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E�ects of abiotic heterogeneity
on species densities and
interaction strengths lead to
di�erent spatial biodiversity
patterns

Samantha A. Catella1,2* and Karen C. Abbott1

1Department of Biology, Case Western Reserve University, Cleveland, OH, United States, 2Institute of the

Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, United States

During community assembly, abiotic factors can influence species at multiple

stages during their life history, for example by a�ecting early settlement or

establishment probabilities and thus initial densities (route 1: abiotic e�ects

on density), or later by a�ecting the strength of biotic interactions during

subsequent life stages (route 2: abiotic e�ects on interaction strengths). Since

real abiotic landscapes are multivariate and complex, how these two distinct

routes of abiotic influence a�ect community patterns has not been quantified.

Using an individual-based spatially explicit simulation model, we compared

scenarios where abiotic conditions shaped initial densities, interaction strengths,

or both, of plant species with unique abiotic niches. We then partitioned the

e�ect of the abiotic landscape on community patterns into components arising

from variable density, variable interaction strengths, and their interaction. Even

when plants responded to identical landscapes, variable density and variable

interaction strengths led to di�erent community patterns, and their combined

e�ects were non-additive. Variable density promotedmore spatial structure, while

variable interaction strengths promoted higher local species richness.We highlight

important implications these findings have in applied plant community ecology.

KEYWORDS

density dependence, interaction strength, environmental filtering, fundamental and

realized niche, interspecific competition, heterogeneity-diversity relationship (HDR),

abiotic landscape, plant community ecology

1. Introduction

Abiotic conditions, and species responses to those conditions, can both be complex.
Species respond to multiple factors (Blonder, 2018), each of which can vary at different
spatial and temporal scales. In addition to their inherent variability, different abiotic factors
may increase or decrease in importance throughout a species’ life history (Parish and
Bazzaz, 1985; Nakazawa, 2015; Rudolf, 2020). For example, abiotic factors can alter species
establishment probabilities and thus initial densities early in their lives, and/or later by
altering the strength of per capita biotic interactions, independent of density. Abiotic
heterogeneity may therefore drive both variability in density and variability in per capita
interaction strengths. However, due to the spatial and temporal variability in the abiotic
environment and unique responses to that changing environment across species, it is often
unknown how the respective or combined effects of these two routes of abiotic influence
shape community patterns. Uncertainty about how abiotic effects on density and interaction
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strengths scale up to observed patterns is problematic because
it prevents us from linking community patterns to the biotic
processes that drive them, a common issue in ecology that
inhibits our ability to predict and therefore mitigate effects of
anthropogenic stressors on biodiversity.

The effect of abiotic conditions on both density (route
1) and species interaction strengths (route 2) is a critical
component in multiple concepts central to ecology. In population
ecology, the fundamental niche describes abiotic conditions under
which a population can persist, for example when a species’
thermal tolerance dictates areas where individuals cannot survive
(Kellermann et al., 2012). Accordingly, species tend to be most
abundant in areas where abiotic conditions are closest to the
center of their fundamental niche (Osorio-Olvera et al., 2019;
Altamiranda-Saavedra et al., 2020). At the same time, recent
conceptual and practical developments concerning the realized
niche emphasize the role abiotic conditions play during biotic
interactions (HilleRisLambers et al., 2012; Kraft et al., 2015; Cadotte
and Tucker, 2017; Germain et al., 2018). For example, in a meta-
analysis of 247 studies, Chamberlain et al. (2014) found that abiotic
gradients drove high variability in mutualistic, competitive, and
predatory interaction strengths. Patterns we observe in nature
are thus likely a result of abiotic influence not only on species
densities but also on their per capita interaction strengths. These
and other studies have focused on the abiotic mechanisms that
drive either variable density or interaction strengths (Rosbakh et al.,
2018; García-Cervigón et al., 2021; Chaudhry and Sidhu, 2022),
and recent efforts have focused on partitioning their contributions
to coexistence (Chu and Adler, 2015; Hallett et al., 2019). An
important area of research that we address here is linking these two
routes of abiotic influence, which affect local biotic neighborhoods,
to the community patterns they generate across a landscape.

How abiotically heterogeneous landscapes affect communities
of species with unique abiotic niches, regardless of the specific
abiotic effects on density or interaction strengths, is a fundamental
question in ecology. Heterogeneity-diversity relationships
(HDRs), for example, measure the correlations between abiotic
heterogeneity at a particular spatial scale and a measure of species
diversity (Ben-Hur and Kadmon, 2020). The well-documented
occurrence of HDRs across systems and spatial scales indicates that
abiotic heterogeneity is an important factor shaping community
patterns (Kerr and Packer, 1997; Davies et al., 2005; Kreft and
Jetz, 2007; Lundholm, 2009; Stein et al., 2014). When species have
different niches (Figure 1A), areas with high abiotic heterogeneity
are predicted to have high diversity because species can build up in
abundance as long as they have access to their niche (Whittaker,
1967; Van der Gucht et al., 2007), while areas with low abiotic
heterogeneity are predicted to have low diversity either due
to environmental filtering during initial establishment, and/or
competitive exclusion by the species whose niche most closely
aligns with the abiotic conditions in that area (Kraft et al., 2015;
Švamberková and Lepš, 2020) (illustrated as the increase in number
of surviving species in heterogeneous landscapes in Figures 1B, C).

Since heterogeneity-diversity relationships (HDRs) are
recognized as an important diagnostic and guide for conservation
and restoration practitioners, previous work has focused on
understanding the factors that determine their presence and
shape (Lundholm, 2009; Stein et al., 2014; Ben-Hur and Kadmon,

FIGURE 1

The two routes of abiotic influence under niche partitioning. In (A)

we introduce a simple community of two species, circles and

triangles, with unique responses to an abiotic factor. In (B), we show

how those unique responses influence the initial density of species

in a landscape with low compared to high abiotic heterogeneity.

Both landscapes have four “patches” that correspond to microsites

with abiotic conditions shown in grayscale. The landscape with low

abiotic heterogeneity is on the left and does not include any patch

in which the triangle species can germinate. The landscape with

high abiotic heterogeneity is on the right and includes patches

where either circles or triangles can germinate depending on abiotic

conditions. In the low heterogeneity landscape, triangles die

everywhere and circles survive everywhere, resulting in low

variability in density for each species across the landscape. In the

high heterogeneity landscape, circles and triangles both die in some

patches but germinate in others, resulting in high variability in

density for each species across the landscape. Below each

landscapes we quantify the mean density across microsites

experienced by each species. When species have di�erent means

we can say there is low balance across species, and high balance

when their means are similar. In (C), abiotic conditions a�ect

interaction strengths between germinated seedlings, shown as

arrows, instead of density, but predicted e�ects are the same as

discussed above for (B). Individuals colored dark red are present as

seeds but either cannot germinate (B) or germinate but die later

during competitive interactions (C).

