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Contemporary methods used to predict isotopic variation at regional scales

have yet to include underlying distributions of the abundance of isotopic

substrates. Additionally, traditional kriging methods fail to account for the

potential influences of environmental grouping factors (i.e., random effects)

that may reduce prediction error. We aim to improve upon traditional isoscape

modeling techniques by accounting for variation in the abundances of isotopic

substrates and evaluating the efficacy of a mixed-effects, regression kriging

approach. We analyzed common moose forage from northeast Minnesota for

δ13C and δ15N and estimated the isotopic landscape using regression kriging,

both with and without random effects. We then compared these predictions

to isoscape estimates informed by spatial variation in above-ground biomass.

Finally, we kriged the regression residuals of our best-fitting models, added them

to our isoscape predictions, and compared model performance using spatial

hold-one-out cross validation. Isoscape predictions driven by uninformed and

biomass-informed models varied by as much as 10h. Compared to traditional

methods, incorporating biomass estimates improved RMSE values by as much as

0.12 and 1.00% for δ13C and δ15N, respectively, while random effects improved

r2 values by as much as 0.15 for δ13C and 0.87 for δ15N. Our findings illustrate

how field-collected data, ancillary geospatial data, and novel spatial interpolation

techniques can be used to more accurately estimate the isotopic landscape.

Regression kriging using mixed-effects models and the refinement of model

predictions using measures of abundance, provides a flexible, yet mechanistically

driven approach to modeling isotopic variation across space.
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Introduction

Understanding how animals interact with their environment,
specifically where they go and what they eat, is foundational to
the fields of ecology and animal behavior (Kingsland, 1991; Owen-
Smith et al., 2010). One way to study animal behavior is by using
stable isotope analysis, which has become increasingly common in
studies of animal movement and foraging (Cerling et al., 2006).
A major advantage of using stable isotope analysis over other
methods is its flexibility in allowing us to reconstruct ecological
processes and activities without witnessing them firsthand (West
et al., 2006). For example, the isotopic signatures of plants are
reflected in the biogenic materials of the herbivores that consume
them, and as a result, we can determine not only what an herbivore
ate and where it went, but also why it may have gone there (Cerling
et al., 2006; Raynor et al., 2016). Additionally, spatial variation
of stable isotope ratios, often referred to as isotopic landscapes
or isoscapes (West et al., 2009), has become increasingly valuable
in our efforts to gain a better understanding of various aspects
of organismal behavior and ecology. For example, using marine
isoscapes of δ15N and δ13C in conjunction with isotopes from the
hair of recently weaned elephant seal pups, one study was able to
observe niche partitioning and thus the seasonal feeding grounds of
lactating and pregnant females (Aurioles et al., 2006). Additionally,
spatiotemporal variation in stable isotopes of strontium (87Sr/86Sr)
has been used to evaluate shifts in the geographic ranges of
caribou herds in North America, and ultimately, the causes of
their precipitous decline throughout parts of their historical range
(Miller et al., 2021). As the number and diversity of studies utilizing
isoscapes increases, our ability to predict heterogeneity precisely
and accurately in the isotopic landscape will continue to improve
as will our ability to use isoscapes as inferential ecological tools.

To model isotopic variation at large spatial scales, it is essential
first to predict spatial variation in the abundances of different
isotopic substrates used to estimate this variation (if two or
more substrates differ in their isotopic composition). For example,
C3 and C4 plants have distinct δ13C signatures, and thus, the
relative abundances of these two functional groups are important
to consider when predicting spatial variation of δ13C values
(aggregated across functional groups) at regional to continental
scales (Still and Powell, 2010). However, estimating geographic
variation of δ13C values at smaller spatial scales (i.e., within a
single functional group or species) is more complicated, due in
part to the intensive sampling required to establish relationships
between δ13C values and environmental covariates. Although early
studies of isotopic variation in plants were unable to find significant
differences in δ13C among plant taxa (Craig, 1953), more recent
work has identified differences in the isotopic composition both
within and among plant species (Garten and Taylor, 1992; Marshall
et al., 2007). Royle and Rubenstein (2004) noted that geographic
variation in species abundance is an important consideration when
spatial variation in the isotopic landscape is highly non-uniform.
Although their work focused on properly assigning the geographic
origin of birds based on δD and δ13C values, many of the arguments
they make for incorporating spatial variation in species abundance
into isoscape models are broadly applicable. Nevertheless, models
depicting isotopic heterogeneity across space have yet to include
variation in the abundance of different taxonomic or functional

groups. Here, for the first time, we use spatial variation in plant
biomass, both across and within species, to create “biomass-
informed” models of the isotopic landscape for δ13C and δ15N.

