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Linear models are applied widely to analyse empirical data. Modern software 
allows implementation of linear models with a few clicks or lines of code. While 
convenient, this increases the risk of ignoring essential assessment steps. Indeed, 
inappropriate application of linear models is an important source of inaccurate 
statistical inference. Despite extensive guidance and detailed demonstration of 
exemplary analyses, many users struggle to implement and assess their own 
models. To fill this gap, we present a versatile R-workflow template that facilitates 
(Generalized) Linear (Mixed) Model analyses. The script guides users from data 
exploration through model formulation, assessment and refinement to the 
graphical and numerical presentation of results. The workflow accommodates a 
variety of data types, distribution families, and dependency structures that arise 
from hierarchical sampling. To apply the routine, minimal coding skills are required 
for data preparation, naming of variables of interest, linear model formulation, and 
settings for summary graphs. Beyond that, default functions are provided for visual 
data exploration and model assessment. Focused on graphs, model assessment 
offers qualitative feedback and guidance on model refinement, pointing to more 
detailed or advanced literature where appropriate. With this workflow, we hope to 
contribute to research transparency, comparability, and reproducibility.
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1. Introduction

Complex statistical tools for the analysis of empirical datasets are widely available today. 
Open-source software such as R provides unrestricted access to such advanced techniques (R 
Core Team, 2017), where a single line of code often suffices to implement or summarise complex 
models (Harrison et al., 2018). While this is convenient, it also increases the risk that essential 
steps of data exploration or model assessment are ignored (Zuur et al., 2010; Zuur and Ieno, 
2016). This risk aggravates with lack of time or experience to perform the analysis, and can result 
in statistical models that insufficiently reflect data dependency structures, commit 
pseudoreplication, or violate other key model assumptions (Hurlbert, 1984; Quinn and Keough, 
2002; Bolker et al., 2009; Zuur and Ieno, 2016; Colegrave and Ruxton, 2018; Harrison et al., 2018; 
Gelman et al., 2020). Indeed, Bolker et al. (2009) reported that 311 out of 537 (58%) published 
GLMM analyses in evolution and ecology had used statistical tools inappropriately, a problem 
that extends beyond the biological sciences (Taper, 2004; Campbell, 2021).
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A widely used statistical technique is the linear model. It describes 
the relationship between one response variable as a function of one or 
multiple predictors (Montgomery et al., 2021). Basic linear models 
assume a Gaussian distribution family (LMs: Linear Models). Yet, they 
can also be implemented with other distributions to analyse skewed, 
count, or proportional responses (GLMs: Generalized Linear Models), 
with random effects to deal with repeated or hierarchical sampling 
designs (LMMs: Linear Mixed Models), or with both (GLMMs: 
Generalized Linear Mixed Models).

The concepts and applications of linear models have been 
extensively treated elsewhere (Bolker et al., 2009; Zuur et al., 2009, 
2013a; Bolker, 2015; Korner-Nievergelt et al., 2015; Harrison et al., 
2018; Gelman et al., 2020; Silk et al., 2020). Previous studies also offer 
worked examples, best-practice guidelines and troubleshooting advice 
for data exploration and transformation (Zuur et  al., 2010), the 
specification of fixed and random terms, the implementation of 
interactions or correlation structures (Bolker et al., 2009; Harrison 
et al., 2018), model assessment (Harrison et al., 2018), and reporting 
of results (Zuur and Ieno, 2016). Several R packages such as 
performance (Lüdecke et al., 2020a), visreg (Breheny and Burchett, 
2017) or DHARMa (Hartig and Lohse, 2020) offer convenient support 
for data exploration and model assessment. However, less experienced 
data analysts still struggle to gather, read, and correctly apply all these 
recommendations to produce code tailored to their own analyses, and 
to draw well-informed conclusions.

We here present a richly commented and user-friendly step-by-
step workflow for linear models in R, based on the package glmmTMB 
(Brooks et al., 2017). The template R script provided as an online 
supplement accommodates a wide variety of data structures and 
covers data exploration, initial model formulation, thorough model 
assessment, model refinement, as well as numerical and graphical 
result summaries. It also points users to advanced literature sources 
where advisable. In this workflow, coding by users is only required to 
import the data and check its structure, assign names to relevant 
variables, formulate the linear model, and specify predictors and 
grouping variables for model assessment, the extraction of parameter 
estimates, and the final visualisation of results.

Our routine facilitates the implementation of a comprehensive 
analysis workflow for model formulation, assessment and reporting, 
but assumes conceptual understanding of the principles of statistics, 
and at least basic R coding skills. Note that this workflow cannot 
mitigate inappropriate experimental designs or non-representative 
sampling strategies (Gelman et  al., 2020), and it should not 
be  mistaken as a comprehensive guidance to all aspects of 
linear modelling.

2. The guided workflow

The workflow requires a data structure where rows represent 
single observations and columns represent a single response, one or 
more predictors, and optionally one or more grouping variables that 
describe the dependency structure of the observations. Prior to 
analysis, users need to carefully inspect their dataset for typing errors 
and correct assignment of all variables to numeric, integer, or factor 
vector classes.

First, users specify the variables (= columns or vectors) of interest 
(Figure 1). The script then produces default displays that guide users 

through graphical data exploration (modified from Zuur et al., 2010). 
Based on these, users formulate an initial linear model. Next, the script 
produces graphical output to support model assessment, and eventual 
refinement (return back to model formulation). Model assessment 
and refinement continue until users have identified an adequate final 
model. The script then provides access to model results and parameter 
estimates. Finally, it produces publication-ready graphs that combine 
raw data with model predictions for up to two-way predictor 
interactions. The template script (Linear modelling workflow_
template.R) automatically imports all functions needed for the 
workflow from a second R script (Linear modelling workflow_support 
functions.R).