2020). Two oft-invoked reasons why HDRs may not be found,
even when species are known to have different niches, are (1)
dispersal—either too little, such that species don’t have access to
their niche (Lundholm, 2009); or too much, such that species in
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sink habitats persist via subsidies from source habitats (Shmida
andWilson, 1985; Leibold et al., 2004), and (2) the relative strength
of intra- and interspecific competition, wherein local coexistence
is possible even in landscapes with low abiotic heterogeneity if the
species occurring within its preferred environmental conditions
experiences strong intraspecific competition (Chesson, 2000).
Configurational and compositional heterogeneity (i.e., variability
in spatial autocorrelation and the range of environmental
conditions, respectively) are also important factors shaping HDRs
(Ben-Hur and Kadmon, 2020), but are beyond the scope of the
current study as we are primarily interested in biotic effects arising
from variability in density and interaction strengths.

Effects of the abiotic environment on both density and
interaction strengths influence competitive outcomes between
species, and can thus shape variability in realized competition
across a landscape. We refer hereafter to low variability in realized
competition across species as “high competitive balance,” and
high variability in realized competition across species as “low
competitive balance.” Our choice to use the word balance is
meant to emphasize that this is a measure of variability at the
community level, distinct from the within-population competitive
variability, illustrated as within-species variability in density in
Figure 1B, commonly referenced in the coexistence literature
(e.g., where competition that covaries with environment can
contribute to a storage effect Chesson, 2000). Competitive balance
across species can arise from either within-species variability in
density (Figure 1B), and/or within-species variability in interaction
strengths (Figure 1C).When abiotic heterogeneity is low, we expect
competitive balance across species to be low because throughout
the landscape one or a few species benefit from being in or
near their optimal abiotic conditions, while the rest are at a
disadvantage. When abiotic heterogeneity is high, we expect
competitive balance to be high because all species benefit from
optimal abiotic conditions in some areas, and are disadvantaged
by sub-optimal abiotic conditions in others. We thus predict that
increased competitive balance with increased abiotic heterogeneity
will be a key variable structuring diverse communities.

Recent studies exploring the effect of environmental
heterogeneity on community patterns have used spatial
Lotka-Volterra ordinary differential equations wherein various
parameters change along an environmental gradient (e.g., carrying
capacity or competition coefficients in Liautaud et al., 2019, or
competition coefficients and intrinsic growth rates in O’Sullivan
et al., 2021). An important limitation of these studies is that they
ignore the inherently step-wise temporal process of community
assembly, where species arrive and establish at a site before
they grow and interact with other established individuals. In other
words, they do not account for differences in a species’ regeneration
niche, which may be very different from the conditions required
for subsequent success during interactions affecting survival
and growth (Grubb, 1977; Bell et al., 1999; Marques et al., 2014;
Larson and Funk, 2016). We overcome this limitation by modeling
differences in germination probability for a community of plant
species, which affects whether a species can be present at all, and at
what densities, in a location before competitive interactions occur.

Using an individual-based spatially explicit simulation model,
we compared heterogeneity-diversity relationships (HDRs)
generated when abiotic conditions influenced initial densities early

on during germination, to HDRs generated when the same abiotic
conditions had no effect on initial densities, but determined per
capita interaction strengths later during competitive interactions.
These simulations allow us to understand (and compare) HDRs
that arise when the impact of the abiotic environment is negligible
during all but one life history event (e.g., early, during germination,
or later during competition). This represents the case when either
some events are not strongly affected by abiotic conditions, or they
are strongly affected by an abiotic factor that has little variation
within the landscape. We expect that in many real communities,
multiple events will be impacted by the abiotic environment,
so we also simulated both early- and late-stage abiotic effects in
combination. We were then able to use our initial simulations
(in which only germination or only competition was impacted
by abiotic conditions) to decompose the effects of each of these
on local species richness patterns in the combined simulations
compared to a null control where abiotic conditions had no
effect on species performance. Our simulation design allowed
us to evaluate multiple scenarios that had different degrees of
complexity. Simulations encompassed cases where plants respond
to a single abiotic factor (or two spatially correlated factors) across
life stages, cases where plants respond to an abiotic factor that
changes in spatial configuration over time (or to two abiotic
factors that vary at different spatial scales), as well as cases where
plants respond to two spatially uncorrelated abiotic factors that
vary at the same spatial scale. We repeated all simulations across
three dispersal distances and three different ratios of intra- to
interspecific competition to assess the importance of each route
of abiotic influence on HDRs in the presence of these other
confounding processes.

2. Methods

A spatially explicit, individual-based simulation model adapted
from Palmer (1992) was used to manipulate species responses
to abiotic conditions at specific life stages. Simulations followed
the same structure outlined in Palmer (1992), which we review
below along with additional modifications. We then describe the
manipulations that allowed us to examine how abiotic effects
on variable density and per capita interaction strengths affected
community patterns under various parameter combinations.
Finally, we describe how simulation output was collected and
analyzed. Simulations were conducted in Matlab (MATLAB, 2018).
Data generated in Matlab were analyzed in R Core Team (2017).

2.1. The model

2.1.1. Abiotic landscapes
Plant dynamics were simulated on a landscape characterized by

a set of three 65 x 65 matrices representing three abiotic factors
(one factor is given as an example in Figure 2A). Values in one of
the three matrices represented an abiotic factor that determined
plant fecundity (hereafter called abiotic factor R for reproduction).
Values in the other two matrices represented abiotic factors that
determined germination probability and competitive outcomes
(abiotic factors G and C for germination and competition,
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respectively). Throughout, we will use the label A to refer to
these abiotic factors in the general sense (where our descriptions
apply to any of the 3 landscapes), reserving the labels R, G

and C for when we wish to refer specifically to the abiotic
landscapes driving reproduction, germination, or competition,
respectively. Abiotic landscapes were randomly generated and all
had intermediate spatial autocorrelation (fractal dimension D =

2.5, see Supplementary Section 1.1 for more details on the spatial
configuration of landscapes and Table 1 for a summary of all
parameters). These three abiotic factor matrices can be, but need
not be, distinct from one another. In all of our simulations, we
set abiotic factor G = C = R except where noted. Each matrix
element represented a microsite (x, y) (for x, y = 1, 2,. . . , 65), and
each microsite had abiotic conditions G(x, y), C(x, y), and R(x, y)
for the abiotic factors determining germination, competitive, and
reproductive abilities, respectively. Microsites had a maximum
occupancy of c = 3 individual plants, representing a set carrying
capacity due to the finite size of the microsite.

