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Xiaofeng Wen1,2, Yuannan Long1,2, Shuai Yuan1,2,
Yuantai Kang1,2, Yongjie Wang1,2 and Ruixuan Wu1,2

1School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, China,
2Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan
Province, Changsha, China
Coral reefs are ecosystems that are highly vulnerable to external environmental

impacts, including changes associated with ocean acidification and global

warming. Assessing the vulnerability of coral reef growth environments over

large areas of the sea is a difficult and complex process, as it is influenced by

many variables. There are few studies on environmental vulnerability assessment

of coral islands and reefs in the South China Sea. It is therefore particularly

important to understand the environmental sensitivity of corals and how coral

communities respond to changes in climate-related environmental variables. In

this study, indicators were selected mainly from natural environmental factors

that hinder the development of coral reefs. The sea surface temperature (SST),

sea surface salinity (SSS), wind velocity (WV) and direction, sea level height (SL),

ocean currents (OC), and chlorophyll concentration (Chl) of coral reefs in South

China Sea Island were integrated to calculate the coral reef environmental

vulnerability region. In a GIS environment, Spatial Principal Component

Analysis (SPCA) was used to develop sensitivity models and evaluate the

ecological vulnerability of coral reefs. Based on the Environmental vulnerability

indicator (EVI) values, the study area was classified as 5 grades of ecological

vulnerability: Potential (0.000–0.577), Light (0.577–0.780), Medium (0.780–

0.886), Heavy (0.886–0.993) and Very Heavy (0.993–1.131). Sensitivity models

identified regional gradients of environmental stress and found that some coral

reefs in western Malaysia and southwestern Philippines have higher vulnerability.

Meanwhile, the study found that the reefs of Paracel Islands and Macclesfield

Bank areas of medium vulnerability. Future use of high-precision data from long

time series will allow better estimates of site-specific vulnerability and allow for

the precise establishment of marine protected areas so that the ecological

diversity of coral reefs can be sustained.
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1 Introduction

The South China Sea (SCS), with its complex seafloor

topography, has both multi-level flat land slope terraces and

majestic submarine plateaus, with dramatic changes in water

depth around coral reefs (Jiang et al., 2021).The ecological

environment of coral reefs in the South China Sea region is also

highly complex, as the development of reef-building corals depends

mainly on external environmental conditions (e.g., temperature,

salinity, light, chlorophyll concentration), resulting in coral reef

ecology being vulnerable to damage or even extinction due to

changes in external environmental factors (Liu et al., 2003; Hu

et al., 2022). In particular, global changes have caused an increase in

seawater surface temperature, ocean acidification, sea level rise and

enhanced typhoon activity, which directly or indirectly cause

different degrees of damage to coral reefs and threaten the global

coral reef ecosystem (Barkley et al., 2015; Cotovicz et al., 2020). In

recent years, in the context of increased frequency and diversity of

human impacts on coral reefs (e.g., artificial island creation,

tourism, fisheries) (Barnes & Hu, 2016; Yin et al., 2019), a large

proportion of reefs in the South China Sea are under severe

degradation due to both natural environment and human

activities (Yu, 2012).

A scholarly survey found that stony coral cover in Daya Bay has

declined from 76.6% to 15.3%, with a degradation of 80% (Chen

et al., 2009); Sanya Luhuitou shore reef declined from 80% to 90% in

1960 to 12% in 2009 (Zhao et al., 2012); In July 2008, a survey of

stony coral cover was carried out on the reef slope of Yongxing

Island(Woody Island), and it was found that the corals along the

reef slope in the eastern section were significantly reduced (Shi et al.,

2011). Live coral cover was 0.40% in Panshi Yu (IQR: 7.74–0.27%)

and 38.20% in Bei Jiao, (IQR: 43.00–35.90%) (Xiao et al., 2022). The

decline of coral reefs is detrimental to the sustainable development

of coral reef resources, while at the same time weakening their

function of maintaining shoreline stability, which can lead to severe

coastal erosion (Zhao et al., 2019). There are differences in the

bleaching sensitivity and adaptability of different coral forms to

global warming and local anthropogenic disturbance pressures, and

relatively high latitudes are recognized as potential refugia for corals

in the face of continued global warming (Qin et al., 2019). Since the

early 1980s, primarily due to climate-induced ocean warming, the

most severe events often accompany ocean–atmosphere coupling

phenomena such as the El Niño-Southern Oscillation (ENSO)

(Baker et al., 2008). In recent years, record-breaking temperatures

have placed significant stress on coral reefs. The strong El Niño

event from 2014 to 2017 exacerbated the overall warming trend,

resulting in coral reefs worldwide experiencing the longest recorded

bleaching event, severely affecting global coral reefs (Cerutti et al.,

2020). As many coral reefs around the world are quite remote,

satellite temperature data have been used to quantify global coral

reef warming trends, spatial changes, and heat stress events. It has

been found that 97% of over 60,000 global coral reef pixels showed a

positive sea temperature trend during the study period, with 60%

warming significantly (Heron et al., 2016). As one of the ecosystems

most sensitive to climate change, coral reefs are in a symbiotic

relationship with a tiny alga known as zooxanthellae. The
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photosynthesis of zooxanthellae provides up to 90% of the energy

for coral reefs. During El Niño events, the interaction between the

atmosphere and ocean within the climate system leads to an influx

of warmer water. At the same time, global atmospheric circulation

patterns change, causing a rise in the temperature of the tropical

Pacific, which indirectly affects the sea surface temperature of the

South China Sea. Changes in environmental pressure can disrupt

this symbiotic relationship (Donner et al., 2010; Yu, 2012).