3. Definition of variables

All variables considered for the model must be part of a single R 
dataframe. Users assign all dataframe columns that might be relevant 
for their model to any of the labels listed below. Specifying a response 
variable is compulsory. Labels with no variable assigned should 
be defined as not available (NA).

3.1. One response variable

The first object, var_resp, requires the name of a single response 
variable of vector class numeric or integer. This can be any quantitative 
measure, but also a binary response such as presence/absence, dead/
alive, or failure/success coded as zeros and ones (examples in Table 1).

3.2. Fixed predictor variables

Fixed predictors may include any quantitative (i.e., numerical 
covariates) or categorical variables (i.e., factors) that are used to 
predict variation in the response variable (cf. Bolker et al., 2009). They 
can describe properties of study subjects (e.g., body size) or the 
experimental design (e.g., treatment groups).

 • var_num: Name(s) of quantitative predictor variable(s), assigned 
to vector classes numeric or integer.

 • var_fac: Name(s) of categorical predictor variable(s) with defined 
grouping levels, assigned to vector class factor.

3.3. Random predictor variables

Linear models assume that observations are independent (Hurlbert, 
1984), i.e., that the response measure of a given replicate is independent 
of any other such measurement for the given (combination of) 
predictor(s). This assumption is usually violated when study subjects are 
measured repeatedly or datasets contain a spatial or temporal structure, 
e.g., among replicated experimental blocks or sequential sampling 
bouts. Ignoring such dependencies among observations in a statistical 
analysis generates pseudoreplication (Hurlbert, 1984; Zuur and Ieno, 
2016; Colegrave and Ruxton, 2018; Harrison et al., 2018), and thus an 
underestimation of the uncertainty associated with the estimated model 
parameters (Korner-Nievergelt et al., 2015). Linear models can account 
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for such dependencies when the dependency structure of the data is 
known, and adequately specified in the statistical model (Zuur et al., 
2010; Harrison et al., 2018).

 • var_rand: Name(s) of categorical variable(s), assigned to vector 
class factor, which characterise dependencies among observations.

Detailed guidance on fixed and random predictors is available 
elsewhere (Gelman and Hill, 2007; Harrison, 2015; Harrison et al., 
2018, see also section 5.2.1). Here, we emphasize three caveats: (1) 

Random predictors should contain at least five levels to allow reliable 
estimation of between-level variance (Gelman and Hill, 2007; 
Harrison, 2015; Harrison et  al., 2018). Otherwise, they should 
be added as fixed predictors in var_fac, bearing in mind that this leads 
to model results that cannot be generalised beyond those specific few 
levels. Note that even with more than five (but still rather few) levels, 
random factors may generate overly narrow standard errors for 
coefficient estimates of fixed predictors (detail in Silk et al., 2020). 

FIGURE 1

Flowchart for the presented linear modelling workflow.
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(2) Adding random predictors does not automatically remove every 
source of pseudoreplication – it is essential that the (combination of) 
random predictors correctly reflects the dependency structure in the 
data. (3) When the model contains at least two random predictors, 
we  recommend defining each level with a unique label to avoid 
misspecification of nested random predictors. For example, five 
replicate study sites for each experimental block (from A to G) should 
be labeled from 1 to 5 in block A, from 6 to 10 in block B, etc., and not 
as repetitive labels 1 to 5 in each block.

3.4. Temporal and spatial data structure

In this step, users optionally can specify variables that describe 
temporal or spatial structure in their data. These variables will be used 
to assess temporal or spatial autocorrelation in model residuals (see 
section 6.3), a potential source of non-independence that usually 
generates overly narrow precision estimates. Note that autocorrelation 
can arise even if the spatial or temporal variables are also specified as 
fixed predictors in the model.

 • var_time: Name of one numeric vector that specifies temporal 
information (e.g., sampling year, date, or time).

 • var_time_groups (optional): Name of one factor vector that 
structures var_time for multiple independent time series.

 • var_space: Names of two numeric vectors that specify spatial 
information on sampling locations as x- and y-coordinates. Both 
coordinates should be expressed in the same units, and preferably 
derive from a (roughly) equidistant projection (such as UTM or 
Gauss-Krueger).

3.5. Missing values

Missing values are dataframe entries with no available value (i.e., 
NA). Because NAs are problematic for model computation, the script 
excludes by default rows with a missing value for any of the variables 
specified in the previous steps. Missing values should not occur 
disproportionally often in particular data subgroups (e.g., a higher 
fraction of NAs for a particular sex, life-stage, species or study site). 

The script generates a separate dataframe that contains all excluded 
data rows, which allows users to check this assumption.

4. Raw data exploration

The script guides users to screen raw data for any pattern that may 
affect model formulation. We  focus on graphical over numerical 
exploration in accordance with common practice in the field (Gelman 
et al., 2002; Quinn and Keough, 2002; Läärä, 2009; Zuur et al., 2010; 
Ieno and Zuur, 2015; Montgomery et al., 2021).

4.1. Extreme values

Extremes are values that are clearly smaller or larger than most 
other observations. Such values deserve specific attention because 
they may strongly influence model parameter estimates (Zuur 
et al., 2013a).

4.1.1. Extremes in numerical variables
We use dotplots (Cleveland, 1993) to reveal extremes in 

quantitative variables, i.e., the response variable and all numeric or 
integer predictor variables. Dotplots display the row number of each 
observation (yi) against its value (xi). Points that clearly isolate left or 
right of the core distribution deserve attention. Implausible extremes 
that can be objectively explained by an erroneous measurement or a 
typing error should be corrected or deleted. All other extremes must 
be kept (Zuur et al., 2010). To model such remaining extremes in the 
response variable without transforming the data, we  recommend 
consulting Table 1 to select an (initial) distribution family (Zuur et al., 
2010). For predictor variables, the unwanted influence of extremes on 
model estimation can be mitigated with data transformation, e.g., 
log(x + 1). Note, however, that data transformation inevitably changes 
the meaning – and thus interpretation – of model coefficients (Zuur 
et al., 2010).

