a variety of behavioral
B

A

FIGURE 3

(A) Mean ± SE time–place budget distribution of Neocaridina davidi. In sound condition the distribution of shrimp significantly increased in the left
one-third of the tank (the point farthest from the speaker). (B) Mean ± SE spatial distribution in horizontal (x) position in AN: Ambient Noise and S:

Sound conditions, position of underwater speaker in tank. NS: Not Significant, **P<0.01.
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changes in the red cherry shrimp, some of which have been reported

in other invertebrates and some appear to be species-specific. Our

results are the first to demonstrate that freshwater decapods can be

affected by acoustic stimuli. Sound treatment compromised

movement and feeding activity and this is consistent with

previous research in crustaceans (Filiciotto et al., 2014; Sal

Moyano et al., 2021). In controlled tank-based experiments, it has

been shown that sound affects the behavior of feeding crabs and

disrupts their feeding performance (Wale et al., 2013). Moreover, in

other taxa (e.g. fishes) recent studies have shown that acoustic

stimuli disrupt feeding performance (Purser and Radford, 2011;

Voellmy et al., 2014; Shafiei Sabet et al., 2015; Magnhagen et al.,

2017; Mickle and Higgs, 2018).
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4.1 Impact of sound on the movement and
locomotor behavior of shrimp

Upon opening the divider plate, the movement speed decreased

in the control and sound treatments; however, there was no

difference between total movement speed for the control and

sound treatments. This change may be due to the stress of facing

the new environment as shrimp in both treatments displayed the

same pattern of reducing their movement speed (Shafiei Sabet et al.,

2019). The effects of anthropogenic noise on movement and

swimming behavior of crustaceans and fish is well reported (Sarà

et al., 2007; De Vincenzi et al., 2015; Filiciotto et al., 2016; Shafiei

Sabet et al., 2016a; Shafiei Sabet et al., 2016b; Jimenez et al., 2020; Sal
B

A

FIGURE 4

(A) Movement speed in control (AN) and sound (S) treatments changed (decreased significantly) as soon as removing the divider plate and
simultaneously onset of treatments. As soon as opening the divider significantly movement speed reduced. ***P<0.001. The vertical red line at the
10-minute time point represent the instant moment of removing the divider plate and simultaneously onset of treatments. (B) Mean ± SE movement
speed (cm/s) for each sound treatment; ambient noise condition as control (AN) and sound treatment (S) for 35 red cherry shrimp (averaged mean
total 10 minutes from before of removing the divider plate and simultaneously onset of treatments to the first 10 minutes of removing the divider
plate and simultaneously onset of treatments. Red cherry shrimp movement speed did not change with sound conditions among treatments. NS:
Not Significant.
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Moyano et al., 2021). Roberts et al. (2016) found that exposure to

anthropogenic substrate-born vibrations, similar to blasting and

pile driving, reduced locomotion in adult hermit crabs. Solan et al.

(2016) also reported a reduction of locomotor activity when the

Norwegian lobster was exposed to continuous and impulsive sound.

Snitman et al. (2022) reported that the crab species, Neohelice

granulata, had reduced locomotory activity when exposed to

diverse sound. The reduced locomotory and movement speed

could be related to a distraction or confusion effect. It has been

shown that Caribbean hermit crabs in response to motor boat

sounds were more inactive and allowed a simulated predator to

approach closer before their retracting movement. The crabs

reallocated finite attention to the distracting acoustic stimuli and

were prevented from responding to an approaching threat (Chan

et al., 2010). In earthworms, it has been shown that substrate

vibrational sounds mask the vibrational cues of approaching

foraging moles, making earthworms more prone to predation

risks in ensonified areas (Dominoni et al., 2020). Moreover,

earthworms may not be able to discriminate between the

subterranean waves from anthropogenic sources and vibrations

coming from approaching predators (Dominoni et al., 2020).

Thus, sound pollution can potentially have multiple impacts on

locomotor activities and threat assessment in invertebrates. Other

invertebrate studies have shown that acoustic stimuli can have

multiple negative effects (Edmonds et al., 2016; Carroll et al., 2017).

Finding a mate or detecting a predator has direct effects on

reproductive success and survival in animals (Dall et al., 2005;

Kight and Swaddle, 2011; Kunc et al., 2016; Shannon et al., 2016;

Dominoni et al., 2020). If shrimp spend more of their time budget

finding food or shift their attention from foraging areas because of

anthropogenic noise, it may detrimentally alter other important

biological activities such as courtship and finding a mate to increase

their reproductive success or detecting approaching predators to

survive in their habitats. These impacts can induce alterations not
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only on individuals but also can affect populations and ecosystems,

especially when anthropogenic noise impacts keynote predators and

functionally important habitat forming species. This disruption

may have knock-on effects on important ecological and biological

processes such as species abundance, survivorship, and the

reproductive success of aquatic organisms (Slabbekoorn et al.,

2010; Williams et al., 2015; Shafiei Sabet et al., 2016a; Shafiei

Sabet et al., 2016b).