Modeling of coral reef ecological processes is a more complex

study in which there is uncertainty in the choice of environmental

factors and the subjective judgments inherent in the observer

(Bosserman & Ragade, 1982). Several studies have attempted to

use global climate models to assess natural climate change and

anthropogenic forcing to simulate bleaching events (Donner

et al., 2007). In the simulation process, the main source of

environmental assessment data is the local government’s

summary of historical information and field information from

occasional visits, but it is difficult to achieve regular and high-

frequency visits for coral reefs in more distant regions, so

important data information is often missing in traditional coral

reef environmental assessment, which limits the applicability

of the model (Duan et al., 2016; Kordi & O’Leary, 2016). The

use of valid and stable data for comprehensive environmental

assessment of remote islands and reefs is a critical step, and at the

same time, it is a serious challenge, especially in the selection and

applicability of environmental factors (Yang & Chen, 2015). In the

past decades, effective assessments of ecological environments

have often been linked to global change and disaster mitigation

issues. Vulnerability assessment mechanisms vary from region to

region due to regional environmental differences (Shao et al.,

2015). Therefore, it is difficult to develop an evaluation system

with wide adaptability (Zou & Yoshino, 2017).

In past research, many methods have been developed for studies

of this kind, such as the Comprehensive Evaluation Method (Li

et al., 2005), the IndicatorWeight Method (IWM) (Diakoulaki et al.,

1995), and the Analytic Hierarchy Process (AHP) (Li et al., 2006).

However, these methods rely on expert evaluations to measure the

importance of factors, and the level of expertise directly influences

the final assessment results. To provide objective results for the

evaluation of ecological vulnerability and reduce human

interference, it is essential to seek alternative methods. In this

study, using SCS as the study area, remote sensing data and

reanalysis data are selected as the basic data for environmental

vulnerability calculation and used to solve the problem of data

scarcity. The Spatial Principal Component Analysis (SPCA)

method was used to establish a coral reef vulnerability

distribution map for effective evaluation of the environmental

vulnerability of SCS coral reefs. The regional gradient of

environmental pressure is determined according to the model,

and the comprehensive evaluation results of the static evaluation

of ecological and environmental vulnerability are selected for spatial

superposition to obtain the changes and distribution of each

ecological vulnerability level, to analyze the development trend of

regional ecological vulnerability and its spatial characteristics. The

results of this study provide a scientific foundation for relevant

departments when making decisions related to the protection of
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coral reefs, aiming to promote the sustainable development and

preservation of coral reefs and islands.
2 Materials and methods

2.1 Study area

The SCS region is the western part of the Pacific Ocean,

connected to the Pacific Ocean through straits or waterways,

from Nanao Island in Guangdong Province in the north to

Kalimantan Island and Sumatra Island in the south, near the

Malay Peninsula in the west and the Philippines in the east. SCS

is a northeast–southwest trending semi-enclosed sea, sometimes

referred to as the “Asian Mediterranean” (Morton & Blackmore,

2001). In the South China Sea, there are hundreds of coral reefs,

including islands, coasts and shoals, and the main islands are

Spratly Islands, Macclesfield Bank, Pratas Islands and Paracel

Islands (Zhang et al., 2018). The regions of (104°~121°E) and (2°

~24°N) were selected as the study region in this study (Figure 1).
2.2 Data and processing methods

Models were developed using variables known to affect coral

ecosystems (Figure 2), data were retrieved from the National

Science & Technology Infrastructure (NSTI) and the National

Centers for Environment Information (NCEI) and pre-processed

to obtain key variables (Table 1). The SPCA tool was used to

determine the weights and scores of the parameters, and these maps

were integrated using statistical methods to evaluate and map the

ecological vulnerability of the study area using GIS 10.8 software.
2.3 Reef distribution data

Some of the coral reefs in the SCS area are very small and

difficult to identify from low-resolution images. Therefore, Landsat
Frontiers in Ecology and Evolution 03
8 satellite data were used to interpret spatial features, and the data

were obtained from remote sensing images from the United States

Geological Survey website (www.usgs.gov). Details of the selected

satellite images are shown in (Table 2).