4.1.2. Extremes in factor variables
For all factor predictors and random effects, we  produce bar 

charts to reveal striking imbalances in sample sizes among factor 
levels. Users can reduce such imbalances by pooling factor levels with 

TABLE 1 Recommended response distribution families and link functions for initial model formulation. See Table 2 in section 6 for possible refinements 
after model assessment.

Response variable Response 
features

Distribution 
family

Family indicator 
in glmmTMB

Link Options for offsets and 
weights

Continuous measure Real, symmetrical Normal gaussian identity

Continuous measure Real ≥ 0, right skew Gamma Gamma log

Continuous measure Real ≥ 0, right skew Tweedie tweedie log

Discrete counts Integer ≥ 0 Poisson poisson log
Offset to model count densities or rates 

(detail in section 5.2.1)

Proportions from trialsa 0 ≤ real ≤1 Binomial binomial logit
Weight needed to specify the number of 

trials (detail in section 5.2.1)

Bounded measure 0 < real <1 Beta Beta_family logit

aThis is identical to specifying a two-column integer matrix with counts of successes and failures as response variable. The workflow performs best when the response is a one-column vector 
with proportions, combined with a weight term that specifies the number of trials.
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few replicates, where meaningful, or accept that effect estimates for 
factors with small sample sizes will associate with increased 
uncertainty, i.e., wide standard errors.

4.2. Predictor collinearity

Predictor values are often correlated, particularly in observational 
studies. This complicates the interpretation of the (partial) effects of 
these predictors and can substantially increase the uncertainty 
associated with effect estimates (Korner-Nievergelt et  al., 2015). 
We provide graphical (4.2.1) and numerical (4.2.2) support to assess 
the degree of predictor collinearity.

4.2.1. Graphical inspection
The script generates default plots that allow graphical inspection 

of predictor collinearity with scatterplots, swarm-plots and mosaic 
plots for all pairwise combinations of the numeric and factor predictor 
variables defined in section 3. Predictor independence can be identified 
when datapoints spread homogeneously across the value ranges (or 
factor levels) of both predictors. Clear deviations indicate collinearity.

4.2.2. Variance inflation factors
Variance Inflation Factors (VIF, implementation based on Zuur 

et  al. (2010)) quantify the inflating effect of collinearity on the 
standard errors of parameter estimates. Entirely independent 
predictors yield VIF = 1, while larger VIF values indicate increasing 
predictor collinearity. The treatment of collinear predictors should not 
solely depend on arbitrary VIF thresholds, but also on the intended 
interpretation of model parameters.

First, correlated predictors might represent proxies of a ‘core 
predictor’ that we  cannot measure directly. For example, we  may 
be interested in effects of ‘body size’, and measure weight and length 
to capture two of its main components. Here, users may prefer to 
select one of their original predictors, or to combine both using a 
Principal Component Analysis PCA (James and McCulloch, 1990). 
The first Principal Component (PC1) can then serve as a single model 
predictor that captures variation in ‘body size’ (Harrison et al., 2018).

Second, users may be explicitly interested in partial effects, e.g., 
the added effect of weight on the response variable after taking the 

effect of length into account. In that case, correlated predictors should 
be kept in the model. Note that the inclusion of correlated predictors 
affects model interpretation and may generate situations where 
models predict for (combinations of) predictor values that are beyond 
those present in the studied population (Morrissey and Ruxton, 2018; 
Gelman et al., 2020).

4.3. Predictor-response relationships

In this step, the script produces graphs of pairwise raw data 
relationships between the response and each potential predictor 
defined in section 3. These plots may reveal patterns in the raw data 
such as non-linear relationships and are helpful for initial model 
formulation and refinement in sections 5.2.1 and 5.2.2.

4.4. Response distribution

Users can “force” their response variables to approach 
normality with transformations (O’Hara and Kotze, 2010). 
However, transformations can change the relationship between 
response and predictor variables (Zuur et al., 2009; Duncan and 
Kefford, 2021) and may fail to improve model fit (O’Hara and 
Kotze, 2010; Warton and Hui, 2011). We therefore encourage users 
to rather choose the most appropriate residual distribution family 
for their model (Bolker, 2008; O’Hara and Kotze, 2010; Fox, 2015; 
Warton et al., 2016; Dunn and Smyth, 2018; Harrison et al., 2018). 
Users can identify a suitable initial distribution family based on (1) 
general considerations on the expected distribution for their type 
of response measure (guidance in Table 1) and (2) the distribution 
of the sample, provided it is sufficiently large and representative. 
The script displays such distribution as a raw data histogram to 
visually reveal skew or excess of zeroes.

For example, users may initially select a Gaussian distribution 
for continuous measures with a roughly symmetrical distribution 
(e.g., acceleration, weight, or temperature). A Poisson distribution 
is a reasonable start for counts, and a binomial distribution for 
presence-absence data or proportions derived from counts 
(Harrison et al., 2018; Douma and Weedon, 2019; Table 1). Users 

TABLE 2 Alternative distribution families to account for issues with dispersion or zero-inflation.

Initial 
distribution 
family

Issue Alternative response 
distribution

Family indicator in glmmTMB Link Zero inflation 
formula?