Traditionally, models depicting geographic variation in stable
isotopes have relied on isotopic data derived from sampled
locations, while locations without measurements were filled in via
methods of spatial interpolation (Bowen and Wilkinson, 2002).
However, the need to estimate error in isoscape models has led to
the development of new geospatial modeling techniques (Bowen
and Revenaugh, 2003). For example, regression kriging, which uses
regression models to inform the kriging process, is now commonly
used to inform spatial interpolation, thereby allowing researchers to
estimate and potentially minimize prediction error by also kriging
regression residuals (Bowen and Wilkinson, 2002; Hengl et al.,
2007; Keskin and Grunwald, 2018). Moreover, increased access to
high-resolution spatial data has allowed for prediction of isotopic
variation at higher resolutions over limited spatial extents (e.g.,
field-scale; Hellmann et al., 2016). With recent advancements,
opportunities now exist to develop mechanistic isoscape models
that have even greater accuracy and precision, thereby conferring
a deeper understanding of how and why stable isotopes vary across
space.

When estimating the isotopic landscape, currently employed
methods often fail to account for the potential effects of
environmental variables that may influence model estimates. For
example, δ13C in leaf tissue is known to vary as a function of canopy
height, irradiance levels, and water-use efficiency (Ometto et al.,
2006), all of which may be indirectly influenced by disturbance.
Thus, by incorporating disturbance type as a random effect (i.e.,
categorical groups with consistent but unmeasured differences in
environmental conditions that may contribute to model error), we
are better able to identify meaningful fixed effects (i.e., measured
predictor variables of interest) that might otherwise be obscured.
Regression kriging that incorporates mixed-effects models (i.e.,
models incorporating both fixed and random effects) makes it
possible for researchers to account for these unmeasured (and likely
complicated) influences while also improving upon the prediction
accuracy of currently employed methods.

As a case study, we used biomass-informed, mixed-effects
models in a regression kriging framework to study how the isotopic
composition of summer moose forage in northeast Minnesota
changes across space and to test whether our method improves
upon the accuracy of more traditional techniques. This study
system provides a unique opportunity to test our novel method in
a context that may also have conservation implications, as moose
in this region have been declining since approximately 2005, with
nutritional suppression suggested as a potential driver (Monteith
et al., 2015; Wünschmann et al., 2015). Models estimating spatial
variation in forage availability (i.e., biomass) can serve as a powerful
tool in habitat improvement projects (Severud et al., 2019), while
models estimating spatial variation in the isotopic landscape can
be combined with animal movement data to provide insight
into spatially explicit habitat use behavior (Found et al., 2022).
Finally, while regression kriging with mixed-effects models has
been applied to improve digital mapping of soil properties (Omuto
and Vargas, 2015), to our knowledge this method has not previously
been used to predict spatial variation in stable isotopes.

We use this approach to investigate four questions associated
with the estimation of isotopic variation at the landscape scale.
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FIGURE 1

Forage sampling plots across northeast Minnesota. Dark gray area in inset map represents the study region and Minnesota Moose Management Area
as determined by the Minnesota Department of Natural Resources.

First, are different forage-preference groups isotopically distinct
from one another (Q1) and second, are kriging predictions of
the abundances of different preference groups distinct from one
another and spatially heterogeneous (Q2)? Third, do mixed-effects
models characterizing spatial variation in stable isotopes improve
predictions over those created via simple linear models (Q3)?
Finally, do biomass-informed isoscapes provide predictions that
are distinct from those provided by uninformed isoscapes (i.e.,
isoscapes in which we assume equal abundance of all sampled
species; Q4)? The answers to these questions will help refine
our understanding of how stable isotopes vary across space and
potentially, how to model this variation more accurately.

Materials and methods

Model system

The study area in northeastern Minnesota covers
approximately 1.3-million hectares, and is composed primarily
of southern boreal forest, including large portions of Superior
National Forest and the Boundary Waters Canoe Area Wilderness
(BWCAW). This region is a mosaic of upland and lowland forest
types characterized by black spruce (Picea mariana) and northern

white cedar (Thuja occidentalis) in the lowlands and balsam
fir (Abies balsamea), trembling aspen (Populus tremuloides),
and paper birch (Betula papyrifera) on the uplands, with large
stands of jack (Pinus banksiana), red (P. resinosa), and white
pine (P. strobus) occurring throughout. While large swaths of
unlogged areas remain (i.e., 169,000 ha within the BWCAW), fire
and logging are common and routine forms of disturbance in
this ecosystem (Heinselman, 1996). Topography across the study
area varies from relatively flat to moderately hilly, with elevation
ranging from 183 m at the surface of Lake Superior, to 701 m at
Eagle Mountain, the highest point in the state. The area is sparsely
inhabited, with few paved roads and much of the region accessible
only by foot, logging road, or canoe (Lenarz et al., 2010).