2.1.2. Simulating plant dynamics
We consider a model community consisting of two annual

species and two perennial species. To begin each simulation, Ni =
1,056 (where Ni = landscape dimension squared, 652, divided by
the number of species NS = 4, rounded to the nearest integer)
individuals of each species were randomly placed on a landscape.
Once placed, individuals underwent an initial round of competition
(as described below) until no microsite exceeded carrying capacity.
In the first year, individuals surviving competition went on
to a round of reproduction, dispersal, and mortality. At the
beginning of every year after the first, seeds from the previous
year germinated, followed again by competition, reproduction,
dispersal, and mortality. As in Palmer (1992), the performance of
any individual of species i at location (x, y) in response to abiotic
factor A was calculated using a Gaussian function:

PAi(x, y) = exp

(

−[A(x, y)− µAi]2

2σ 2
Ai

)

. (1)

µAi is the niche optimum of species i (the value of abiotic
factor A at which species i can achieve its peak performance)
(Figure 2B). σ 2

Ai is the niche width of species i. We set the abiotic
factor A(x, y) = G(x, y) to calculate the germination probability
of an individual of species i, PGi. Likewise, performance during
competition (PCi) and reproduction (PRi) were calculated using
Equation (1) with A(x, y) = C(x, y) and R(x, y), respectively.
Dispersal and non-competitive mortality of germinated individuals
were modeled independently of the abiotic landscape (Table 1). In
our model, annuals could never displace an adult perennial. Thus,
when all else was equal, perennials tended to exclude the annuals
from the landscape. In order to assess community patterns when
both annual and perennial species co-occurred, we modeled trade-
offs in colonization and dispersal ability such that annuals produced
more seeds and could disperse farther than perennials. We chose
values comparable to differences observed in commonly found
annuals and perennials in forest herbaceous layer communities
(Bierzychudek, 1982; Mabry, 2004) (Table 1). Below, we describe
how wemodeled competition and germination in detail, as they are

the life stages of interest in our study. Further details about how we
modeled reproduction, dispersal, and mortality can be found in the
Supplementary Section 1.2.

Competition occurred only when microsite carrying capacity
was exceeded. Within these microsites, randomly-placed
individuals (in the first year) or germinating seedlings (in
all subsequent years) of species j were removed according to
probability rj(x, y):

rj(x, y) =
1

Z
nj(x, y)



αjjnj(x, y)+
NS
∑

i6=j

αjiPCi(x, y)ni(x, y)



 , (2)

Where ni(x, y) is the pre-competition density of species i in
microsite (x, y), NS is the total number of species in the model,
and Z is a normalization constant discussed below (Palmer, 1992).
Values of α specify how strongly individuals affect conspecific (αjj)
and heterospecific (αji) neighbors in optimal abiotic conditions
(i.e., the highest point of the Gaussian curve specified by
Equation 1). The closer abiotic conditions C(x, y) are to the niche
optimum of a competitor species i, the stronger the competitive
effect of species i on species j and the higher the probability
that species j does not survive the competitive interaction. Values
of rj(x, y) thus represent realized competitive effects on species
j. As in Palmer (1992), per capita intraspecific competition was
held constant at αjj = αii = 1 and was assumed to be
insensitive to the abiotic landscape. The latter assumption could
be changed by multiplying the first term in the brackets in
Equation (2) by a new performance function, PAj(x, y), and
would lead perhaps to altered patterns, as we discuss below.
Across simulations, we varied maximal per capita interspecific
competition αji = αij to be either greater than, equal to, or
less than intraspecific competition (Table 1). Since αji = αij

and αjj = αii = 1, we hereafter use the notation αij to
refer to maximum baseline interspecific competition and αii to
denote intraspecific competition. Except in the first year (when
competition was imposed to establish initial conditions with ≤ c

individuals per microsite), only germinating seedlings were affected
by competition. Adults in a microsite exerted a competitive effect
on germinating seedlings, but were not themselves affected by
competition once established (Yu and Wilson, 2001). Probabilities
rj were calculated by first computing the numerator of Equation (2)
for all competing species then normalizing by the constant Z

necessary for these to sum to one. Removal probabilities were
calculated once according to the total number of germinating
individuals in themicrosite, and then random numbers were drawn
and individuals removed based on these initial probabilities until
carrying capacity was reached.

The original model includes competition as described above,
but no separate step determining germination probability (Palmer,
1992). To simulate abiotically-generated variability in initial
densities, we added an additional step at the beginning of each
growing season wherein viable seeds produced by species j in the
previous year germinated according to probability:

gj(x, y) = hPGj(x, y). (3)

Setting h = 1 ensured that a seed in a microsite with optimal
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FIGURE 2

When (A) abiotic conditions vary over a landscape, species performance, PAl , may (B) depend on abiotic conditions, or (C) be independent of abiotic

conditions. Points in (D, E) represent individual plants and colors represent species visualized after 200 rounds of simulated dynamics where abiotic

e�ects of landscape Al influenced (D) density and (E) interaction strengths. Solid arrows map how species responded to the abiotic environment

during early compared to late life stages (germination and competition, respectively) when abiotic conditions influenced initial densities (route 1).

Dashed arrows show the same but for route 2, when abiotic conditions determined interaction strengths. Point pattern analysis (F) across parameter

space [including point patterns shown in (D, E)] show that interspecific segregation and intraspecific clumping (quantified by the ISAR and PROPcon,

respectively, Supplementary Table 1) were greater when abiotic conditions a�ected density compared to when they a�ected interaction strengths

(lines are median values, and shaded areas are 1.5 times the interquartile range). ISAR and PROPcon values when abiotic e�ects were indirect

overlapped with values from the null model that excluded e�ects of the abiotic environment on species performance. Point pattern maps (D, E) are

from simulations with intermediate dispersal and αij = 1.0.

conditions G(x, y) = µGj always germinated. In sub-optimal
habitats (i.e., G(x, y) 6= µGj), germination depended on the
outcome of random draws, as described above for determining
competitive outcomes.

2.2. Experimental design

All simulations were carried out on 20 replicate landscapes
(Al, l = 1, 2, . . . , 20) to avoid results particular to a specific
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TABLE 1 Description of model parameters.

Parameter Value Description Notes

Abiotic landscapes

Size 65 x 65 Microsites Landscape dimension For a 400m2 area (e.g., as intensively sampled in the Carolina
Vegetation Survey method Peet et al., 1998), each microsite
in the model would correspond to a 0.09m2 unit area

µ 0 Mean value for abiotic matrices R, G, and C Scaled sensu Palmer, 1992

σ 2.5 Standard deviation for abiotic factor matrices R, G, and C Maximum SD in Palmer (1992)

Din 2.5 Expected fractal dimension input into midpoint
displacement algorithm Saupe, 1988

Results in an intermediate degree of spatial autocorrelation,
Dout = 2.4− 2.6

Plant community dynamics

αjj 1 Relative effect of intraspecific competition; αjj = αii Each conspecific neighbor increases probability of dying by
one unit

αij 0.5, 1.0, or 1.5 Competitive effect of species j on species i; αij = αji Relative to intraspecific competition, sensu Palmer, 1992

Fa 20 Maximum reproduction for annuals (# seeds/year) A conservative measure of annual forest herb fecundity, e.g.,
as reported for Imaptiens sp. in Rust (1977) and for
Ranunculus abortivus in Mabry (2004)

Fp 5 Maximum reproduction for perennials (# seeds/year) A conservative measure of perennial forest herb fecundity,
e.g., as reported for multiple species in Bierzychudek (1982),
set to be lower than the fecundity of annuals to simulate a
competition-colonization tradeoff
(Supplementary Section 1.2)

dp 1, 10, or 65 microsites Maximum dispersal for perennials With 0.09m2 microsites, intermediate dispersal of perennials
is 3m and therefore similar to mean dispersal distance via
myrmecochory Gómez and Espadaler, 2013

da 2, 20, or 65 microsites Maximum dispersal for annuals Set to be higher than perennial dispersal to simulate a
competition-dispersal tradeoff (Supplementary Section 1.2)

h 1 Maximum germination probability Assumes 100% seed viability (or, equivalently, that the
fecundities, Fi , count only viable seeds)