The remote sensing data are pre-processed using ENVI 5.1 software,

which includes processing for cloud removal, radiometric calibration,

atmospheric correction, and image enhancement. The radiometric

calibration of the data using the calibration tool is calculated using the

calibration coefficients Gain and Bias, using the following equations.

L = Gain� DN + Bias (1)

Gain = (Lmax − Lmin)=2 5 5 (2)

Bias = Lmin (3)

In the formula (1~3), L is the analog signal of the sensor; Lmax is

the maximum radiation brightness; Lmin is the minimum radiation

brightness; DN is the brightness value of the image element, with

value range 0~255. The default parameter calibration units in ENVI

5.1 software isW·m−2·sr−1·mm−1. Correction was performed using the

QUick Atmospheric Correction (QUAC) tool, which approximates

the radiative transfer model +/− 15% in accuracy. To improve image

visualization, a 2% linear stretching tool was used to enhance the

images. Lastly, supervised classification methods were employed to

identify coral reefs, and moderate adjustments were made to lagoons

and shallow reefs with relatively high openness, as well as to coral

reefs that were difficult to distinguish.
2.4 Regional reanalysis data – temperature\
salinity\ocean current\sea level

The National Marine Science Data Center (NMDC) of China

has developed a regional ocean reanalysis system for China’s

offshore and adjacent seas and generated a dataset called

CORA1.0(China Ocean ReAnalysis) (Chao et al., 2020), range in

(99°E to 150°E, 10°S to 52°N). The elements contain sea level, sea

surface temperature, sea surface salinity and ocean currents; the

horizontal resolution is 0.5°×0.5°, and the vertical is 35 layers; the

time range is (1958–2018); and the time resolution is the monthly
FIGURE 1

Map of the SCS showing coral reef locations.
FIGURE 2

Conceptual framework of the susceptibility model.
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average of calendar year. The selected ocean dynamics model is the

Princeton Generalized Coordinate System Ocean Model (POMgcs),

with a model original horizontal resolution of 1/2°~1/8°, variable

grid; vertical 35 layers (Shen et al., 2014). The meteorological

driving field used is the NCEP meteorological reanalysis field. The

ocean data assimilation method used is the multiple grid 3D

variational ocean data assimilation method. The assimilated ocean

observations include in situ temperature and salt observations,

satellite remote sensing sea surface height anomaly (SSHa) and

sea surface temperature (Reynolds SST) information.
2.5 Chlorophyll pigment concentration

The data were based on the Chlorophyll-a concentration

products retrieved from SeaWIFS, Terra-MODIS, Aqua-MODIS,
Frontiers in Ecology and Evolution 04
MERIS and VIIRS from January 1998 to December 2018. This

paper combines the wavelet transform and Kalman filtering to

develop the multi-source remote sensing data fusion technology

and integrates the look-up table and the maximum value composite

to design the data fusion method. The algorithm completes the

global sea surface chlorophyll-a concentration fusion dataset (1998–

2018) at three temporal scales: monthly, seasonal and annual. The

spatial resolution of the dataset is 4 km × 4 km, the data format is

TIFF (Li et al., 2021).
2.6 Wind velocity

The hybrid wind dataset combines observations from

multiple satellites and is used to create gridded wind speeds.
TABLE 1 Data format and sources used in this study.

Data product
Spatial

resolution
Time
scale

Web site

Regional Reanalysis data –
Temperature

0.5°
Monthly;
1958–2018

http://mds.nmdis.org.cn/pages/home.html

Regional Reanalysis data – Salinity 0.5°
Monthly;
1958–2018

http://mds.nmdis.org.cn/pages/home.html

Regional Reanalysis data – Ocean
current

0.5°
Monthly;
1958–2018

http://mds.nmdis.org.cn/pages/home.html

Regional Reanalysis data – Sea level 0.5°
Monthly;
1958–2018

http://mds.nmdis.org.cn/pages/home.html

Chlorophyll (mg/m3) 4 km Years; 1998–2018 http://www.geodoi.ac.cn/doi.aspx?Id=1807

Wind speed (m/s) 0.25°
Monthly;
1987–2010

https://www.ncei.noaa.gov/data/blended-global-sea-surface-wind-products/access/
winds/monthly/
TABLE 2 List of remote sensing images.

Dataset Path Row Dataset Path Row

Spratly Islands

2018/06/29 121 54 2018/06/22 120 57

2018/08/16 121 55 2108/05/14 119 52

2018/05/18 120 52 2018/05/14 119 53

2018/07/24 120 53 2018/04/28 119 54

2018/07/24 120 54 2018/05/14 119 55

2018/06/06 120 55 2018/05/04 118 52

2018/06/06 120 56 2018/05/07 118 53

Pratas Islands

2018/04/03 120 46 2018/10/05 119 46

Paracel Islands

2018/03/16 122 48 2018/03/16 122 49

Macclesfield Bank

2018/12/06 121 49 2018/11/13 120 49
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The hybrid data fills the temporal and spatial data gaps that

exist in each source dataset and reduces random errors.