Poisson Dispersion Negative binomial nbinom1, nbinom2 log No

Composite Poisson compois log No

Generalised Poisson genpois log No

Binomial Dispersion Beta binomial beta_binomial logit No

Poisson Zero-inflation Hurdle Poisson truncated_poisson log Yes

Zero inflated Poisson poisson log Yes

Negative binomial Zero-inflation Zero inflated negative binomial nbinom1, nbinom2 log Yes

Hurdle negative binomial truncated_nbinom1, truncated_nbinom2, log Yes

Gamma Zero values occur Zero inflated gamma ziGamma log Yes

The formulation of a zero-inflation formula is explained in section 5.2.2 - Model refinement.
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assess (section 6) and—if needed—refine this initial choice with a 
new distribution in an iteration of section 5.

For each distribution family, users must specify a link function 
(e.g., log, logit, or identity links; Buckley, 2015). Link functions 
assure that model predictions for asymptotic predictor-response 
relationships on the raw data scale (e.g., bounded by zero for 
counts, and by zero and one for proportions) become linear on the 
link scale where the linear model coefficients are estimated 
(Harrison et al., 2018; Corlatti, 2021). Each response distribution 
has a default link function (Table 1), but other links are possible 
(Bolker, 2008).

5. Model formulation

In this workflow, we recommend informing initial model 
formulation from the biological question of interest. First, all 
predictors involved in a researcher’s hypothesis or study goal must 
be  integrated as fixed predictors, including relevant interaction or 
polynomial terms. Second, where prior knowledge indicates that 
relevant variation in the response variable may associate with 
covariates (e.g., body size), interactions (e.g., the association of a main 
study predictor with the response likely varies with sex, age, or habitat) 
or polynomials (e.g., the association with size may possibly 
be  quadratic instead of linear), these additional predictors should 
be  included in the model. Third, any variable that describes 
dependency structures of the data must be  integrated as random 
predictor in the model.

An alternative approach selects from a broad range of models or 
combines models for multi-model inference (Hooten and Hobbs, 
2015). However, there is evidence that such ‘test-qualified pooling’ can 
generate overly confident effect estimates (Burnham and Anderson, 
2007; Colegrave and Ruxton, 2017), and we therefore refrained from 
integrating model selection and multi-model inference in our 
workflow. Yet, indicators for model performance based on information 
theory (e.g., AIC) and multi-model inference can be instrumental 
when models primarily serve for prediction rather than inference (e.g., 
Tredennick et al., 2021).

5.1. Standardization of numeric predictors

We recommend standardizing numeric predictors before 
initial model formulation. Standardization often mitigates 
problems with model convergence, facilitates comparisons of 
coefficient estimates between predictors measured in different 
units, and assures that covariate intercepts are estimated at their 
population mean value (Gelman and Hill, 2007; Schielzeth, 2010; 
Korner-Nievergelt et al., 2015; Harrison et al., 2018). The script 
offers the option to z-transform all quantitative predictor 
variables (var_num, 3.2), where predictor means are subtracted 
from observed values and divided by the predictor’s standard 
deviation. Such z-transformed numeric predictors are expressed 
in units of standard deviations. Users must yet be  aware that 
model coefficients will then be expressed as regression slopes per 
unit change in predictor standard deviation (rather than per 
original measurement unit), and that predictions for new 
covariate values need to be  standardised with the original 
population mean and SD.

5.2. Model implementation

5.2.1. Initial linear model formulation
Users can now formulate their initial model. We briefly explain 

how to code some essential terms in glmmTMB but recommend 
consultation of Brooks et al. (2017) for in-depth guidance.

Our basic linear model example has two additive fixed predictors, 
pred.1, and pred.2:

 ( )glmmTMB response ~ pred.1 pred.2, data df+ =  
(1)

Interaction terms for fixed predictors are specified with colons, 
here exemplified for a two-way interaction. We recommend restricting 
initial models to interaction terms that are relevant for the biological 
question investigated or required by study design (see above). Model 
assessment (Section 6) will reveal whether adding more interaction 
terms should be considered:

 

response ~ pred.1 pred.2glmmTMB pred.1: pred.2, data df
+ + 

 =   
(2)

Note that when interactions are added, all lower-level interaction 
terms (present when interactions of higher level than two-way 
interactions are specified) and main predictors must be part of the model.

Random predictors can be included as random intercepts only, 
or as random intercepts with random slopes (Gelman and Hill, 2007; 
Harrison, 2015; Harrison et al., 2018). Random intercepts estimate 
differences between the overall response mean and the mean values of 
each random level (e.g., study site ID, individual ID). A random 
intercept effect (e.g., rand.1) is added to the model as follows:

 ( )
response ~ pred.1 pred.2

glmmTMB 1| rand.1 , data df
+ + 

 =   
(3)

Random intercepts assume that the fixed predictors’ effects (i.e., 
regression slopes or differences in group means) are consistent among 
random predictor levels. However, if such effects vary between random 
levels, models must specify random slope terms to integrate the variation 
in model coefficients among random levels (Korner-Nievergelt et al., 
2015; Harrison et al., 2018; Silk et al., 2020). Ignoring random slopes 
otherwise produces overly confident effect size estimates (Schielzeth and 
Forstmeier, 2009; Barr et  al., 2013; Aarts et  al., 2015). We  thus 
recommend initial models to specify random slopes in such situations. 
Note that models may fail to converge when the sample size per random 
level is very low (below 3) or unbalanced, which reflects the need for 
experimental designs with a higher number of replications per random 
level (Silk et al., 2020). Random slopes for a fixed predictor (e.g., pred.1) 
for each level of a random predictor (e.g., rand.1) are coded as follows:

 ( )
response ~ pred.1 pred.2

glmmTMB pred.1| rand.1 , data df
+ + 

 =   
(4)

Response distribution and link function are specified using the 
family argument, as exemplified for a Gamma response distribution 
with a log-link scale:

https://doi.org/10.3389/fevo.2023.1065273
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Santon et al. 10.3389/fevo.2023.1065273