In the control treatment, no difference was observed in the

horizontal spatial distribution between individuals, but in the

sound treatment, the horizontal distribution of shrimp significantly

increased when comparing the point nearest the underwater sound

source with the furthest away. This spatial displacement due to sound

exposure may have potentially negative impacts on the abundance of

invertebrates (e.g. earthworm) (Velilla et al., 2021). The authors

reported that earthworm abundance decreased with increasing

vibratory noise. Similar behavior has been reported in other species

that have been exposed to annoying or disturbing sounds (De

Vincenzi et al., 2015; Shafiei Sabet et al., 2016a; Shafiei Sabet et al.,

2016b). In mobile species such as the red cherry shrimp, locomotion

is an important link between the behavior of individuals and

ecological processes (Herrnkind, 1983; Spanier et al., 1988; Lawton

and Lavalli, 1995). Therefore, any impacts of anthropogenic noise on

their locomotor activities may have detrimental consequences on

their other biological activities such as foraging or anti-predator

behavior. Although, the impact of acoustic stimuli on the spatial

distribution of red cherry shrimp is not fully understood, in other

species there are indications that anthropogenic noise affects

swimming activities and spatial displacement. Shafiei Sabet et al.

(2016a) reported that sound treatment caused various behavioral

changes in both the spatial distribution and swimming behavior of

zebrafish within the treatment tank. Sound playback led to more

freezing and less time spent near the active speaker. However, this

behavioral response to sound exposure contrasts what was observed
B

C D

A

FIGURE 5

Cluster heatmap showing the spatial occupancy in terms of time spent in movement (expressed in seconds) by the shrimp among the aquarium
cells. On the right wall, the location of the underwater sound speaker is presented. (A, B) Control condition. (C, D) Sound condition.
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in another study on zebrafish under laboratory conditions (Neo et al.,

2015). Shafiei Sabet et al. (2016b) compared zebrafish and Lake

Victoria cichlids, the former being sensitive to lower absolute

thresholds and wider spectral ranges. It is likely that consistent

with our study, experimental sound playback induced a significant

reduction in movement speed in the first few minutes of exposure for
Frontiers in Ecology and Evolution 09
both species under captive conditions. Neither species showed spatial

shifts away from the active speaker in the horizontal plane (Shafiei

Sabet et al., 2016b). We reported non-acoustic dependent changes in

the movement behavior of the shrimp. Opening the divider plate

caused a non-auditory behavioral response by reducing the instant

movement speed of shrimp, which may be an anti-predator response
B

C

A

FIGURE 6

(A) Mean ± SE of the time of finding food source in AN: Ambient Noise and S: Sound conditions (N=35). In sound condition the time of finding food
significantly increased. (B) Mean ± SE of the number of revisiting to food source in AN: Ambient Noise and S: Sound conditions (N=35). In sound
condition the number of revisiting to food source significantly decreased. (C) The number of individuals that found/not found food source for 10
minutes in AN: Ambient Noise and S: Sound conditions (N=35). In sound condition significantly more shrimp did not find food source. NS: Not
Significant, **P<0.01, ***P<0.001.
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and likely improves their survival by lowering visual visibility.

Another assumption would be cross sensory interference (Hubert

et al., 2021): acoustic stimuli may interfere with their visual activities

and food detecting performance (Solé et al., 2023). It is more likely

that our sound playbacks caused negative effects on olfactory-

mediated food finding behavior of shrimp (Hubert et al., 2021; Solé

et al., 2023). However, we argue that our experimental design does

not allow us to conclude the effect of sound playback on the

movement speed of tested animals due to sound playback of

treatments starting immediately after the divider plate was

removed. When interpreting behavioral responses, it is important

to take into account that all observed behavioral changes cannot

necessarily always be uniquely attributed to the sound playbacks and

methodological approaches across other sensory modalities may also

need to be considered. In the present analysis, the experimental set up

was successful and able to explore direct assessment of the effects of

acoustic stimuli on the horizontal movement of the shrimp. However,

acoustics artifacts due to using underwater sound source in a fish tank

provide complex sound fields (Parvulescu, 1967; Akamatsu et al.,

2002; Rogers et al., 2016). In our recent studies (Neo et al., 2015;