We established 0.04 ha plots throughout northeastern
Minnesota (n = 70) to characterize the isotope composition (i.e.,
δ13C and δ15N values) and biomass (i.e., the dry weight of the stems
and leaves, excluding the bole) of plant species within each plot
(Figure 1). Plots covered a range of disturbance ages (i.e., 13 years,
9 years, 4 years, and undisturbed), types (i.e., canopy burn, clear
cut, and insect-defoliation), and severities, as well as a range of
landcover types (i.e., wetland and wetland forest, coniferous forest,
deciduous forest, mixed forest, and regenerating forest). Because
temperature has been implicated as one of the leading causes
of decline for moose in Minnesota (Murray et al., 2006; Lenarz
et al., 2009), plots were originally established as part of a parallel
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study investigating the influences of high summer temperatures on
moose forage. Thus, our network of plots was distributed across the
study region into three discrete temperature zones (cool, moderate,
and warm) that span a mean-maximum summer temperature
gradient of approximately 5.5◦C (PRISM Climate Group, 2017).
It is important to note that while our sample plots are spatially
clumped, the fact that we sampled across a range of values within
numerous spatial covariates helps to minimize potential issues
associated with spatial autocorrelation within a clumped sampling
design.

Stable isotopes

We sampled summer forage in each of the 70 plots from
late May to early August during each year from 2012 to 2016
(Figure 1). In total, we collected 2,718 summer forage samples from
more than 30 species (Supplementary appendix table A1). We
categorized all species into one of three groups, based on the dietary
preference of moose – high, medium, and low (Supplementary
appendix table A1; Peek et al., 1976). These groups also vary
according to %N, which is often used as an indicator of forage
quality (Supplementary appendix table A1). Where possible, we
collected up to five samples of each species we encountered in each
plot, where each sample consisted of 5–7 leaves collected from a
peripheral stem located between 0.5 to 1.0 m from the forest floor.
Once collected, samples were placed in a cloth bag labeled with the
plot and sample ID.

In preparation for stable isotopes analysis, samples were
dried in a 60◦C oven for 24 to 48 h and subsequently placed
in light-proof, tin containers. A small portion of each sample
was collected and ground to a homogenous powder using a
Spex SamplePrep GenoGrinder bead mill. Once homogenized,
we weighed 2.5 ± 0.1 mg of each sample into a 5 × 9 mm
Costech tin capsule. All samples were analyzed either at the
Stable Isotope Laboratory in the Department of Earth Sciences
at the University of Minnesota (UMN) or the Stable Isotope
Laboratory in Earth and Planetary Sciences at the University of
California, Santa Cruz (UCSC). At UMN, samples were analyzed
for δ15N and δ13C values via flash combustion in a Costech 4010
Elemental Analyzer (EA) coupled to a Thermo-Finnegan Delta V
Plus isotope ratio mass spectrometer (IRMS). At UCSC, samples
were analyzed via flash combustion in a CE Instruments NC2500
EA interfaced to a Thermo Finnigan Delta Plus XP IRMS. At each
location, the resulting gas was analyzed for elemental concentration
of 13C/12C and 15N/14N ratios and expressed in standard δ

notation, representing the differences between sample ratios and
ratios found in international standards for carbon (VPDB) and
nitrogen (atmospheric N2). Additionally, both laboratories used
internal (PUGel) and externally calibrated standards (acetanilide)
for quality assessment and control. Because samples were analyzed
in two different laboratories, we alleviated concerns of machine
or lab specific analytical biases by running five samples from
six different species in each lab and creating offset and linearity
corrections that we then applied to all samples analyzed at UCSC.
Finally, to ensure that δ15N and δ13C values from the same
site did not differ as a function of sample year, we randomly
selected five sites and conducted Levene’s Test for Homogeneity

of Variance to evaluate equality of variance of δ15N and δ13C
values within preference group as a function of sample year. Of
the 30 tests we conducted, none had p-values of less than 0.05,
suggesting little to no within site variation in stable isotope values
across sampling years.