Global gridded hybrid wind data are available at a spatial

resolution of 0.25° in NetCDF and IEEE formats from July

1987 to present, with six-hourly, dai ly , and monthly

temporal resolutions.
2.7 Calculation of
environmental vulnerability

2.7.1 Standardize the original value of indicators
Due to the different nature of each evaluation index, it is not

possible to conduct ecological vulnerability evaluation directly.

Therefore, it is necessary to standardize the evaluation indicators

to eliminate the possible problems of inaccurate evaluation

results caused by the non-uniformity of the indicator scale and

order of magnitude. The contribution of indicators to ecological

vulnerability can be divided into positive and negative indicators,

where the higher the representative value of the positive

indicator, the higher its ecological vulnerability, and the reverse

for the negative indicator. The standardization of indicators is

done by means of extreme difference standardization, using the

formula (4)(5).

Zi =
Xi �Xmin

Xmax �Xmin
(4)

Zi =
Xmax �Xi

Xmax �Xmin
(5)

where Zi is the standardized value of the parameter i, Xi is the

actual value of the parameter i, and Xmax, Xmin are the maximum

and minimum of the parameter i respectively.
2.7.2 Determination of weights of the parameters
Spatial Principal Component Analysis (SPCA) is a statistical

method that integrates traditional Principal Component Analysis

(PCA) with a spatial weight matrix to account for spatial

autocorrelation. Consider a dataset Y consisting of m variables

and n observation samples. Each data element of Y can be

represented as y_{i,j}, all i = 1,…, n and j = 1,…, m. The data

matrix Y is standardized to the dataset X, ensuring the centroid of

the entire dataset moves to the origin and follows a normal

distribution. Each data element of X can be represented as x_{i,j},

all i = 1,…, n and j = 1,…, m. Calculate the eigenvalues and

eigenvectors of matrix X, then arrange the eigenvectors in

descending order based on their respective eigenvalues. These

rearranged eigenvectors become the feature vectors (FV) of X,

used to perform the SPCA transformation on X, forming m linear

combinations of the principal components (Lee, 1998; Rajput

et al., 2010). The new variables PC1(i), PC2(i),…, PCm(i) are the m

transformed principal components (PCs). The calculation

formulas are (6), (7), (8) and (9).
Frontiers in Ecology and Evolution 05
PC1(iÞ = w11xi1 + w21xi2 +⋯+wm1xim

PC2(i) = w12xi1 + w22xi2 +⋯+wm2xim

⋮

PCm(i) = w1mxi1 + w2mxi2 +⋯+wmmxim

9>>>>>=
>>>>>;

(6)

o
n

i=1
x2i,j = 1, for any j = 1,⋯,m; while (7)

wi1wj1 + wi2wj2 +⋯+wimwjm = 0; for alli ≠ j (8)

FV =

w11 … w1m

⋮ ⋱ ⋮

wm1 … wmm

2
664

3
775

T

(9)

In this study, the contribution of each factor was measured by

calculating the weights of each component using linear correlation

coefficients in Spatial Principal Component Analysis (SPCA). The

principal component analysis method is to transform the data in the

multivariate attribute space to a new multivariate attribute space that

rotates the axes with respect to the original space, and the axis attributes

in the new space are not correlated with each other (Maina et al., 2008;

Guo et al., 2019). The eigenvalues of the covariance matrix and its

corresponding eigenvectors were calculated using the SPCAmodule on

ArcGIS to derive a set of principal components (PCs) as the output.

The main reason for transforming the data in the principal component

analysis is the desire to compress the data by eliminating redundancy,

where the first principal component will have the greatest variance, the

second will show the second most variance not described by the first,

and so forth (Hou et al., 2015).

2.7.3 Assessment of ecological vulnerability
When the cumulative variance contribution is greater than or

equal to 85%, it is representative of the vast majority of the

information of interest. The use of spatial principal component

analysis does not require artificial determination of the weights of

each index, which can avoid bias in the final results due to human

factors. In this paper, the standardized evaluation indicators in the

evaluation index systemwere subjected to spatial principal component

analysis on ArcGIS software to calculate the ecological vulnerability

evaluation index EVI. The calculation formula is (10):

EVI = a1Y1 + a2Y2 + a3Y3 + L + anYn (10)

where Y is the number of the principal component and a is the

corresponding contribution. Using the values in Table 3.

3 Result

3.1 Distribution of
environment vulnerability

The spatial distribution of the average environmental

vulnerability in the SCS region is shown in Figure 3 The regions

with high EVI values shown in the figure are relatively fragile
frontiersin.org
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environments. The overall EVI values ranged from (0.250~1.131).

From the overall regional distribution, the environmental

vulnerability value along the SCS northwest direction weakened,

the main reason is that the more vulnerable areas are mainly

distributed in the Spratly Islands, and the vulnerability value is

significantly greater than other regions, heavy vulnerable areas

accounted for 21.43%, very heavy areas accounted for 31.04%,

and severely vulnerable areas have been more than half. The

southwestern and northeastern regions of Malaysia’s western

coastline have a high level of environmental vulnerability The

distribution of environmental vulnerability decreases from both

sides to the middle, i.e., from the northern Philippines and the

Sematan Sea to the Zhenghe Group Reef area.