Shafiei Sabet et al., 2016c) we did not find any spatial displacement

related to sound treatments in captivity. The results of this study

indicate that the red cherry shrimp show sound-dependent spatial

avoidance and avoid the area closest to the sound source. Particle

motion components of the experimental set up were not able to be

measured, which makes it likely that the behavioral observations were

in response to particle motion component rather than sound pressure

(Popper and Hawkins, 2019; Hawkins et al., 2021).
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4.2 Acoustic stimuli compromised feeding
performance in shrimp

In the present study, feeding latency (latency to find food), in

shrimp significantly increased in the sound treatment compared to

the control. This delay in finding the food source seems to be due to

stress and confusion caused by sound playback, which agrees with

previous studies using crustaceans and fish (Hughes et al., 2014;

Voellmy et al., 2014; Gendron et al., 2020). Elevated levels of sound

in the present study had negative effects on the feeding activity and

performance (e.g. feeding latency and food finding) in shrimp

under laboratory conditions. More individuals successfully found

and consumed the food source in the control treatment than the

sound treatment, which is consistent with the findings of Voellmy

et al. (2014) and confirms the effect of sound on feeding distraction

in both an invertebrate (shrimp) and vertebrate (fish species)

respectively. These observations suggest that anthropogenic noise

may cause similar impacts on foraging activities in animals under

laboratory conditions. It is important to consider that the findings

of the present study should not be interpreted for wild animals and

fish in field conditions. Various studies have shown that food-

deprivation influences behavior including foraging; food-deprived

three-spined sticklebacks were more likely to initiate predator

inspection visits and had higher feeding rates than well-fed shoal

mates (Godin and Crossman, 1994).

The number of revisits to the food source also significantly

decreased when exposed to sound. Such changes in feeding

behavior have not been reported previously. This study showed
FIGURE 7

The number of Neocaridina davidi that distracted/not distracted from food source for 10 minutes in AN: Ambient Noise and S: Sound conditions
(N=35). In sound condition significantly more shrimp distracted in feeding. ***P<0.001.
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that anthropogenic noise pollution influences the behavioral

activity of the red cherry shrimp. Currently, no data on the

sensitivity of red cherry shrimp to acoustic signals is available;

however, the results of the present study indicate that N. davidimay

perceive all or part of the acoustic stimuli projected within the wider

band-width of their underwater audible rasps characterized by

signals with most of energy concentrated in the 4–2000 Hz range,

with the peak frequency of 700 Hz and peak amplitude of 120 dB re

1 lPa (Buscaino et al., 2011). Filiciotto et al. (2014) found that

lobsters exposed to boat sounds had higher mobility and moving

state values compared to lobsters in the control treatment. Shafiei

Sabet et al. (2019) found no significant changes in behavioral

parameters of Daphnia magna while Sal Moyano et al. (2021)

evaluated the effects of biological and anthropogenic acoustic

signals on the orientation response of different stages (megalopae

and juveniles) of 4 brachyuran crabs species. C. angulatus

megalopae and juveniles responded positively towards crustacean

signals, while juveniles responded negatively towards fish sounds.

N. granulata juveniles orientated negatively towards crustacean,

motorboat and fish signals while C. altimanus and L. uruguayensis

juveniles did not respond to fish signals (Sal Moyano et al., 2021).

These findings support the idea that invertebrates potentially can be

distracted and impress by anthropogenic noise and highlight the

role of acoustic stimuli on feeding performance and prey–

predator relationships.
4.3 Do acoustic stimuli compromise
food source assessment and
attention in shrimp?

In the sound treatment, significantly more individuals were

distracted in feeding compared to the control treatment. Similar

results are reported in other species (Wale et al., 2013; Hughes et al.,

2014; Voellmy et al., 2014; Gendron et al., 2020; Hastie et al., 2021).

Wale et al. (2013) argued that crabs exposed to ship noise were

more likely to suspend feeding than those exposed to ambient noise.

McLaughlin and Kunc (2015) found that cichlids exposed to

anthropogenic noise showed an increase in sheltering

accompanied by a decrease in foraging. Their results highlight the

multiple negative effects of an environmental stressor on an

individual’s behavior. However, there are studies that show no

effects on foraging behavior and locomotion on crustaceans after

sound exposure (Hubert et al., 2021; Solé et al., 2023). Hubert et al.

(2021) found no overall effect of boat sound on food finding success

and efficacy, foraging duration or walking distance in shore crabs.

This may be due to differences in characteristics (range of

frequencies/exposure intensity levels) of provided acoustic stimuli

or species specific behavioral properties. The observed variable

responses in foraging and locomotion behavior may reflect the

differences in experimental set up arena such as size and shape

(rectangular/maze) of aquariums and the location of the

underwater speaker projection (side, upper, button).