Woody biomass calculations

Within each 0.04 ha plot, we measured smaller woody stems
(i.e., stems ≤ 6 cm of diameter at breast height, DBH, and ≥ 15 cm
in height) within three nested subplots along the 30, 150, and
270◦ azimuths, at 5.5 m from the plot centroid. Within a 25 m2

subplot, we tallied the number of individuals of each species having
a DBH ≥ 2.5 cm and ≤ 6 cm (i.e., saplings), with tallies for each
species recorded for each 0.5 cm DBH interval. Within a smaller,
10 m2 subplot, we measured diameter at 15 cm height of all woody
plants that were ≥ 15 cm in height but <2.5 cm in DBH (i.e., shrubs
or advanced regeneration). We tallied the number of individuals
of each species within each 0.5 cm size class, from 0.5 to 2.5 cm.
Anything with a diameter < 0.5 cm at 15 cm height was omitted.
Additionally, moose are known to snap-off the tops of trees with a
DBH ≤ 6 cm to access tree-top foliage (Geist, 1963). Thus, all trees
with a DBH > 6 cm were excluded from our analysis.

We calculated estimates of above-ground biomass using
species-specific allometric equations based on the measurements
detailed above. For saplings, we used equations from Jenkins
et al. (2003), to estimate above-ground biomass using DBH. While
allometric equations developed from a small and localized sampling
effort may lead to bias when estimating tree biomass, Jenkins et al.
(2003) compiled all available diameter-based allometric equations
for all species across the United States. Using a metanalytical
approach, the authors then developed a set of consistent, national-
scale allometric equations for estimating biomass across regional
boundaries, thereby minimizing analytical uncertainty. We also
used equations for shrubs and small saplings, (Smith and Brand,
1983; Perala and Alban, 1993), the vast majority of which were
developed using samples collected from the Upper Great Lakes
Region, allowing us to estimate above ground biomass based on
stem diameter at 15 cm height. For some species, equations for
whole, above-ground biomass were not available. For those species,
we calculated biomass for stems and foliage separately, and then
added those values to estimate total biomass of each species in each
plot. All estimates were converted to kg/m2.

Creating isoscapes

To model carbon and nitrogen isotopes across the landscape,
we needed to aggregate the isotope data within each preference
group at each plot. We did this in two ways. First, we took
a traditional approach in which we simply averaged all isotope
samples within a given preference group in each plot. This
approach, which did not account for sample density or available
biomass, we refer to as “biomass uninformed.” However, our
primary goal was to represent the isotopic composition of different
groups of plants as those groups are perceived by a large herbivore.
Because isotope samples were not collected in proportion to
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FIGURE 2

Schematic of (A) sample collection and data pre-processing, (B) bootstrapping with and without weights, and (C) modeling with simple linear and
mixed-effected regression kriging approaches.

availability within plots or on the landscape, we used a “biomass-
informed” approach, in which we generated bootstrapped samples
of the isotope data (weighted by our biomass estimates) for each
preference group in each plot (see section “Bootstrap sampling”).
Once plot-level estimates were made for the biomass uninformed
and informed approaches, we developed linear models (with and
without random effects) to determine what biotic and abiotic
factors influenced variation in isotope values (see section “Model
selection”). Finally, we used regression kriging to make spatial
predictions of how isotope compositions of each preference group
vary across the landscape (see section “Regression kriging”),
and then compared prediction accuracy using spatial leave-one
out cross validation (see section “Comparison of models and
predictions”). While the following sections describe each step in the
modeling process in detail, Figure 2 provides a visual schematic of
our approach.

Bootstrap sampling

Bootstrapping was used to generate “biomass informed” and
“biomass uninformed” distributions of isotope composition. For

biomass informed estimates, we used the biomass estimates from
each plot to generate bootstrapped data reflecting the mean
stable isotope composition of each forage preference group as

FIGURE 3

Isotopic variation of raw δ13C and δ15N values (h) across preference
groups. Mean values are represented by symbols, while error bars
represent standard error.
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FIGURE 4

Predictions of proportional abundances and absolute amounts (kg/m2), respectively, for low- (A,D), medium- (B,E), and high-preference (C,F)
forage. Visual inspection of these maps suggests substantial differences in both the proportional abundances and the absolute amounts of biomass
of all three forage-preference groups.

a function of the relative abundance of each group within each
plot (Figure 2B). To do this, we used the sample function in the
base package of R (R Core Team, 2018), which can use a vector
of probability weights (referred to below as “selection probability
vector”) for selecting individual values from the sampled data set
(i.e., the prob argument within the sample function). Each plot had
three selection probability vectors, one for each preference group.
Within each plot, each vector consisted of a string of numbers
representing the selection probabilities of all samples within a given
preference group. Each sample had its own selection probability
that was equal to the proportional abundance of that species within
its preference group, divided by the number of samples collected
for that species.