Frontiers in Ecology and Evolution 07 frontiersin.org

 
( )" "

response ~ pred.1 pred.2,
glmmTMB family Gamma link log , data df

+ 
 = = =   

(5)

Offsets are predictors whose coefficients (= slopes) are set to 1. 
Hence, they are constrained to a 1 to 1 relationship with the response 
variable. Offsets are used to model densities or rates when the response 
variable represents counts. The offset variable transforms counts into 
densities (e.g., when the offset specifies areas or volumes) or rates (e.g., 
when the offset specifies transect lengths, exposure durations, or 
numbers of replicate surveys; Korner-Nievergelt et al., 2015). Offset 
terms do not need to be z-transformed as the numeric predictors, but 
need to be transformed with a function that is identical to the model 
link function. This is the logarithm in the above example scenarios, 
where models would use a Poisson or negative-binomial distribution 
family. The offset term should be specified as a separate term in the 
model formula as exemplified for a negative binomial model:

 

( )
( )

" "
response ~ pred.1 pred.2,

glmmTMB family nbinom2 link log ,

offset log offset.1 , data df

 +
 

= = 
 = =   

(6)

Weights modulate how much each observation contributes to the 
model. Weighting is appropriate when response values (1) are derived 
measures such as proportions coming from different sample sizes, or (2) 
vary in measurement precision. A common example for (1) is proportions 
of successes per individual from a variable number of replicated trials. In 
glmmTMB, the number of trials can be added as a weight to the binomial 
model (Table 1). An example for (2) is species mean sizes that have been 
calculated from a variable number of individuals per species and thus 
vary in measurement precision. This is typically accounted for by adding 
the inverse of the observed, squared standard error per observation as a 
weight (Brooks et al., 2017). As with offsets, for our routine weights 
should be added as separate term in the model formula as follows:

 

( )" "
response ~ pred.1 pred.2,

glmmTMB family lin
h

gaus k identity ,
weig t weight.1, data d

si n
f

a
+ 

 = = 
 = =   

(7)

If users encounter warnings or errors while running the model, 
they can look for detailed guidance from the throubleshooting article 
that comes with glmmTMB1.

5.2.2. Model refinement
After assessing model fit (see section 6), the initial model 

formulation may need refinement. This may require additional model 
components as described in the following section.

Zero inflation describes an excess of zero values in the response 
variable beyond those expected by the distribution family [Zuur et al. 
(2013b) for more information]. When posterior predictive checks in 

1 https://glmmtmb.github.io/glmmTMB/articles/troubleshooting.html

model assessment (6.2.2) reveal zero inflation, users should consider 
adding a ziformula argument to the model. If the excess of zeroes 
distributes homogenously across predictor values, it suffices to 
implement ziformula = ~ 1. Otherwise, the ziformula argument can 
contain (combinations of) fixed or random effects to model 
heterogeneity in the zero distribution across predictors. The following 
example models an access of zeroes that varies across values of pred.1:

 

response ~ pred.1 pred.2,glmmTMB ziformula ~ pred.1, data df
+ 

 = =   
(8)

Dispersion formulas can be  added when model assessment 
indicates heterogeneous residual dispersion across predictor values (6.1) 
that cannot be resolved by selecting a different model distribution family. 
Dispformula can be added to the model in a similar way as described for 
the ziformula above, except that it can only contain fixed effects. The 
example allows dispersion to vary across the values of pred.1:

 

response ~ pred.1 pred.2,glmmTMB dispformula ~ pred.1, data df
+ 

 = =   
(9)

Correlation (or covariance) structures offer solutions when 
assessment step  6.3 reveals temporal or spatial autocorrelation in 
model residuals. Temporal autocorrelation is often captured well by 
an Ornstein-Uhlenbeck (ou) covariance structure, which 
accommodates time series with irregularly or regularly spaced time 
points. The glmmTMB formulation ou(time + 0|group) requires two 
novel elements: “time” is a matrix of Euclidean distances that users can 
calculate from var_time using the function numFactor. “group” is 
either the vector already specified in var_time_groups, or, in case of 
single time series, a new factor vector with a single grouping level.

 ( )
response ~ pred.1 pred.2

glmmTMB ou time 0 | group , data df
+ + 

 + =   
(10)

Treatment of spatial autocorrelation is a very complex topic 
(Banerjee et al., 2014) that faces limitations concerning computational 
abilities (Simpson et al., 2012) and the stability of fixed effect estimates 
(Hodges and Reich, 2010) that are beyond the scope of this overview. 
Note that, in some cases, the addition of covariates (e.g., habitat types) 
can already efficiently deal with spatial autocorrelation. Beyond that, 
users should consult the article on covariance structures that comes 
with the glmmTMB vignette (Brooks et al., 2017) and more advanced 
literature on spatial autocorrelation (e.g., Dupont et al., 2022).

6. Model assessment

Before inspecting model coefficients and effect sizes, users should 
assess how well the model captures patterns in the raw data and fulfils 
model assumptions (Freckleton, 2009; Gelman et al., 2013, 2020; Zuur 
and Ieno, 2016). The script guides users through graphical inspection 
with residual checks (6.1), posterior predictive checks (6.2), and 
variograms to assess residual independence across temporal or spatial 
scales (6.3).
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Model assessment may often call for a refined model that contains 
other interaction or polynomial terms, or additional predictors (back 
to section 5). These newly added terms can increase the reliability of 
model estimates for the predictors specified in the initial model, but 
their (unexpected) effects should not be used to test new hypotheses. 
This would cause selection bias and increase the risk of drawing false 
conclusions (Forstmeier et al., 2017). Users should therefore explicitly 
name all terms that have been added to the model after 
model assessment.