Statistical analysis showed that there were differences among the

four regions (Figure 4), and the average environmental vulnerability

was in the order of Spratly Islands, Macclesfield Bank, Paracel Islands

and Pratas Islands from highest to lowest. Only the environmental

vulnerability of Spratly Islands is much higher than the average level

of SCS sea area. Paracel Islands and Macclesfield Bank are spatially

and geographically located at the same latitude and therefore have

similar environmental vulnerabilities. Since Huangyan Island is

included in the statistics in the Macclesfield Bank and is far from
Frontiers in Ecology and Evolution 06
the core area of the Macclesfield Bank and located close to the

northern part of the Spratlys, the maximum value of the Macclesfield

Bank is higher than the Overall average value of 0.994, when the

maximum value is counted. In contrast, the Pratas Islands have the

lowest environmental vulnerability value.
3.2 The changing trend of reef vulnerability

In the latitudinal direction, reef groups with different topography

are scattered throughout the SCS sea area. Spratly Islands are widely

distributed in the northwest continental shelf of Malaysia, and the

number of coral reefs is much more than other regions, belonging to

the low latitude region (4°0′0″–12°0′0″ N). From Figure 5, it is found

that the mean value of environmental vulnerability of coral reefs in

(4°0′0″–7°0′0″N) region is greater than 0.9, with significant

geomorphic vulnerability, and the EVI value decreases gradually,

among which the vulnerability value of Nanping Jiao (Hayes Reef) is

the largest at 1.125. The environmental vulnerability values of other

reefs also belonging to Spratly Islands (7°0′0″–12°0′0″N) did not

decrease significantly with increasing latitude, but showed a cross-

floating phenomenon, with the environmental vulnerability values
FIGURE 3

Spatial distribution of environmental vulnerability in SCS. (A) Spatial distribution of the EVI. (B) Distribution of the normalized data.
TABLE 3 Percent and accumulative eigenvalues.

PC Layer Eigen Value Percent of Eigen Values Accumulative of Eigen Values

PC_1 0.03375 52.7141 52.7141

PC_2 0.01392 21.7335 74.4476

PC_3 0.00835 13.0442 87.4918

PC_4 0.00435 6.7882 94.28

PC_5 0.00273 4.2655 98.5455

PC_6 0.00093 1.4545 100
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fluctuating up and down between (0.943–1.058), and the average

value was 1.003, among which the vulnerability value in the Yongshi

Tan (Leslie Bank) was the largest at 1.058, and the vulnerability value

in the Yongshu Jiao (Fiery Cross Reef) The lowest value is 0.943.

The Paracel Islands and Macclesfield Bank are distributed in the

central sea area of the South China Sea, mainly concentrated in the area

of (15°0′0″–17°0′0″N), and the environmental vulnerability value of

this sea area has a significant decrease, with the environmental

vulnerability value of (0.819–1.035) and the average environmental

vulnerability value of 0.846. The vulnerability value of Huangyan Island

is the largest, with the vulnerability value of 1.035. The environmental

vulnerability value of Paihong Tan (Penguin Bank) is the smallest, with

the vulnerability value of 0.59. The Pratas Islands are in the

northernmost part of the SCS (19°00′0″–12°00′0″ N), which has the

least number of reefs, and the environmental vulnerability of both

Pratas reef and island is below 0.8, with no significant vulnerability.

There is no obvious trend change in the environmental

vulnerability values of coral reefs in the longitude direction.

However, there are obvious regional variations in environmental

vulnerability values, in which all the vulnerability values of

Spratly Islands are greater than 0.9 and all other regions are less

than 0.9. From the overall view (Figure 6), the number of reefs at

(111°0′0″–115°0′0″ E) was the highest, and there was a significant

cross-floating phenomenon of environmental vulnerability value with

increasing longitude, with the environmental vulnerability value

fluctuating up and down between (0.819–1.125), and the mean

value was 0.943. With the continuation of longitude

(115°0′0″–118°0′0″ E) the crossover phenomenon of environmental

vulnerability value disappears and turns to a stable state, only in

(116°18′42″–116°55′40″ E) in the Pratas Islands environmental

vulnerability value is lower than the average value of 0.8.
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The SCS is known for its northeast–southwest orientation and its

semi-enclosed maritime characteristics, leading to its temperature

gradient not simply distributed vertically but gradually decreasing in

the southwest direction. This unique geographical feature prompts us

to explore the variation in EVI values from a longitudinal perspective.