As an example, in a hypothetical plot A, the low-preference
forage samples consist of 3 balsam firs, 2 speckled alders, and
1 beaked hazel, for 6 total samples in this preference group—
each species making up 72, 19, and 9% of the low-preference
forage biomass in plot A, respectively. Given this, our selection
probability vector for low-preference forage in plot A would be
a string of 6 values: 3 values of 0.72/3 (0.24), 2 values of 0.19/2
(0.095), and one value of 0.09, all of which sum to 1.00. Once
our selection probability vectors were established, we sampled each
plot-preference group combination 500 times, with replacement,
informed by our selection probability vectors. We then calculated
the mean of this sample, which represents the mean stable isotope
composition of a given preference group within a plot. To account
for potential variation from one sampling effort to the next, we
repeated this procedure 1,000 times, which yielded a single vector
of 1,000 means. We then calculated the mean of this vector and

saved it as our “biomass-informed” isotope value for that forage-
preference group, within the given plot. We repeated this procedure
for each plot and each forage-preference group, for both δ13C and
δ15N values.

The bootstrapping procedure was comparable for our
uninformed data, but we assumed equal abundance across
all species found within each forage-preference group at each
plot. For illustration building on the example above, in the
uninformed case, our vector of selection probabilities for low-
preference forage in plot A for our uninformed data would also
be a string of 6 values–3 values of 0.33/3, 2 values of 0.33/2,
and one value of 0.33, all of which sum to 1.00. Thus, rather
than simply use mean isotope values for each preference group
in each plot (i.e., mean stable isotopes values not scaled by
biomass), we use bootstrapping in a comparable manner for the
sake of methodological parity rather than directly incorporating
species-specific proportional abundances.

Model selection

We selected 15 landscape covariates as candidate predictors
of plant biomass isotopic composition, of which 13 were fixed
and 2 random (Figure 2 and Supplementary appendix table
A2). To select final covariates, we performed a two-step, Akaike’s
information criterion (AIC) -based backward elimination to define
the best fitting linear mixed-effects model (Feng et al., 2021) for
δ15N and δ13C for each forage-preference group, across all plots.
Our “full model” contained all fixed and random effects, and for the
first step of the model-selection process, we held our random effects
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FIGURE 5

Isoscapes depicting spatial variation in δ13C (h) across northeastern Minnesota from mixed-effects models. Visual inspection of prediction maps
reveals distinct differences when comparing uninformed isoscapes for low (A), medium (B), and high-preference forage (C) to those derived from
biomass-informed models for low (D), medium (E), and high-preference forage (F).

FIGURE 6

Isoscapes depicting spatial variation in δ15N (h) across northeastern Minnesota from mixed-effects models. Visual inspection of prediction maps
reveals distinct differences when comparing uninformed isoscapes for low (A) and medium-preference forage (B) to those informed by biomass
estimates (D,E), respectively. However, isoscapes predictions for high-preference forage, both uninformed (C), and biomass-informed (F), appear to
be very similar.

constant and removed one fixed covariate at a time until we reached
the fixed-effects structure yielding the lowest AIC score. Once we
achieved the fixed-effects structure yielding the lowest possible
AIC score, for the second step of the model selection process we
performed AIC-based backward elimination on the random effects.
We used the lmer function in the lme4 R package for all linear

mixed-effects models (Bates et al., 2015). When defining our fixed-
effects structure we set the REML argument in lmer to FALSE, and
when defining our random effects structure, we set this argument
to TRUE (Faraway, 2016). In one scenario (i.e., δ15N for low-
preference forage), our best fitting model was rank deficient (i.e.,
insufficient data to estimate the chosen model due to too many
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FIGURE 7

Differences in isoscape predictions (h) utilizing uninformed-isotope data and biomass-informed isotopes. Maps depict the absolute values of
unformed predictions minus biomass-informed predictions from mixed-effects models for δ13C and δ15N for low (A,D), respectively, mid (B,E),
respectively, and high-preference forage (C,F), respectively.

covariates). To alleviate rank deficiency, we removed the set of
factor covariates that altered the model’s AIC score the least.