6.1. Residual checks

Linear models assume that residuals are independent of predicted 
mean values and distribute homogeneously across all (combinations 
of) predictor variables. Conformity to these assumptions is visible as 
an absence of patterns in residual plots, and is a fundamental step of 
linear modelling to avoid systematic bias in parameter and uncertainty 
estimates (Gelman and Hill, 2007; Zuur et al., 2009; Zuur and Ieno, 
2016; Gelman et al., 2020). The script displays randomised quantile 
residuals (Dunn and Smyth, 1996; Gelman and Hill, 2007; Dunn and 
Smyth, 2018) computed using the R package DHARMa (Hartig and 
Lohse, 2020). These residuals distribute uniformly between 0 and 1, 
and thus allow to evaluate residuals plots irrespective of the chosen 
distribution family (Hartig and Lohse, 2020).

6.1.1. Distribution of residuals
The script first produces two residual plots. The first is a quantile-

quantile (Q-Q) plot (Figures  2A,B), where residuals match the 
expected distribution when they follow the diagonal line closely 
(Figure 2B). The second displays residuals against model-predicted 
values (Figures 2C,D), where points should scatter homogeneously 
without pattern (Figure 2D) (Korner-Nievergelt et al., 2015; Corlatti, 
2021). Heterogeneity in residuals typically shows as a curvature or 
s-shape in Q-Q plots (Figure 2A), or as a change in residual spread 
along model predictions on the x-axis in residuals vs. fitted values 
plots (Figure  2C). Such models can produce biased parameter 
estimates and usually have overly narrow standard errors (Quinn and 
Keough, 2002; Fox, 2015; Zuur and Ieno, 2016). Issues are often 
resolved by using a more appropriate distribution family or link 
function (Tables 1, 2), but other possible solutions are listed in the R 
script (Korner-Nievergelt et al., 2015; Harrison et al., 2018).

If the model contains random predictors, this function also 
generates a Q-Q plot for each predictor to check if the estimated 
intercepts are normally distributed (Figures 2E,F; Korner-Nievergelt 
et al., 2015; Harrison et al., 2018). Note that linear models are rather 
robust against moderate violations of normality for random intercepts 
(Schielzeth et al., 2020), at least as long as they are used to estimate 
between-group variation and are not used to make predictions for 
unobserved random levels.

6.1.2. Residuals against possible predictors
In this section, the script produces plots of model residuals 

against all fixed predictors specified in Section 3. We recommend 
checking residuals against all variables in the dataset, including 
those that are not part of the current model. Any predictor that 
shows residual patterns (as detailed in 6.1.1) requires 
further attention.

Predictors already in the model may require the addition of a 
curvilinear (polynomial) term, which should be added up to the 
desired degree using the poly function in R (Korner-Nievergelt 
et al., 2015). Note that high-order polynomial terms can perform 
poorly in regions of a dataset where data is sparse (Wood, 2017) 
and should thus be used with care (Gelman et al., 2020). If the 
dataset features more complex non-linear patterns, we recommend 
resorting to dedicated R packages such as mgcv (Wood, 2017) to 
implement more appropriate models.

Predictors not yet included in the model that show residual 
patterns should be added to help explaining variation in the response 
variable (see above).

6.1.3. Residuals against possible two-way 
interactions among predictors

The script produces residual plots for all two-way combinations 
of fixed predictors. Heterogeneous residual patterns beyond those 
already seen above identify predictor combinations that may need 
addition as an interaction term to the refined model formulation, 
provided the original question being asked is not altered.

6.1.4. Residuals against predictors split by random 
factor levels

Finally, the script helps users to evaluate if a random intercept 
needs the addition of random slopes over a specific fixed predictor 
(Korner-Nievergelt et al., 2015). This residual check is relevant 
only for fixed predictors with 3 or more observations per random 
level. The plots generated by the script show the distribution of 
model residuals across the selected predictors, split by the levels 
of the specified random intercept predictor(s). If panels show 
diverging slopes for numeric predictors or inconsistent effect 
directions for categorical predictors, the model requires the 
addition of random slopes for that predictor (Schielzeth and 
Forstmeier, 2009; Silk et  al., 2020) to avoid overly confident 
coefficient estimates (Schielzeth and Forstmeier, 2009). Note that 
residual mean values per random level do not need to be zero: 
Due to the shrinkage estimation of mean values per random effect 
level, average residuals can be positive for levels with low means, 
and negative for levels with high means.

6.2. Posterior predictive checks

Even careful residual assessment may leave several important 
aspects of model fit unexplored (Faraway, 2016; Pekár and Brabec, 
2016). Therefore, we  assess model performance also with 
posterior predictive checks, which compare the observed data 
with the distribution of many (e.g., 2000) replicated datasets 
simulated from the model (Gelman and Hill, 2007; Gelman et al., 
2013; Zuur and Ieno, 2016). The script guides users to graphically 
evaluate dispersion (6.2.1), zero-inflation (6.2.2) and overall 
model fit (6.2.3; Figure  3). These plots display observed 
parameters as blue lines when they are within the central 90% of 
the simulated distribution (labeled as ‘optimal fit’), orange lines 
when between the central 90% and 99% boundaries (‘sub-optimal 
fit’), and red lines when outside the central 99% boundaries 
(‘poor fit’). These boundaries are set arbitrarily to provide 
qualitative guidance. We recommend seeking an optimal fit while 
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bearing in mind that model performance is seldom perfect for all 
parameters at once.