σ
2
Ai 2 Species i’s habitat breadth for abiotic factor A Increases a species’ potential to persist over a broader range

of abiotic conditions (compared to 0.5 in Palmer, 1992)

c 3 Total number of individual plants able to persist in a
microsite

Sensu Palmer, 1992

p 0.5 Proportion of an individual’s seeds that stay in a microsite
after reproduction

Vittoz and Engler (2007) find that for dispersal modes
common in forest herbs, 50% of seeds fall within 0.1 m of the
focal individual

m 4 Average number of years perennials survive A conservative estimate, e.g., as reported for some species in
Ehrlén and Lehtilä (2002)

spatial configuration of the environment. In a simulation, species
could either respond to abiotic conditions via niche partitioning
(Figure 2B), or were indifferent to changes in abiotic conditions
over the landscape (Figure 2C). We used the PAi(x, y) values from
Equation (1) to simulate niche partitioning (species performance
depended on abiotic conditions at location x, y). Niche optima were
equally spaced along an abiotic factor niche axis, and standardized
across abiotic factors by offsetting the optima of the first and last
species by an amount determined by the range of abiotic conditions
present in each landscape:

µA1 = minA+
maxA−minA

NS
(4)

and

µANS = maxA−
maxA−minA

NS
. (5)

All other species were assigned optima at regular intervals
betweenµA1 andµANS (Figure 2B). Species niches therefore shifted
depending on which replicate landscape they were in, but were
identical across all simulations and treatments on that landscape.
We define species j’s preferred habitat as abiotic conditions A

wherever PAj(x, y) > PAi(x, y) for all i 6= j, including where PAj was
low for species occupying end-range habitat. To model scenarios
when performance did not depend on the abiotic environment,
the expected ability for each species in a particular landscape was
held constant at PAj, a spatial average of PAj(x, y) across microsites
and initial conditions from simulations with abiotic effects on
both density and interaction strengths (Figure 2C). Spatial averages
PGj and PCj were then normalized by dividing by the amount of
preferred habitat available to each species in landscape matrix G

and C. Although our model structure allows for the possibility
of niche partitioning during reproduction, we opted to model
fecundity as a spatial average across all simulations to simplify our
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analysis (details can be found in Supplementary Section 1.3). Note
that although we exclude niche partitioning over space in the null
model, species still differed in other aspects (e.g., perennials had
lower fecundity and could not disperse as far as annuals).

Setting species performance to either PAj(x, y) or PAj allowed
us to turn niche partitioning on and off, respectively. To isolate
abiotically-generated variability in density, we let abiotic conditions
determine germination probability using Equation (3) as written,
and turned abiotically-generated variability in interaction strengths
off by replacing PCi(x, y) in Equation (2) with PCi for all microsites
(solid arrows leading from Figures 2B–D). Note that although we
eliminate abiotically-generated variability in interaction strengths
when PCi(x, y) = PCi in Equation (2), realized competition
[rj(x, y)] could still vary across the landscape because of differences
in local densities. All simulations were similarly modified such
that species responded to the abiotic environment either during
germination to generate variability in density as described above,
and/or during competition to generate variability in interaction
strengths (dashed arrows leading from Figures 2B–E). To model
a null control, germination probability and interaction strengths
were both held constant at their spatial average for each species
(PAj(x, y) = PGj and PCj, respectively). When we modeled the
combined effects of variable density and variable interaction effects,
we considered both the case where a single abiotic factor governed
both germination and competition (G = C), and the case
where germination and competition were governed by separate,
uncorrelated factors (G independent of and 6= C). Scenarios were
simulated nine times, for each parameter combination of dispersal
distance (adjacent, intermediate, or universal) and strength of
interspecific competition (αij <,=, or > αii) (Table 1). Simulations
were run for 200 years, across the 20 replicate landscapes,
with 5 random initial conditions (species placement in the first
generation) per landscape. Every outcome in the model was
stochastic and determined via random draws. The same sequences
of random draws were replicated across simulations to ensure
that observed differences in the outcomes of different simulations
were due to differences in the scenario under consideration and
not merely due to stochasticity. That is, even though simulated
outcomes will of course be influenced by the specific stochastic
perturbations imposed, we controlled for these influences by using
the same sequences of perturbations across different simulated
scenarios; remaining differences among scenarios must then be due
to something else.

2.3. Analysis

Two community-level point pattern analyzes were used to
assess differences in neighborhood spatial structure generated by
route 1 and 2 compared to the null model: the Individual Species
Area Relationship, ISAR(r), and the Proportion of conspecifics,
PROPcon(r). The ISAR(r) is a distance-based measure of how
segregated or intermingled members of different species are in
neighborhoods of radius r around an average focal individual
(Wiegand and Moloney, 2013). The PROPcon(r) is also distance-
based, and measures how clumped or overdispersed conspecifics

are around an average focal individual (Brown et al., 2016)
(Supplementary Table 1). To eliminate edge effects we measured
spatial statistics to a maximum radius of 10 microsites and
never used individuals within 10 microsites of the landscape
edge as focal individuals (Wiegand and Moloney, 2013). Spatial
statistics were averaged across initial conditions and landscapes
across all parameters, as well as separately for each combination
of parameters. Confidence envelopes were drawn by calculating
1.5 times the interquartile range around the median at each
radius. As long as confidence envelopes did not intersect, we
concluded that differences in the resulting spatial structure
were significant.

Next, we split each landscape l into 169 sampling units (non-
overlapping neighborhoods of 5 x 5 microsites). Using these
sampling units as our scale of observation, we measured three key
variables. The first two, total number of species present (species
richness, S) and variability in abiotic conditions (v(A)), were used to
measure heterogeneity-diversity relationships (HDRs). Since both
density and interaction strengths affect competitive outcomes, we
also calculated competitive balance (Cbal) across species by first
taking the average competition experienced by newly germinated
seedlings of a species j, rj, and then getting the variability in rj
across all species in the sampling unit, v(rj). To make Cbal more
intuitive, we subtracted all values from the maximum observed
over all simulations so that values increased with increasing balance
(Supplementary Table 1). Across a sampling unit, low competitive
balance thus indicates that some species are more affected by
competition than others, while high competitive balance indicates
that all species are similarly affected by competition (Figure 1).
All values calculated for a sampling unit were averaged over
initial conditions (for a total N = 20*169 = 3,380 data points per
simulation from across the 20 replicate landscapes). Sampling units
with only one species of germinating seedlings were dropped from
analyzes that included competitive balance. To quantify broader-
scale effects, we also compared how total species richness changed
across the landscape when the range of abiotic conditions was
restricted (σ = 0.5 instead of 2.5 for landscapes with intermediate
dispersal and αij = αii), simulating an overall reduction in niche
space that is likely to accompany processes like habitat loss and
landscape homogenization (Thompson et al., 2013; Groffman et al.,
2014).