Data pre-process for regression kriging

To prepare our spatial data for regression kriging, all spatial
covariate data that were originally formatted as shapefiles were
converted into raster datasets in ArcGIS 10.8.1 (Figure 2A; ESRI,
2020). Once all data were converted, we needed to make sure that
the cell size of all raster datasets were equal. Thus, for any raster
dataset with a cell size larger than 30 × 30 m, we used bilinear
interpolation via the resample tool in ArcGIS to reduce the cell
size without altering the raster’s extent. Next, we needed to ensure
that all raster datasets were of the same extent. We accomplished
this with the extract by mask function in ArcGIS, using the raster
with the smallest extent as our “mask.” Finally, we used the raster
to ASCII conversion tool in ArcGIS to convert each raster to an
ASCII file that could then easily be read into R as a single, multi-
layered spatial grid data frame. To initiate regression kriging in R,
we used the readGDAL function from the rgdal package (Bivand
et al., 2018) to read in our ASCII landscape covariate data and the
read.csv function in the base package to read in our plot locational
data (i.e., the easting and northing of each plot’s centroid). To
align our plot location data with our landscape covariates, we
used the over function from the sp package (Pebesma and Bivand,
2005; Bivand et al., 2013) and then combined the corresponding
landscape covariate data with our plot locational data file.

Regression kriging

By definition, regression kriging is a method of spatial
interpolation that combines universal kriging (i.e., spatial

interpolation informed via regression modeling) with ordinary
kriging of the regression residuals, thereby allowing for more
complicated forms of regression (Hengl et al., 2007). Kriging
the residuals has been shown to improve spatial predictions
substantially by allowing for small-scale autocorrelation while also
accounting for measurement and modeling error (Prudhomme
and Reed, 1999; Omuto and Vargas, 2015). For spatial interpolation
of the residuals from our best-fitting models, we used the autoKrige
function in the automap package (Hiemstra et al., 2009). We
determined the best fitting variogram model both by means of
visual inspection and the sum of squared errors of the fitted model,
and then incorporated the best fitting variogram model into the
autoKrige function via the model argument (Supplementary
Figures A1, 2). We then used the predict function in the stats
package (R Core Team, 2018) to predict δ13C and δ15N values
across the entire study area and added these predictions to
our kriged residuals, which helps to account both for local
autocorrelation and measurement and modeling error. We saved
the resulting data as grid files using the write.asciigrid function in
the sp package (Pebesma and Bivand, 2005; Bivand et al., 2013).
For visualization purposes, we then converted these ASCII files
into raster data sets in ArcGIS using the ASCII to raster conversion
tool. All R code, sample data, and resulting output for this portion
of our analysis can be found online, at the Data Repository for the
University of Minnesota (DRUM).

Comparison of models and predictions

In general, we would expect that accounting for variation
in the abundance of different substrates (e.g., forage biomass)
would inherently result in improved estimates of the isotopic
landscape because such estimates should more accurately reflect
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the true isotopic mean at any point in space. Regardless,
we conservatively compare across models with both qualitative
and quantitative methods in order to determine which models
provide better fits and predictions. The following provides a
brief description of the evaluation approach used for each
question:

1. Q1: we used a one-way ANOVA followed by Tukey’s
Test for Honestly Statistical Differences to determine if
different forage-preference groups are isotopically distinct
from one another.

2. Q2: to evaluate if kriging predictions of the abundances of
different preference groups are distinct from one another
and spatially heterogeneous, we mapped both the absolute
and proportional abundances of all preference groups and
inspected differences in model structure for each preference
group. We also evaluated the efficacy of model structure
using marginal and conditional r2 values for all preference
groups. To evaluate model performance, we used hold-one-
out cross validation and estimated the root-mean-squared
error (RMSE) for all models.

3. Q3: to evaluate if mixed-effects models characterizing spatial
variation in stable isotopes improve predictions over those
created via simple linear models, we calculated marginal
and conditional r2 values. To evaluate model performance,
we used hold-one-out cross validation and estimated the
RMSE for all models.

4. Q4: to determine if biomass-informed isoscapes provide
predictions that are distinct from those provided by
uninformed isoscapes, we calculated the absolute difference
between each model type for each preference group and
mapped these differences using the raster calculator in ArcGIS
10.8.1 (ESRI, 2020). To estimate model accuracy for both
uninformed and biomass informed models, we used spatial,
hold-one-out cross validation approach and calculated the
RMSE for all models.

To elaborate on the hold-one-out cross validation for
Q4, we held out all data from an individual plot and re-
kriged δ13C and δ15N for each preference group using the
remaining plots and our best fitting linear mixed-effects models.
We then compared the predicted values of the held-out
plot (i.e., δ13C and δ15N for high-, medium-, and low-
preference forage) to the true values and continued this process
across all plots. We then calculated the RMSE to determine
how well our regression-kriging process predicted the values
of our held-out sites, for both uninformed and biomass-
informed models.