6.2.1. Dispersion
Some response distributions (e.g., Poisson and binomial) assume 

tight coupling between mean and variance, an assumption that is often 
violated (Cox, 1983; Yang et al., 2010). Over- or underdispersion arises 
when the data (and residual) variation is higher or lower than 
predicted from the population mean. Both can lead to biased 
parameter estimates and inappropriately small (or large) standard 
errors (Hilbe, 2011; Zuur and Ieno, 2016; Campbell, 2021). The script 
graphically compares the variance of the observed data with the 
variance distribution of model-simulated datasets (Figures  3A,B). 
We recommend users to split this plot by the levels of each categorical 
predictor used in the model, because dispersion should also 
be checked within each factor level.

Dispersion issues can originate from an inappropriate distribution 
family, a wider spread of the data than expected by the observed mean, 
or an excess of zero values (Harrison, 2014). Dispersion checks should 
therefore always go along with zero-inflation checks (6.2.2). Potential 
solutions include a distribution family that better captures the 
observed data dispersion (Table  2; Hilbe, 2011; Harrison, 2015; 
Harrison et al., 2018) or that adequately integrates the excess of zeroes 
(Yang et al., 2010).

6.2.2. Zero-inflation
Here, the script visualises the observed number of zero values 

against the zero-distribution derived from model-simulated datasets 
(Figures 2C,D). Users should split displays by factor levels as described 
for dispersion (6.2.1). If deviations are detected, users may choose a 
distribution family that better captures the observed zero frequencies 
(Table 2) or add a zero-inflation formula to the model (5.2.2).

FIGURE 2

Distribution of residuals—examples. The left column shows residual plots for a Gaussian model with clear violations of model assumptions (A,C,E). The 
right column shows the same residuals plots—now without issues after changing the distribution family to negative binomial (B,D,F). The dataset from 
Price et al. (2016) is available with the R package glmmTMB (Brooks et al., 2017).
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6.2.3. Data distribution
This final posterior predictive check evaluates overall model fit 

(Gelman et al., 2013; Zuur and Ieno, 2016). The script plots the density of 
the observed data distribution (blue line) against that of model-simulated 
datasets (gray lines; Figures 3E,F), ideally split by the levels of each factor 
predictor as before. The observed (blue) line should be central within the 
gray background pattern of simulated data. If this is clearly not the case, 
users should carefully re-evaluate all preceding steps of model assessment 
and reformulate their model accordingly (back to section 5).

6.3. Autocorrelation checks

Ecological sampling often has a temporal or spatial component. 
This may introduce dependency structures in the response variable 

where observations closer in time or space are more similar (Zuur 
et  al., 2010; Korner-Nievergelt et  al., 2015), leading to 
pseudoreplication. To assess whether such temporal or spatial 
autocorrelation is present in the data, the script produces graphical 
autocorrelation checks for temporal (based on var_time and 
var_time_groups from 3.4) or spatial data structures (based on 
var_space from 3.4) using semivariograms (Schabenberger and 
Pierce, 2002). Semivariograms display how the ‘standardised 
semivariance’ (i.e., standardised, half squared differences in model 
residuals between all observation pairs) changes with the spatial or 
temporal distance between sample pairs (Hengl, 2007; Korner-
Nievergelt et  al., 2015). Standardised semivariances of fully 
independent observations fluctuate around 1. Smaller semivariance 
values identify observations that are more similar than expected at 
random, and thus autocorrelated. Observed semivariances are 

FIGURE 3

Posterior predictive checks - examples. All plots show observed values or data distributions (thick colored lines) in relation to those obtained from 
10,000 simulations of raw datasets from the model. Each panel is split by a categorical predictor with two levels (sites without and with mining activity). 
The left column shows clear deviations between observed and simulated data for dispersion (A), number of zeros (C), and overall data distribution (E). 
The right column has all issues solved by changing distribution family from Poisson to negative binomial for (B) and (D), and from Gaussian to negative 
binomial for (F). A Gaussian distribution was here chosen only to create a clear deviation for display purposes. Dataset as in Figure 2.
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calculated using the variog function of the geoR package (Ribeiro 
and Diggle, 2001). To aid interpretation, we plot these (blue line) 
against the distribution of semivariances expected in the absence 
of autocorrelation, as derived from many (e.g., 2000) permutated 
model residuals (Figure 4). Observed standardised semivariances 
that clearly fall below the gray permuted pattern indicate 
autocorrelation. In such cases, users should consider adding a 
covariance structure to the model (5.2.2).

7. Model results and parameter 
estimates

Once the iteration of model assessment and refinement resulted 
in an adequate model, users can finally inspect model estimates. This 
workflow refrains from null hypothesis tests because they offer 
limited information about the magnitude and biological meaning of 
the observed effects and bear a substantial risk of misinterpretation 
(Johnson, 1999; Nakagawa and Cuthill, 2007; Cumming, 2008; 
Halsey et  al., 2015; Cumming and Calin-Jageman, 2017; Halsey, 
2019). We  instead focus on reporting effect sizes with their 
‘compatibility intervals’ (Gelman and Greenland, 2019; Halsey, 2019; 
Berner and Amrhein, 2022), i.e., the central 95% density interval of 
effect values that are most compatible with the observed data. Berner 
and Amrhein (2022) offer further guidance on reporting without 
falling back to ‘null hypothesis testing’ terminology.

7.1. Overall coefficient estimates

The script displays coefficient estimates for each model 
parameter, including their 95% compatibility intervals using a 

custom function based on the parameters package (Lüdecke et al., 
2020b). Note that parameter estimates are on the model link scale. 
As an alternative way of measuring effect sizes, the r2 function 
from the performance package (Lüdecke et al., 2020a) estimates 
the variance explained by the model for fixed predictors only 
(marginal R2), and for fixed plus random predictors (conditional 
R2; Nakagawa and Schielzeth, 2013; Nakagawa et  al., 2017; 
Harrison et al., 2018).