There are several mechanisms to explain how anthropogenic

noise affects behavior: increasing stress (Smith et al., 2004), masking

relevant biological cues (Hawkins and Chapman, 1975), distracting
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of attention (Dukas, 2004; Chan et al., 2010), physically damaging

sensory system and internal organs (McCauley et al., 2003) and

injury or hearing loss in some species (Popper et al., 2005;

Halvorsen et al., 2012). These could be operating separately or

simultaneously, and in many cases, it is difficult to determine which

of these is most relevant, especially in the present study. Wale et al.

(2013) showed that the ability of crabs to find food items was not

impaired by the playback of ship noise compared to ambient noise.

Individuals exposed to ship noise were more likely to suspend

feeding than those exposed to ambient noise. Hughes et al. (2014)

showed that the sounds made by predatory fish can affect the

feeding behavior of crabs. In the presence of the sound of predatory

fish in the frequency range of 10 to 1600 Hz and the sound intensity

of 146 to 116 dB, the amount of crab feeding from bivalves was

significantly reduced. Although it needs further research, shrimp

that do not feed properly because of acute and/or chronic exposure

to sound could be affected in their feeding performance, growth,

size at sexual maturity, mate selection, and brooding eggs behavior,

thus affecting the whole life cycle and the species fitness and their

role in the trophic webs.

Our results provide important insights into the effects of sound

on this species at individual level under laboratory conditions.

Shrimp spent more time away from the active speaker suggesting

that they were able to detect the acoustic stimuli and further research

measuring both sound pressure and particle motion components is

recommended (Azarm-Karnagh et al., 2023). Anthropogenic noise

decreased food finding success and the number of revisits to the food

source, increased feeding latency (latency to find food), and

distraction. Overall, the findings of the present study highlight the

negative impacts of anthropogenic noise on the behavior of shrimp

that could impair their foraging performance and potentially have

cascading effects on their survival. It is likely that anthropogenic noise

impacts on freshwater aquatic species across ecological levels are

underestimated. Based on our current findings on a freshwater

invertebrate species (Neocaridina davidi) and recent studies (Rojas

et al., 2021; Fernandez-Declerck et al., 2023) on invasive freshwater

fish species (the round goby Neogobius melanostomus) and the

invasive pumpkinseed sunfish (Lepomis gibbosus), anthropogenic

noise could potentially impact on a variety of ecologically

important species, as well as on invasive species, and cause sound-

dependent behavioral changes. Empirical data is however scarce and

more indoor and outdoor studies are needed to provide a clearer

understanding of anthropogenic noise trophic impacts and their

potential ecological consequences on freshwater (in)vertebrates.
5 Conclusions

The current study examined the effect of sound playbacks on

the movement behavior and feeding performance on shrimp. Short-

term exposure to sound changed some behavioral patterns in N.

davidi. The simulated sound in laboratory conditions influenced the

behavior of the animals, mainly in terms of spatial distribution

(avoiding the sound source), feeding latency (latency to find food),

finding-food successfully, number of revisits to the food source and

feeding distraction. We found no evidence that the movement
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behavior was affected by the sound. As new information becomes

available, there is a need to change and develop the sound exposure

criteria and implement updates of invertebrates’ perception with

regard to the acoustic environment. The sound field metrics used

currently are often inappropriate as they are expressed in terms of

sound pressure and potential impacts on invertebrates, whereas all

fishes and most invertebrates are able to perceive and detect particle

motion components (Popper and Hawkins, 2019; Hawkins et al.,

2021). Thus, there is a need to explore anthropogenic noise effects

on invertebrates in terms of sound pressure levels, particle motion

components and substrate vibrations. To assess anthropogenic

noise more comprehensively in the next experiments and enable a

better understanding of noise impacts on crustaceans, further

research should consider analysis of particle motion components

and substrate vibrations. Furthermore, experiments should be

performed to assess the animal responses in nature where the

acoustic field is not influenced by laboratory conditions.

We suggest that to reduce behavioral biases and assess more

explicitly anthropogenic noise effects on animals in captivity,

welfare issues (e.g. animal’s stock density, vegetation, substrate

and aeration in holding tanks) and physiological factors (e.g. level

of hunger, starvation period before running experiments) are

needed to be considered (Hubert et al., 2018; Hubert et al., 2021;

Hubert et al., 2023). To support the development of this field and

contribute to open science we further recommend that

experimental protocols/designs should be reported in published

papers. Longer-term complementary studies under laboratory

and field conditions should examine whether the results

reported in this work are relevant for the potential chronic effects

of sound on populations and on ecological communities,

providing and implementing innovative tools for the measure of

acoustic pollution.
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