Results

When evaluating raw isotope data to determine if different
forage preference groups were distinct (Q1, Figure 3), results
of one-way ANOVA for δ13C [F(2,2691) = 129.9, p < 0.00001,
η2 = 0.084] and δ15N [F(2,2691) = 24.9, p < 0.00001,
η2 = 0.085] were statistically significant. Furthermore, Tukey
HSD Tests comparing preference groups against one another for

both δ13C and δ15N revealed that all groups were isotopically
distinct, with each comparison yielding p < 0.0001. Values
for δ13C for low preference forage ranged from −33.8 to
−24.2h and from −33.5 to −23.9% for medium preference
forage. For high-preference forage, δ13C ranged from −32.9 to
−22.2%. Values for δ15N ranged from −10.1 to 6.1% for low-
preference forage and from −12.0 to 6.5% for medium preference
forage. For high-preference forage, δ15N ranged from −7.4 to
7.1%.

When inspecting model predictions for the proportional
and absolute abundance of different forage preference groups
(Q2), both measures of abundance exhibited substantial variation
across all preference groups (Figure 4). Predictions of low-
preference forage exhibited the greatest mean abundance across the
study region (49%) and predictions of medium-preference forage
exhibited the smallest mean abundance (18%). Additionally, each
preference group exhibited a high degree of spatial heterogeneity
across the study region. For example, proportional abundance
of low-preference forage ranged from 0 to 100% with a
standard deviation of 28%, while the proportional abundance
of high-preference forage also ranged from 0 to 100% with
a standard deviation of 23% (Figure 4). Moreover, only two
of the thirteen fixed effects (i.e., northing and mean annual
precipitation) appeared in all models used to predict the abundance
of different forage groups (Supplementary appendix table
A3). In general, lower-preference forages were more abundant
throughout the study region than higher-preference forages
(Figure 4).

We found that incorporating random effects improved our
ability to predict δ13C for medium-preference forage for both our
uninformed and our biomass-informed models (Figures 5, 6 and
Supplementary appendix tables A4, 5). The inclusion of random
effects improved r2 values by as much as 0.151 for δ13C values and
by as much as 0.868 for δ15N (Supplementary appendix tables
A4–7).

In general, uninformed and biomass-informed isoscape models
were best characterized by distinct sets of predictor variables across
different preference groups (Q4, Supplementary appendix tables
A3–7). However, there were varying degrees of overlap in the
fixed effects of the best fitting models for different preference
groups, and this was true for both uninformed and biomass-
informed models. For example, δ15N for medium-preference
forage had a single fixed effect in the uninformed model, while
the biomass-informed model for δ15N values of the medium-
preference group had six fixed effects (Supplementary appendix
tables A6, 7). Conversely, models characterizing δ15N for high-
preference forage for both uninformed and biomass-informed
had identical structures (Supplementary appendix tables A6, 7).
When predicting held out data, RMSE estimates ranged from
0.649 to 0.823% for δ13C and from 0.897 to 1.908% for δ15N
(Supplementary appendix tables A4–7). Maps depicting the
differences between uninformed and biomass informed isotopes
suggest strong differences between different prediction methods
(Figure 7) and reveal that accounting for biomass when modeling
the isotopic landscape can yield substantially different predictions
(Figure 7) that vary by as much as 10% (Figure 7E).
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Discussion

In this study, isoscape estimates based on plant groups that
vary both in their abundance and isotopic composition exhibit
substantial variation between models that account for abundance
(i.e., biomass) and those that do not. Moreover, accounting for
the abundances of different plant groups often led to the inclusion
or omission of landscape covariates resulting in models that
better predict variation in the isotopic landscape. However, even
though some models had identical structures (e.g., δ15N for high-
preference forage, both informed and uninformed), accounting
for site-to-site variation in the abundance of different preference
groups still led to differences in isoscape estimates (e.g., up to
1.3%, Figure 7F) that could influence the results of any study
utilizing model output as an important source of inference.
Overall, our results suggest that accounting for variation in the
abundance of different isotopic substrates, can lead to isoscape
estimates that are distinct from those that do not (Figure 7), and
that better reflect the actual isotopic variation present across the
landscape (CVLMER RMSE values in Supplementary appendix
tables A4–7).

Currently, most models used to characterize variation in the
isotopic landscape use simple linear models, however, we show here
that incorporating random effects can substantially improve model
fit. Incorporating random effects improved the performance of nine
of our 12 isoscape models, and improved model predictive ability
by as much as 87% in one instance (i.e., uninformed δ15N for mid-
preference forage, RMSE = 0.92%). While the inclusion of random
covariates had no influence on the performance of three of our
models, this could change with the inclusion of different covariates.
We used bedrock geology and disturbance as random effects for
both δ13C and δ15N values. However, given our results, values of
δ15N are clearly more impacted by these covariates than those of
δ13C. The inclusion of different random covariates would likely
influence how well these models perform. While the incorporation
of random effects did not always help account for more of the
variance, mixed-effects models provide researchers with a relatively
simple approach to investigating mechanistic drivers underlying
spatial heterogeneity.