Generalized linear mixed-effect models were used to quantify
relationships between species richness (S), abiotic heterogeneity
(v(A)), and competitive balance (Cbal) for routes 1, 2, and the
null model. All mixed-effect models included landscape l as a
random effect. HDRs were quantified as the magnitude of the fixed
effect regression coefficient frommodels with abiotic heterogeneity
as the fixed effect predicting species richness. To understand
the joint effects of abiotic heterogeneity and competitive balance
on species richness, we used the same method to quantify
the relationship between abiotic heterogeneity and competitive
balance, as well as for the relationship between competitive balance
and species richness. Data from the nine parameter combinations
of dispersal distance and strength of interspecific competition
were modeled separately. Under niche partitioning, we expect
to find positive HDRs, a positive relationship between abiotic
heterogeneity and competitive balance, and a positive relationship

Frontiers in Ecology andEvolution 07 frontiersin.org

https://doi.org/10.3389/fevo.2023.1071375
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Catella and Abbott 10.3389/fevo.2023.1071375

FIGURE 3

Histograms of species richness and competitive balance measured in small sampling units (5 x 5 microsites) across all parameter combinations from

(A) simulations of abiotic e�ects on initial densities during germination (route 1), (B) simulations of abiotic e�ects on interaction strengths during

competition (route 2), and (C) null model simulations when germination and competition were insensitive to changes in abiotic conditions. Dashed

lines show mean values.

between competitive balance and species richness (Figure 1).
Finally, we used linear models to determine how much variance in
the strength of each relationship was explained by route of abiotic

influence, dispersal distance, strength of interspecific competition,
and any significant interactions between them. We report variance
explained as a percentage calculated using the sum of squares.
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Further details about the statistical models can be found in the
Supplementary Section 1.4.

To assess the relative contributions of abiotically-generated
variability in density and per capita interaction strengths to
species richness patterns, we applied a method that leverages
simulation model output to partition contributions from different
mechanisms to a response variable of interest [described in detail
in Ellner et al. (2019) and illustrated in Supplementary Figure 1].
In the present study, we partitioned contributions from abiotic
routes of influence 1 and 2 to net changes in species richness,
i.e., how many species were gained or lost, averaged across
initial conditions and sampling units within replicate landscapes.
Briefly, independent contributions from routes 1, r1, and 2,
r2, are first estimated as the mean number of gains or losses
of species in a sampling unit compared to mean richness
observed in the null model simulations (red and yellow bars
in Supplementary Figure 1A). Differences between the observed
effect of routes 1 and 2 acting simultaneously and their predicted
additive effect, r1+r2 (gray bar in Supplementary Figure 1A) tell
us the non-additive effects of the two mechanisms combined, r1r2
(orange bar in Supplementary Figure 1A). Allowing routes 1 and
2 to act simultaneously but according to spatially uncorrelated
landscapes lets us further partition the non-additive interaction
effect into a component attributed to independent variance
of routes 1 and 2, r1#r2, and a component attributed to
the co-variance of routes 1 and 2, (r1r2) (beige and white
bars in Supplementary Figure 1A). For the results, we illustrate
contributions as stacked bars excluding the baseline null model
(as illustrated in Supplementary Figures 1B, C). This procedure
was repeated for each combination of dispersal and strength of
interspecific competition (Table 1). Because contributions from
different mechanisms are predicted to change across spatial scales
(Wiens, 1989; Levin, 1992), this analysis was repeated using micro
(1 x 1 microsites) and large (13 x 13 microsites) sampling units
for comparison against our baseline of small (5 x 5 microsite)
sampling units.

3. Results

3.1. Local patterns and spatial structure of
simulated communities

Variability in density and variability in interaction strengths,
although generated by identical abiotic environments, resulted
in different community patterns (e.g., Figure 2D compared to
Figure 2E). Within small sampling units (5 x 5 microsites),
species richness and competitive balance were 1.3 and 1.2
times lower, respectively, when abiotic conditions determined
initial densities during germination (route 1) than when abiotic
conditions determined interaction strengths during competition
(route 2) (mean species richness = 2.53 and 3.37, and mean
competitive balance = 0.41 and 0.48, respectively, dashed lines in
Figures 3A, B). Competitive balance was never lower than 0.26 and
rarely decreased below 0.40 in simulations of route 2, but spanned
the full range of values down to 0.00 in simulations of route 1
(Figures 3A, B). Similar to route 2, sampling units in the null model
had mean species richness= 3.50 with competitive balance ranging

FIGURE 4

When we reduced the landscape-level standard deviation of abiotic

conditions from 2.5 to 0.5, total species richness at the

landscape-scale remained high in null model simulations, but

decreased when abiotic conditions determined interaction strengths

(route 2). Simulations had intermediate dispersal and αij = αii = 1.

Points and whiskers are the estimated marginal means and

confidence intervals from a linear model (Supplementary Table 2).

between 0.28 and 0.49 (mean value = 0.48, Figure 3C). These
differences are reflected in the point pattern analysis, where abiotic
effects on density resulted in local biotic neighborhoods with
higher interspecific segregation and intraspecific clumping than
null model simulations (Figure 2F). Abiotic effects on interaction
strengths resulted in local biotic neighborhoods that were not
significantly different from those generated in the null model
simulations (Figure 2F). Qualitatively these findings held for all
parameter combinations except for adjacent dispersal and strong
interspecific competition, in which route 2 resulted in significantly
more spatial structure than the null model, but still significantly
more interspecific mingling and less intraspecific clumping than
when abiotic conditions influenced pre-competition densities
(Supplementary Figures 2, 3).

3.2. Landscape-scale species richness
patterns

Although community patterns under route 2 look like those
generated by the null model, a reduction in niche space (achieved
by reducing the standard deviation of abiotic conditions across the
landscape from σ = 2.5 to σ = 0.5) still reduced total species
richness at the landscape scale when abiotic conditions determined
interaction strengths, whereas total species richness in the null
model was unaffected [SS = 4.51, DF = 1, F = 25.69, and P < 0.001
for the interaction between route of abiotic influence and standard
deviation of abiotic conditions in the landscape (σ ), Figure 4 and
Supplementary Table 2].

For all other analyzes when σ = 2.5, landscapes usually
retained all 4 species regardless of the variable community patterns
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we found at local spatial scales (e.g., those reported across 5 x 5
microsite sampling units or within a 10 microsite radius for the
spatial point pattern analyzes). Single species occasionally went
extinct in the null model, and these losses were mitigated to various
degrees when we introduced niche partitioning in subsequent
simulations. Whenever species partitioned resources during
germination, extinction never occurred (route 1 and simulations of
route 1 in combination with route 2 in Supplementary Figure 4).
Under route 2 when species only partitioned resources during
competition, extinction was prevented 75% of the time when
dispersal was adjacent and interspecific competition >0.5, 25%
of the time when dispersal was intermediate and interspecific
competition >1.0, and at least 11% of the time when dispersal
was universal and interspecific competition was>0.5 (route “none”
compared to route 2 in Supplementary Figure 4).