Although the environmental vulnerability value of coral reefs does not

show a clear trend in the longitudinal direction, the impact of the El

Niño event cannot be ignored. This event can rapidly alter sea surface

temperatures, especially in the eastern part of the SCS, potentially

subjecting coral reefs to thermal stress, resulting in bleaching or

damage. Even though the SCS is located at the westernmost part of

the Pacific, its response to the El Niño event might be slightly delayed,

but its impact is still significant. This is a crucial reason for our choice

to analyze from a longitudinal perspective. This analytical approach

allows us to better grasp the spatial impact of mixed environmental

factors on the ecological vulnerability of coral reefs and reveals the

specific trend of EVI on the islands in the longitudinal direction.

Therefore, studying EVI longitudinally offers a macroscopic and in-

depth perspective, helping us to understand more profoundly the

ecological vulnerability of coral reefs in the SCS.
3.3 Environmental vulnerability gradation

There are many methods to classify environmental vulnerability,

and in order to obtain the classification list objectively, the natural

breakpoint method is chosen as the classification method in this

paper. Because this methodminimizes intra-class variation and inter-

class variation, it is not subject to human factors. In ArcGIS (version

10.8), the natural breakpoint method was used to obtain a

comprehensive environmental vulnerability rating. In this process,

the environmental vulnerability is reclassified into five categories:

Potential, Light, Medium, Heavy, and Very Heavy. The detailed

classification results are shown in Table 4.

Different levels of vulnerability were evaluated comprehensively

at the regional scale in the South China Sea, as shown in Figure 7.

The sea area in the southwestern part of Taiwan Strait to the

northern part of the Philippines and the eastern part of Hainan is

dominated by potential vulnerability and light vulnerability, only a

small part of the sea area near southern Taiwan is rated as moderate

vulnerability, followed by a part of the sea area in the southeastern

region of Vietnam is also classified as light vulnerability, which is

much lower than the other classes, and there is no heavy

vulnerability or extreme vulnerability. Most of the east coast of

Vietnam is classified as moderately vulnerable, with the Paracel
FIGURE 5

EVI variation in latitudinal direction.

FIGURE 6

EVI variation in longitude direction.
FIGURE 4

Statistics of environmental vulnerability at regional scale.
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Islands and Macclesfield Bank scattered in moderately sensitive

areas. Heavy and Very Heavy vulnerable areas are mainly

distributed along the coast of Malaysia and the west coast of the

Philippines. Some of the Heavy sensitive areas are distributed in the

northernmost part of Malaysia and the junction of the southwestern

Philippines, as well as in the southwestern part of Taiwan and the

southern part of Hainan. Most of the Heavy sensitive areas are

closely integrated with Very Heavy sensitive areas, and the Spratly

Islands are in the sea area with more serious vulnerability.

4 Discussion

4.1 Reasonableness of ecological
vulnerability assessment

Due to the vast area of the South China Sea, the complex and

diverse ecological environment, and the lack of sufficient and stable
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observatories to support accurate monitoring of local coral reef

environmental factors, few scholars have studied the environmental

vulnerability of coral reefs in the SCS. Usually, when based on remote

sensing data and reanalysis data as the base data for calculation, there

are certain correlations and redundancies among the spatial

environmental variables in the evaluation model, which will

directly affect the accuracy of the evaluation results.

In this paper, a sensitive model was constructed to evaluate the

distribution of ecological vulnerability objectively and rapidly in the study

area over a 60-year period without being constrained by human factors

and subjective conditions. After careful selection the Spatial Principal

Component Analysis (SPCA) was finally chosen for modeling (Maina

et al., 2008), which has some advantages over conventional orthogonal

functions (Hou et al., 2015). The standardized results for the variables of

interest are shown in Figure 8. The original variable attribute space can be

transformed into a new multivariate attribute space, making the axes in

the new space uncorrelated, achieving a smaller information loss, having

the effect of removing certain correlations among indicators and

reducing data redundancy (Pan & Liu, 2015).

In order to verify the correlation of each index, this paper uses the

EVI value as the independent variable to diagnose the covariance of

each index (Tian et al., 2016). There are two main covariance

diagnostic indicators commonly used: variance inflation factor

(VIF) and tolerance level (TOL). These two indicators are inverse

of each other, and when VIF > 10 (i.e., TOL< 0.1), it indicates that the

multicollinearity of the selected indicators is more serious.

In ArcGIS (version 10.8), a 30 km × 30 km grid was used to

extract the sample data, and a total of 2197 points were generated

uniformly for the study area. These points were then used to read

the values of each indicator and EVI, and finally the VIF and TOL of

each indicator were calculated using SPSS Statistics 25 (Table 5).

From the calculation results, it can be seen that the VIF of each

index is less than 10 and the TOL is greater than 0.1, indicating that

there is no significant correlation between the indexes.

In addition, the weights of each principal component variable can

be obtained based on the contribution of the eigenvalues, which is more

objective compared with the hierarchical analysis method. In summary,

the evaluation indexes selected in this paper and the use of SPCA tool

provided by ArcGIS for ecological sensitivity evaluation are desirable.