The method we present here is flexible and easy to
implement. Yet, we recognize that spatial variation in the isotopic
composition of individual plants or plant parts is a spatially
explicit process resulting from a series of spatiotemporally related
events (Goldsmith et al., 2019). As a result, this variation both
across space and through time could be characterized using a
series of conditional probabilities (Taalab et al., 2015), and thus,
it would be interesting to explore how the predictions of a
hierarchical modeling approach compare to the predictions we
present here. Additionally, estimating uncertainty becomes difficult
to impossible in highly parameterized models when using a simple
linear or mixed effects approach. Hierarchical spatial modeling
may lead to more accurate estimates of spatial variation and any
associated uncertainty, due to the ability of these models to handle
high-level parameterization. This approach does not come without
tradeoffs, however, as hierarchical spatial models can be difficult
to implement and may be computationally expensive (Arab et al.,
2008; Cavieres et al., 2021). It is our hope that the approach we
present here motivates others to estimate the isotopic landscape

using a hierarchical approach, such that researchers can weigh the
potential costs of each approach against the prediction accuracy
of these different methods to evaluate their efficacy in different
analytical contexts.

Different plant species vary in their isotopic composition and
therefore, methods that do not account for spatial variation in
the abundance of these species may lead to a misrepresentation
of the isotopic landscape. Accounting for variation in the relative
abundance of different preference groups altered our estimates of
the isotopic landscape by as much as 10%, equivalent to the isotopic
difference estimated between two trophic levels (Flynn et al., 2018).
While it is important to note that the method we present here helps
identify significant variation that would typically go unnoticed,
a potentially more important consideration than differences in
average estimates, however, may be the refined depictions of
spatial heterogeneity in these models and how it may inform our
knowledge of ecological systems. For example, performance of
the moose population across northeastern Minnesota is relatively
heterogeneous, with the population in some areas performing
relatively well, while at the same time performing poorly in
other areas (DelGiudice, 2018). Because different forage-preference
groups are isotopically distinct and the isotopic values for these
groups are heterogeneous across the study region, moose traveling
through this landscape will carry with them an isotopic signature
of where they have been and what they have eaten. Thus, models
that accurately characterize spatial heterogeneity in the isotopic
landscape could be beneficial when evaluating how diet and habitat-
use behavior of moose may be contributing to spatial heterogeneity
in population performance. It is also important to note that
utilizing biomass to help refine isoscape predictions will be even
more useful for landscapes in which substrate groups are more
isotopically distinct than that which we use here (e.g., landscapes
that include C4 grasses). Finally, we recognize that the distribution
of sample plots used to estimate the isotopic landscape can be
highly influential. Thus, future studies should try to sample along
the periphery of the study region in order to more accurately
estimate the isotopic landscape in these areas.

Animal behavior is, at least in part, a manifestation of how
individuals respond to heterogeneity in their environment (Dall
et al., 2005), and stable isotopes are a powerful tool that makes
it possible to evaluate the behavioral response of animals to this
heterogeneity (Rubenstein and Hobson, 2004). Although we use
a declining moose population in northeast Minnesota as our
model system, the principles, concepts, and methods we apply
throughout are applicable to a range of species across a variety
of habitat types. For example, numerous studies have reported
declines in pollinators worldwide (Potts et al., 2010; Tylianakis,
2013), with pesticide exposure and forage decline as primary
drivers of this decline (Mola et al., 2021; Janousek et al., 2023;
Liu et al., 2023). The approach that we present here could be
used to model the abundance and distribution of both pollinator
resources and threats at a range of spatial and temporal scales,
thereby providing critical spatial tools necessary for successful
pollinator conservation (Crowther et al., 2019; Niemuth et al., 2021;
Warzecha et al., 2021). Finally, the approach to kriging that we
describe here is highly flexible and broadly applicable to many
scenarios in which kriging is part of the analytical process. As a
result, this method could be used to model spatial variation of
a range of continuous variables across a variety of spatial scales.
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Regardless of the application, regression kriging using mixed-
effects models and the refinement of model predictions using
measures of abundance, provides a flexible, yet mechanistically
driven approach to modeling heterogeneity both across space and
through time.
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