Users may want to also report estimates of regression slopes 
within factor levels, or differences in predicted mean values 
between factor levels. We  introduce functions that extract 
such estimates and their 95% compatibility intervals in the 
following two sections. We refer users to the extensive guidance 
provided with the emmeans package (Lenth, 2023) to compute 
estimates beyond the capabilities of the functions presented in 
the script.

7.2. Estimation of regression slopes

This section computes predicted slopes and their 95% CIs for 
models containing interaction terms between one numeric 
predictor and up to two factor predictors using a custom function 
based on the emmeans package (Lenth, 2023). Slope estimates per 
unit increase of the numeric predictor are always given on the 
model link scale where regression slopes are linear. For log and 
logit link models, we  additionally provide estimates for the 
resulting response ratios and odds ratios, respectively. For 
standardised numeric predictors, slope estimates show changes per 
unit standard deviation of the predictor. The predicted slopes and 
their 95% CIs can be reported as exemplified in Table 3. Effect size 
strength increases with the deviation of estimates from zero (for 

FIGURE 4

Autocorrelation checks - examples. Plot (A) shows that observations with a pairwise distance up to 6 have more similar residuals (blue dots and blue 
line) than expected at random (gray lines), indicating spatial autocorrelation. Plot (B), now almost free of autocorrelation, was produced by informing 
the model with the autocorrelation structure of the observations. N values are the number of observation pairs in the dataset within each distance step 
indicated on the x-axis. Dataset reworked from Santon et al. (2021).
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FIGURE 5

Salamander individual counts as a function of salamander stage and mining activity (A), and salamander stage and day of the year (B). Each point is an 
average value per combination of stage, site, and mining activity (N = 23 sites, representing the true replicates), showing either the proportion of four 
repeated surveys with at least one individual present (A: Occurrence), or the mean salamander count (A,B: Abundances). Mean model predictions (filled 
markers or shades) and their 95% compatibility intervals (bold lines) were derived from 10,000 simulations of the posterior distribution of model 
parameters.

Gaussian models, and for changes on the link scale for other model 
families) or one (for changes expressed as response ratios and odds 
ratios for log- and logit-link functions, respectively), and the 
robustness of the result increases the less the 95% Compatibility 

Intervals (CIs) overlap with zero or one, respectively. The script 
additionally produces a graphical output of the effect estimates 
with their compatibility intervals on the model link scale (examples 
in the Supplementary file).

TABLE 3 Example of a numerical presentation of regression slopes.

Estimates on model link scale:  
log-ratio of salamander counts

Estimates on response scale:  
ratio of salamander counts

Stage Slope mean Lower 95% CI Upper 95% CI Ratio mean Lower 95% CI Upper 95% CI

larvae 0.322 0.172 0.472 1.380 1.188 1.603

adult −0.237 −0.409 −0.064 0.789 0.664 0.938

Linear change in salamander counts, split between larval and adult stages, along the continuous predictor day of the year (DOY). Since DOY was already z-transformed in the data, slope 
estimates show changes per unit standard deviation in DOY. Raw data and model predictions are in Figure 5, full model specifications in the final model of the Supplementary file.
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7.3. Estimation of differences between 
factor levels

The script estimates differences in mean values either between all 
possible combinations of the levels of a user specified selection of factor 
predictors, or for the levels of one factor predictor within the levels of a 
second one, using a custom function based on the emmeans package 
(Lenth, 2023). The function displays absolute differences in mean values 
for identity link models, and ratios or odds ratios for log or logit link 
models, respectively. As above, effect estimates, and their 95% 
compatibility intervals are reported as a table (exemplified in Table 4) and 
as a graphical output (examples in the Supplementary file). Effect size and 
CIs interpretation is the same as described for regression slopes above.

8. Graphical display of model predictions

An intuitive and comprehensive way to visualise the relationship 
between response and predictor variables is a combined display of raw 
data with model-derived predictions and their 95% compatibility intervals 
(Best and Wolf, 2013; Halsey, 2019; Ho et al., 2019). The script produces 
such displays after users specified one or two fixed predictors 
(Figures 5A,B). First, the script calculates the posterior distribution of 
fitted values from 10,000 sets of model parameters drawn from a 
Multivariate Normal Distribution based on the predicted mean and 
variance of each model coefficient (Brooks et al., 2017). From these, the 
script extracts model-predicted means and their 95% compatibility 
intervals per factor level, or along the numeric range of the specified 
predictor(s) of interest, with all other predictor(s) set to their median 
values. Finally, the script summarises the raw data at the specified replicate 
level, and plot them together with predicted means and compatibility 
intervals (Korner-Nievergelt et al., 2015; Brooks et al., 2017).
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TABLE 4 Example for the numerical presentation of differences between factor levels.

Comparison Mean Lower 95% CI Upper 95% CI

1. Occurrence: Binary binomial zi model (logit link) 

Response odds ratios for salamander absencea between sites with and without mining.

Not mined / mined [larval] 0.015 0.002 0.121

Not mined / mined [adult] 0.019 0.002 0.159

2. Abundance: Conditional count model (log link) 

Response ratios of mean counts within occupied sites.

Not mined / mined [larval] 5.402 3.084 9.465

Not mined / mined [adult] 2.927 1.690 5.071

Differences in salamander occurrence and abundance between sites with and without mining activity, split by larval and adult stages. In the example, we provide estimates and compatibility 
intervals separately for the zero-inflated (zi) binomial model (as odds ratios for salamander absencea) and the negative binomial count model (as response ratios for mean salamander counts 
per group). Raw data and model predictions are in Figure 5, full model specifications in the final model of the Supplementary file. 
aNote that zi components estimate odds of absence (= failures), resulting in inverse odds ratios compared to classic binomial models, which express the odds of presence (= successes).
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