4.2 The evolutionary dynamics of
ecological vulnerability

Overall, the environmental vulnerability values are relatively

low in the northern and eastern regions of SCS, while they are
TABLE 4 Environmental vulnerability classification.

Grades Range Area (× 103km2) Area ratio (%)

I Potential 0.000–0.577 42.10 1.77

II Light 0.577–0.780 404.06 17.01

II Medium 0.780–0.886 683.29 28.76

IV Heavy 0.886–0.993 509.06 21.43

V Very Heavy 0.993–1.131 737.28 31.04
FIGURE 7

Spatial distribution of environmental vulnerability grades.
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higher in the southern and western regions. The northwestern

region presents large contiguous areas of low and medium

vulnerability, while the southeastern region is spatially divided

into two interrupted areas of very high vulnerability. In addition,

the spatial distribution of high vulnerability areas in the

southwestern part of SCS is not significantly correlated with the

increase of latitude, and it is noteworthy that the environmental

vulnerability of the sea area near the coastline of Ninh Thuan and

Binh Thuan Provinces in Vietnam is much lower than that of other

areas at the same latitude.

It was found that the variables had different effects on the

model, and the factor weights of each principal component
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obtained by SPCA showed that SST and WV were the most

important factors, followed by SL, SSS, OS, and Chl. The top five

principal components PC accounted for 98.5% of the overall when

SPCA was performed (Table 3). By observing the key metrics

associated with a PC, an approximate parameter can be

associated for a specific PC. PC-1 and PC-2 contributed more,

together accounting for 74.4% of the variance, with SST, WV, SL,

and SSS having higher loadings; OS had a high contribution in PC-

3, SSS, SL, and WV followed, while OS, SSS and SL, and SST had a

high loading in PC-4. SL and SSS contribute more in PC-5. Since the

contribution of Chl in PC-6 is much larger than other factors, and

seawater chlorophyll is an important phenotype of phytoplankton
FIGURE 8

Normalized data based on each environmental variable, (A) Sea surface temperature; (B) Sea surface Salinity; (C) Ocean current; (D) Sea level;
(E) Wind velocity; (F) Chlorophyll-a concentration.
TABLE 5 Results of multicollinearity diagnostics.

Index
Correlations Collinearity Statistics

Zero-order Partial Part TOL VIF

PC-1 0.961 1.000 0.947 0.994 1.006

PC-2 0.299 1.000 0.239 0.990 1.010

PC-3 0.122 1.000 0.108 0.995 1.005

PC-4 0.049 1.000 0.043 0.989 1.011

PC-5 −0.013 1.000 0.020 0.990 1.010
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and primary productivity, which is indicative of marine ecosystems

and their changes (Stewart Round, 1981). Therefore, PC-6 is not

included in the calculation of ecological vulnerability values. It is

inferred that the SST and WV related variables have a significant

effect on the model results. Except for SST andWV, OS and SSS had

relatively large effects on the model, and SL and Chl had the smallest

influence weights. The spatial distribution of the correlated factors

is shown in Figure 9.

To further explore the spatial and temporal evolution patterns

of ecological vulnerability in SCS, this paper introduces Geodetector

as an analytical tool (Wang & Xu, 2017) to diagnose the dominant

influencing factors of ecological vulnerability. Geodetector includes

4 results: risk detector, factor detector, ecological detector, and

interaction detector. Using one of the factor detectors, it is possible

to detect whether environmental factors are responsible for the

spatial and temporal distribution patterns of ecological vulnerability

and to what extent they explain the spatially divergent mechanisms

of ecological vulnerability.

The specific approach is to use the ecological vulnerability index

(EVI) as the dependent variable and the 5 selected ecological factors

as the independent variables, and stratify the independent variables

from numerical quantities to typological quantities, and each

indicator is divided into five categories using the natural

breakpoint method, representing different degrees of ecological
Frontiers in Ecology and Evolution 10
vulnerability types; Then, in ArcGIS (version 10.8), the dependent

variable values and independent variables were matched by

sampling points for factor detection analysis, using the 30km ×

30km sampling points already acquired (Chen et al., 2023). The

influence (Q) of each factor on the ecological vulnerability index

(EVI) can be calculated (Q, the larger the value of Q indicates the

greater the influence of the factor on ecological vulnerability); the

explanatory power (P) of the factor (P, the larger the value of P

indicates the smaller the explanatory power of the factor on

ecological vulnerability). The results of the analysis showed that

(Table 6): the P-values of all factors were 0, indicating that the

explanatory power of all 6 factors on the ecological vulnerability of

the South China Sea region was sufficient; the Q-values of SST, SL,

and WV, all with values greater than 0.5, had a more significant

effect on the ecological vulnerability of SCS, while 0.2< SSS< 0.5, had

a moderate effect on the ecological vulnerability of SCS; OS, Chl<

0.2, had a weaker effect on the ecological vulnerability of SCS. The

influence of OS and Chl< 0.1 on the ecological vulnerability of SCS

was weak.