3.3. Relationships between abiotic
heterogeneity, competitive balance, and
species richness measured in small
sampling units

When abiotic conditions determined initial densities during
germination (route 1), we found positive heterogeneity-
diversity relationships (HDRs) (Supplementary Table 3),
positive relationships between abiotic heterogeneity and
competitive balance (Supplementary Table 4), and positive
relationships between competitive balance and species richness
(Supplementary Table 5). When abiotic conditions determined
interaction strengths during competition (route 2), we found
flat HDRs and no relationship between abiotic heterogeneity
and competitive balance (Supplementary Tables 3, 4), and
strong positive relationships between competitive balance
and species richness as long as dispersal was not universal
(Supplementary Table 5). Figures 5A–C plot model predictions
from simulations with intermediate dispersal and αij = αii as
examples to illustrate these differences arising from route 1 and
2. In Figure 5A, the positive HDR arising from route 1 was 14
times stronger than the HDR arising from route 2, which was flat
and not statistically significantly different from 0 (coefficient =
0.14 and 0.01, χ

2 = 172.15 and 0.17, DF = 1, P < 0.001 and =

0.68, respectively, Supplementary Table 3). Similarly, an increase
in abiotic heterogeneity led to an increase in competitive balance
under route 1 but not under route 2 (coefficient = 0.02 and 0.00,
χ
2 = 114.39 and 2.68, DF = 1, P < 0.001 and = 0.1, respectively,

Figure 5B and Supplementary Table 4). When dispersal was
restricted to adjacent microsites and interspecific competition
was stronger than intraspecific competition (αij = 1.5), route 2
led to a statistically significant positive HDR (coefficient = 0.04,
χ
2 = 24.17, DF = 1, P < 0.001, Supplementary Figure 5A and

Supplementary Table 3). However, the coefficient for route 1 under
the same parameters was 5.9 times larger (coefficient = 0.21,
χ
2 = 418.22, DF = 1, P < 0.001, Supplementary Table 3), and

abiotic heterogeneity was not a statistically significant predictor
of competitive balance (coefficient = 0.00,χ2 = 1.18, DF = 1,
P = 0.28, Supplementary Table 4). When slopes arising from
route 2 were significantly different from 0 under intermediate

and universal dispersal they were at least 8 times smaller
than the slopes arising from route 1 (an example is plotted in
Supplementary Figure 5B). Finally, Figure 5C shows that with
intermediate dispersal and αij = 1.0, an increase in competitive
balance led to a statistically significant increase in species richness
under route 1 (coefficient = 3.09, χ2 = 241.25, DF = 1, P < 0.001,
Supplementary Table 5), and a marginally significant increase
under route 2 (coefficient = 2.72, χ

2 = 3.40, DF = 1, P =

0.07, Supplementary Table 5). When dispersal was universal, the
relationship between competitive balance and species richness
weakened. Supplementary Figure 5C shows an example where the
strength of the effect of competitive balance on species richness
arising from route 1 was 5.8 times larger than the effect arising
from route 2 when dispersal was universal (coefficient = 3.86
and 0.66, χ

2 = 253.36 and 0.75, DF = 1, P < 0.001 and = 0.22,
respectively, Supplementary Table 5).

Over all parameter combinations, route 1 consistently led
to stronger HDRs (SS = 0.08, DF = 2, F = 634.39, P <

0.001, Figure 5D) and stronger relationships between abiotic
heterogeneity and competitive balance (SS = 0.00, DF = 2, F =

3438.7, P < 0.001, Figure 5E) compared to route 2 (Table 2). The
relationship between competitive balance and species richness was
best explained by an interaction between route of abiotic influence
and dispersal, where the relationship was strong regardless of
abiotic route of influence when dispersal was restricted, but
weakened when abiotic conditions affected interaction strengths
and in the null model when dispersal was universal (SS =

26.5, DF = 4, F = 28.8, P < 0.001, (Figure 5F and Table 2).
The statistically significant interaction between route of abiotic
influence and dispersal distance explained 49.2% of the variation
in the strength of the relationship between species richness and
competitive balance (Table 2). The interaction between route of
abiotic influence and dispersal was also statistically significant for
the HDR (SS = 0.00, DF = 4, F = 12.2, and P < 0.001). Dispersal
and its interaction with abiotic route of influence explained 2.8%
and 1.6% of the variability in HDR strength, respectively, while the
main effect of route of abiotic influence explained 41.4% (Table 2).

3.4. Decomposing combined e�ects of
abiotically-generated variability in density
and interaction strengths across sampling
scales

Compared to the null model, independent contributions from
abiotic effects on initial densities (route 1) and on interaction
strengths (route 2) both led to net loss in average number of
species in microsites and small sampling units (5 x 5 microsites)
(Figure 6 and Supplementary Figure 6). For route 1, average species
loss decreased from 1.34 under adjacent dispersal, to 1.16 and
0.57 under intermediate and universal dispersal, respectively. For
route 2, average species loss also decreased with increased dispersal
distance, from a maximum loss of 0.53 when dispersal was
adjacent to a maximum loss of 0.07 when dispersal was universal.
Additionally for route 2, net loss increased by a factor of 8.8 with
increased strength of interspecific competition when dispersal was
adjacent, by a factor of 13 when dispersal was intermediate, and a
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FIGURE 5

Relationships between abiotic heterogeneity and species richness (row 1), abiotic heterogeneity and competitive balance (row 2), and competitive

balance and species richness (row 3) when abiotic conditions influenced initial density during germination (route 1) or interaction strengths during

competition (route 2). As an example, (A–C) show generalized linear mixed-e�ect model (glmer) predictions for simulations with intermediate

dispersal and αij = αii. Shading around predicted values are 95% confidence intervals. (D–F) Capture average trends across parameter combinations

(i.e., lighter data points in (D, E) are fixed e�ect coe�cients from a glmer model, while the darker points and whiskers are estimated marginal means

and 95% confidence intervals from the linear model). (D, E) Show the main e�ect of route of abiotic influence on predicted relationship strengths. (F)

Shows the interaction e�ect of route of abiotic influence and dispersal on the fixed e�ect coe�cients from the e�ect of competitive balance on

species richness and for clarity shows only estimated marginal means and 95% confidence intervals. We decided not to plot the interaction e�ect in

(D) because, although statistically significant, it explained less than 2% of the variation in relationship strength (Table 1). Predictions in (E) come from a

linear model excluding an interaction (see Supplementary Section 1.4). All data were measured in small sampling units (5 x 5 microsites).
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TABLE 2 Route of abiotic influence (on density, interaction strengths, or neither in the null model) was always a significant predictor of the strength of

the measured relationships.

Predictor Relationship Sum Sq. DF F-value P-value Variance explained

Intercept v(A) and S 0.101 1 1644.671 <0.001*** 53.664%

Intercept v(A) and Cbal - - - - -

Intercept Cbal and S 12.710 1 55.368 <0.001*** 23.618%

Route v(A) and S 0.078 2 634.389 <0.001*** 41.399%

Route v(A) and Cbal 0.001 2 3438.727 <0.001*** 99.448%

Route Cbal and S 6.365 2 13.863 <0.001*** 11.827%

Dispersal v(A) and S 0.005 2 42.726 <0.001*** 2.788%

Dispersal v(A) and Cbal 0.000 2 5.636 0.011* 0.163%

Dispersal Cbal and S 4.175 2 9.094 0.002** 7.758%

αij v(A) and S 0.000 2 0.502 0.614 0.033%

αij v(A) and Cbal 0.000 2 3.455 0.051. 0.010%

αij Cbal and S 0.413 2 0.900 0.426 0.768%

Route:Dispersal v(A) and S 0.003 4 12.213 <0.001*** 1.595%

Route:Dispersal v(A) and Cbal - - - - -

Route:Dispersal Cbal and S 26.479 4 28.838 <0.001*** 49.204%

Residuals v(A) and S 0.001 16 0.522%

Residuals v(A) and Cbal 0.000 20 0.289

Residuals Cbal and S 3.673 16 6.825%

Results for relationships predicting species richness are from type III ANOVAs of linear models with an interaction effect between route of abiotic influence and dispersal distance. Results for

the relationship between abiotic heterogeneity and competitive balance are from a type II ANOVA of a linear model including only main effects because the interaction term was not statistically

significant.

Asterisks indicate significance level (∗P ≤ 0.05, ∗∗P ≤ 0.01, and ∗∗∗P ≤ 0.001).

factor of 3.5 when dispersal was universal. In large sampling units
(13 x 13 microsites), route 2 led to small gains in species richness
compared to control simulations, with a maximum average gain of
0.07 when dispersal was universal and interspecific competition was
strong (Supplementary Figure 6). Spatially correlated contributions
from routes 1 and 2 led to more species loss than expected if
effects were additive. These non-additive effects increased with
increasing strength of interspecific competition from 0.10 to 0.23
when dispersal was adjacent, from 0.06 to 0.15 when dispersal was
intermediate, and from 0.06 to 0.17 when dispersal was universal
(white bars in Figure 6B). Spatially uncorrelated contributions were
also non-additive but led to species gains instead of losses, which
increased with increased strength of interspecific competition from
0.06 to 0.48 when dispersal was adjacent, from 0.03 to 0.11
when dispersal was intermediate, and from 0.03 to 0.04 when
dispersal was universal (beige bars in Figure 6B). Observed changes
in contributions were qualitatively similar across spatial scales
of observation (except where noted for route 2 under universal
dispersal), and contributions were largest in small sampling units
(Supplementary Figure 6).

4. Discussion

We initially hypothesized that both routes of abiotic influence
would generate positive heterogeneity-diversity relationships
(HDRs), but our results do not support this prediction. We

found that positive HDRs only occurred when abiotic conditions
influenced initial density (route 1), simulated here as an abiotic
effect on germination probability. When the same abiotic
conditions determined interaction strengths during competition
(route 2), we found no relationship between abiotic heterogeneity
and species richness (flat HDRs) because sampling units with low

abiotic heterogeneity could still support high species richness when

abiotic conditions affected interaction strengths, but not when they

affected densities (e.g., sampling units with v(A) < 2 in Figure 5A).

We also initially hypothesized that positive HDRs arise through
either (or both) of two related mechanisms. First, increased abiotic
heterogeneity increases niche availability, creating the possibility
for more species to be present in a given area. Second, increased
abiotic heterogeneity increases competitive balance by increasing
either variability in density within species (Figure 1B) and/or
variability in interaction strengths within species (Figure 1C).
However, we found that a positive relationship between abiotic
heterogeneity and competitive balance only occurred when abiotic
conditions influenced initial densities (route 1), not when abiotic
conditions determined interaction strengths (route 2) (Figure 5E
and Supplementary Table 4). As with HDRs, this was because
sampling units with low abiotic heterogeneity still had high
competitive balance when abiotic conditions affected interaction
strengths, but not when they affected densities (e.g., sampling units
with v(A) < 2 in Figure 5B).

Under route 2, germination is guaranteed across abiotic
conditions but survival hinges on competitive dynamics, suggesting
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FIGURE 6

Abiotic e�ects on density (route 1) and interaction strengths (route

2) both led to species losses in small sampling units (5 x 5

microsites). Contributions from route 1, r1, were generally larger

than contributions from route 2, r2. In (A), we can see that

contributions from the interaction between routes 1 and 2, r1r2,

were usually small. In (B), we can see this is because the

uncorrelated (“r1#r2”) and correlated [“(r1r2)”] components of r1r2

had opposite e�ects on species richness. Specifically, uncorrelated

contributions resulted in species gains, while correlated

contributions resulted in species losses.

two possible explanations for the high species richness in
sampling units with low abiotic heterogeneity. First, we made local
coexistence easier to achieve whenever αij ≤ αii. Even when αij >

αii, sub-optimal abiotic conditions could still reduce interspecific
interaction strengths. Thus it may be that only strong destabilizing
mechanisms will result in competitive exclusion in areas with low
abiotic heterogeneity, which explains why we observed an increase
in small local losses with increased interspecific competition
(Figure 6). Since intraspecific competition tends to be more
strongly limiting than interspecific competition when competitors
partition resources (Adler et al., 2018), we think that considering
these scenarios reported here where interspecific competition tends
to be weaker than intraspecific competition may be especially
relevant to real communities. A second explanation for high species
richness in sampling units with low abiotic heterogeneity is that
route 2 allows species to utilize empty space anywhere on the
landscape. For example, since there are no abiotic restrictions on
germination ability under route 2, species can thrive anywhere
competitors are absent, including in areas where they would have
been unable to germinate under route 1 (Kraft et al., 2015).

Although there was no signal for niche partitioning during
route 2, a reduction in niche space still resulted in lower regional
diversity than in the null model (Figure 4). This means that
even if a species is unable to exclude an interspecific competitor
in areas where it is competitively superior (either because its
competitive effect is not strong enough or because it cannot
occupy every open microsite), it still relies on these areas
to persist. Stated another way, abiotically-generated variability
in interaction strengths contributed to regional diversity even
when it did not translate to differences in competitive balance.
This is possible because in our model, competitive balance
depended on both density and interaction strengths. Under
route 2, density was independent from direct effects of abiotic
conditions, but could still vary due to dispersal, stochasticity,
or indirect effects of interaction strengths (for example when
competitive exclusion did occur). As such, interaction strengths
varied with abiotic conditions and contributed to regional
maintenance of biodiversity, while competitive balance was
determined by density and thus did not reflect differences in
abiotic heterogeneity.