In view of the complex coupling relationship of the influencing

factors on the ecological vulnerability of the South China Sea waters

in different geographical units, the local government should

improve and improve the policy system, implement the

responsibilities of all parties, coordinate the balance between the
FIGURE 9

Distribution of each parameter, (A) Sea surface temperature; (B) Sea surface Salinity; (C) Ocean current; (D) Sea level; (E) Wind velocity;
(F) Chlorophyll-a concentration.
frontiersin.org

https://doi.org/10.3389/fevo.2023.1066961
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Ma et al. 10.3389/fevo.2023.1066961
economic development of local residents and ecological

vulnerability management, take correct and appropriate measures

and methods to inhibit the development of ecological vulnerability

to a more fragile direction, accelerate the pace of ecological

management of the South China Sea islands and reefs, and

consolidate the results of ecological management construction, in

order to manage the fragile ecological environment of the SCS

islands and reefs from the root.
4.3 Shortcomings of the study results

Considering the comprehensive, complex and unclear

characteristics of ecological vulnerability evaluation, and the

current evaluation methods are not yet able to achieve a

comprehensive, scientific and objective evaluation. Therefore,

based on the summary of previous research results, this study

takes SST, SSS, WV, SL, OC and Chl as the main determinants of

the ecological vulnerability of SCS, and uses the developmental

characteristics of coral reefs combined with remote sensing and

evaluation models to make an objective evaluation of the ecological

vulnerability of SCS and reveal the evolutionary dynamics of its

ecological vulnerability. This study not only provides some

reference value for SCS ecological vulnerability management, but

also provides some ideas and reference for the ecological

vulnerability evaluation of coral reefs.

The main objective of this paper is to try to explore a method to

evaluate the ecological vulnerability of island areas in distant marine

regions using reanalysis data and integrated evaluation models in

the absence of field survey data. However, there are still some

shortcomings in the determination of the index system in this

paper: the change of ecological vulnerability of islands and reefs is a

very complex issue, involving natural, ecological, socio-economic,

human activities and other aspects, and it is difficult to use one or

several indicators to completely characterize, and the accuracy of

different impact factors is also controversial, and it is difficult to

quantitatively analyze the degree of impact of different

environmental factors on the ecological environment of islands

and reefs. Besides, this study only considered the influence of

natural factors on ecological vulnerability in the South China Sea,

and basically ignored the negative factors caused by human. Further

exploration and research are still needed for a more scientific and
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comprehensive spatial and temporal variation pattern of

ecological vulnerability.
5 Conclusions

The approach described in this paper combines reanalysis

data, satellites, and information known to have an impact on

the island’s impact on the environment, using RS data and GIS

technology. The expectation is to develop an integrated model

that can be used to predict trends in coral vulnerability change.

The target is to reduce the impact of similar indicators on

vulnerability calculations. The adoption of the principal

component contribution ratio method to determine the index

weights avoids the influence of subjective factors and makes the

evaluation results more objective and applicable. It also

provides a comprehensive evaluation and analysis of the

environmental vulnerability of the South China Sea region

from a spatial and temporal perspective. The underlying data

involved are easy to obtain and calculate for data updating and

time series evaluation. The specific research objectives are

summarized as follows:
1. There are differences in the susceptibility of coral reefs in

different regions in SCS, with higher susceptibility in

Spratly Islands and lower susceptibility in other regions.

2. Reanalysis data combined with ocean remote sensing data

are suitable for estimating the susceptibility of coral reefs to

environmental stresses at a regional scale.

3. In terms of the evolutionary dynamics of ecological

vulnerability, two indicators, SST and WV, have a more

significant impact on ecological vulnerability in the South

China Sea.
Currently, anthropogenic activities are frequent in the SCS

region, but there is no way to accurately calibrate the impact of

anthropogenic external disturbances on the vulnerability of the

islands and reefs. Future studies should quantify the magnitude of

the impact of anthropogenic activities and provide insight into the

rate of environmental impact of a single environmental parameter

on coral reefs in the hope of predicting the intensity of damage to

coral reefs from quantified external activities.
TABLE 6 SPCA output matrix denoting the transformation coefficients (calculated from the covariance matrix).

PC Layer
Principal component The geographical detector results

1 2 3 4 5 6 Q statistic P value

1 Chl −0.0223 −0.1285 −0.0322 −0.1393 0.0279 0.9807 0.181 0.00

2 OS 0.0415 0.1659 0.8346 −0.4977 −0.1621 −0.0160 0.079 0.00

3 SL 0.4210 0.4107 −0.2673 −0.4708 0.6001 −0.0294 0.681 0.00

4 SSS −0.1857 0.2612 0.4246 0.5834 0.6038 0.1097 0.264 0.00

5 SST 0.5058 0.5989 −0.0148 0.3670 −0.4759 0.1551 0.796 0.00

6 WV −0.7281 0.6003 −0.2247 −0.1901 −0.1477 0.0319 0.518 0.00
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