We initially hypothesized that strong or weak dispersal
could obscure heterogeneity-diversity relationships (HDRs) due
to either mass effects (Leibold et al., 2004) or an inability
to reach preferred habitat (Lundholm, 2009), respectively. We
found statistically significant effects of dispersal in the model
for HDRs, but they never explained more than 3% of the
variation in relationship strength. On the other hand, route
of abiotic influence explained over 41% (Table 2). Although
effects of dispersal on HDRs were weak compared to the
effect of abiotic influence, we found that universal dispersal
did reduce average species loss compared to the null model
for routes 1 and 2 across all measured spatial scales (Figure 6
and Supplementary Figure 6), supporting the prediction that
dispersal can mitigate local losses (Liao et al., 2013, 2016;
Ramos et al., 2018). However, we found that when there was
an interaction between routes 1 and 2, universal dispersal had
the opposite effect and instead increased average species loss
compared to the null model across sampling scales, (orange
bars in Figure 6A and Supplementary Figure 6A), which occurred
because uncorrelated effects of route 1 and 2 that led to more
species when dispersal was adjacent led to no net change or fewer
species when dispersal was universal (beige bars in Figure 6B
and Supplementary Figure 6B). We hypothesize that this occurs
because adjacent dispersal concentrates seed input, increasing the
chances for a species with low germination probability to persist in
that area.

As expected under coexistence theory, adding niche
partitioning mitigated landscape-level extinctions that occurred
occasionally in the null model (Supplementary Figure 4). One
hundred percent of landscapes that lost a species in the null
model retained that species when abiotic conditions affected
initial densities (route 1). Mitigation was weaker when abiotic
conditions affected interaction strengths, and depended on
dispersal distance as well as strength of interspecific competition
(Supplementary Figure 4). These results are in agreement with
findings from Chu and Adler (2015) that show that niche
partitioning during germination contributed more strongly to
species coexistence than niche partitioning during competition.
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4.1. Implications

When studies find no evidence for a heterogeneity-diversity
releationship (HDR), three main alternative hypotheses tend to
be invoked: (1) dispersal maintains populations of species outside
their niche (Shmida and Wilson, 1985; Mouquet and Loreau,
2003), (2) the abiotic factor of importance varies at a different
spatial scale than the scale at which the study was conducted
(Lundholm, 2009), or (3) species are not partitioning the measured
abiotic factor. Our results suggest a fourth alternative, which is that
species do have differential responses to themeasured abiotic factor,
but its effects mediate interaction strengths rather than initial
density. This fourth possibility has two unique consequences for
restoration and conservation practitioners. First: biased detection
of HDRs could overemphasize the importance of preserving or
creating heterogeneity in abiotic conditions that affect density
(i.e when the abiotic environment alters germination probability),
when variable competitive environments may also contribute to
both local and regional species richness. Second: communities
where abiotic factors determine interaction strengths (route 2),
although lacking a signal for niche partitioning, may still be
susceptible to biodiversity loss with a reduction in niche space
(Figure 4). Route 2 simulates a scenario where the abiotic factor
determining germination probability varies at a larger spatial
scale than the factor determining interaction strengths (i.e.,
germination probability remains constant because our sampling
scale does not capture variability in the abiotic factor affecting
germination). Thus, our results suggest that conserving/restoring
abiotic heterogeneity at small spatial scales is equally important as
conserving/restoring abiotic heterogeneity at large spatial scales.
Our recommendation is to focus on nested levels of abiotic
heterogeneity in both conservation and restoration. However,
some care needs to be taken in balancing this recommendation
with findings that high abiotic heterogeneity from the inclusion
of extreme abiotic conditions can decrease species richness (for
example due to inclusion of inhospitable conditions, as discussed
in Yang et al., 2015).

4.2. Limitations and future directions

Following Palmer (1992), per capita strength of intraspecific
competition was held constant in our model, but abiotic conditions
could affect both intra- and interspecific competition. This could
be accomplished by multiplying the first term in brackets of
Equation (2) (the probability that species j dies) by an additional
performance function, PAj(x, y), reflecting the impact of abiotic
conditions of a landscape A on intraspecific competition (which
could be the same as, or distinct from, the interspecific performance
function PCj(x, y), depending on ecological context). If abiotic
conditions in a given microsite favored species 1 and hindered
species 2, then species 1 would not only have a strong effect on
species 2, but also be strongly self-limited. Similarly, species 2
would not only have a weak effect on species 1, but also benefit
from reduced self-limitation. How these trade-offs in competitive
effect on heterospecifics and strength of self-limitation might affect
competitive balance in sampling units with different levels of
abiotic heterogeneity is an interesting question for future research.

Although the questions posed are relevant across taxa, our
model and choice of parameter values speakmost directly to a small
understory community of annual and perennial plants (Table 1).
An important goal for future research will be to determine how
our findings change for larger communities containing species
with different parameter combinations to simulate variability in
trait composition. Due to interest in disentangling effects of
density vs. interaction strengths (Chu and Adler, 2015; Hallett
et al., 2019), we focused on effects of the abiotic environment
on species density during germination compared to effects
during competition on interaction strengths. However, abiotic
conditions can affect species across a suite of life stages and
interaction types. Abiotic effects on dispersal, for example, can
vary considerably depending on the selective pressures facing
species (Sullivan, 2014; LaRue et al., 2018). Indirect effects of
abiotic conditions on dispersal is likely also common when they
act via a mutualist, for example if the presence, abundance,
or effectiveness of a dispersal mutualist depends on abiotic
conditions (Lehouck et al., 2009). Regardless of the specificity of
the model, our results highlight that niche partitioning does not
always result in a strong correlation between abiotic heterogeneity
and competitive balance, the process driving the landscape-level
signature for niche partitioning [e.g., strong positive heterogeneity-
diversity relationships (HDRs)]. We think this result is general
because it is an extension of principles from coexistence theory
(e.g., covariance between the environment and competition is
a prerequisite for the storage effect, which concentrates species
in their preferred habitats) (Figure 1). We therefore hypothesize
that processes that strengthen the correlation between competitive
balance and abiotic heterogeneity will strengthen the signal for
niche partitioning, while processes that weaken that correlation
will weaken the signal for niche partitioning. A clear future
direction is to test this hypothesis across different life histories
of diverse communities and taxa, and/or develop more general
models to explore these relationships, since the present research
demonstrates why it is difficult to predict a priori how abiotic
effects will affect the correlation between abiotic heterogeneity and
competitive balance.

5. Conclusions

Community-level signals for niche partitioning, e.g., positive
heterogeneity-diversity relationships (HDRs), were evident
when abiotic conditions affected germination probability and
thus initial densities, but not when they affected interaction
strengths during competition. When abiotic conditions affected
germination probabilities, areas with low abiotic heterogeneity
had low competitive balance and therefore low species richness.
When abiotic conditions affected interaction strengths during
competition, however, areas with low abiotic heterogeneity had
high competitive balance and thus retained more species than
expected, obscuring the expected positive HDR. Although the
signal for niche partitioning was absent when abiotic conditions
affected interaction strengths, a decrease in niche space still resulted
in regional species loss. Therefore, we may not be able to identify
which abiotic gradients support species richness in a landscape
based on emergent patterns. Rather, it may be more informative
to determine which abiotic factors drive differences in interaction
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strengths between species, for example based on functional
traits and/or phylogeny. We conclude that understanding
how abiotic heterogeneity affects biotic neighborhoods, and
specifically competitive balance, will be a critical framework
for linking species interactions to community-level patterns in
future research.
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