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Ecologists are increasingly recognizing the importance of stochastic processes in

generating spatial and temporal variation in biological communities. This variation

is very high in soil, which hosts not <¼ of all biodiversity on Earth and is central

to how terrestrial ecosystems respond to perturbations. Measurement errors,

demographic stochasticity (individual variability in traits such as birth and death

rates), and environmental stochasticity (fluctuations in environmental properties)

are the three main sources of stochasticity in ecology. Here, we synthesize

how these three sources of stochasticity are quantified and incorporated in

the study of soil biodiversity, highlighting current limits, possible solutions, and

future research needs. We stress the relevance of all these factors to our future

understanding of terrestrial ecosystems via plant-soil and soil-climate interactions

and feedbacks. In soil, measurement errors are due to the small size, high

abundance, and broad distributions of soil organisms, which limit sampling in

space and especially over time. We argue that positive autocorrelation is a

main characteristic of soil environmental properties, which may have important

consequences on the response of soil biota to perturbations. At a local scale, large

populations of soil organisms also imply aminor role of demographic stochasticity.

Despite demographic stochasticity being a less significant source of variability

than environmental stochasticity, we show that demographic stochasticity can be

sizeable, but that within soil systems, stochasticity of environmental conditions

must be accounted for. Explicit consideration of stochastic processes in soil

biodiversity research is essential to our future understanding of the processes

that control soil biodiversity. In classical ecology, stochasticity implies probabilistic

predictions in terms of population growth, extinction, species coexistence, and

community diversity. In soil, stochasticity implies very variable responses to climate

change and the soil-climate feedback. Future studieswill have to identify themajor

sources of environmental stochasticity with a particular focus on the interaction

between multiple global change factors.
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1. Introduction

Individuals, populations, and ecological communities display very large variability

over space and time. Since a fully deterministic description of all the factors

that control this variability is not feasible, ecologists have developed a large

number of models that explicitly incorporate stochastic processes in modeling

this variability (May, 1973; Caswell, 2000; Lande et al., 2003; Vellend, 2010).
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Shoemaker et al. (2020) have recently clarified many of the

misconceptions and confusions on stochastic processes in ecology,

highlighting the importance of an integrative framework to make

the study of ecological communities more robust and predictive.

In fact, a major misconception is that stochastic approaches imply

uncertainty and unpredictability while, instead, they simply imply

that predictions are probabilistic, and that there are different

sources of variance that contribute to the outcome of an ecological

process. Stochastic ecological processes can thus be quantified in

terms of probability distributions and expectations (Lande et al.,

2003). In other words, models that incorporate stochastic processes

make “the unpredictable” predictable, if we accept that most

predictions in ecology will be of a probabilistic nature. There is a

misconception that a stochastic process implies total ignorance of a

process, which is rarely the case. In most cases, there is information

available to us that allows for predictions while calculating some

degree of uncertainty around the mean. More generally, modeling a

process using a stochastic approach does not mean that the process

is intrinsically random and has no deterministic causes. Rather that

the complexity of the factors that determine the trajectory of the

measured variables is so high that a probability description of the

possible trajectories is tractable while a deterministic one is not

(Karlin and Taylor, 1975).

Soil is one of the most variable and diverse components

in terrestrial ecosystem and hosts not <¼ of all biodiversity

on earth (Bardgett and Van der Putten, 2014; FAO, 2020). The

variability of soil biodiversity over space and time is enormous

and observed from very small (a few mm) to global scales (e.g.,

Ettema and Wardle, 2002; Bardgett et al., 2005; Delgado-Baquerizo

et al., 2018; Phillips et al., 2019; White et al., 2020; Caruso

and Bardgett, 2021). Many studies have clarified the roles of the

abiotic and biotic factors that control the distribution of soil

organisms from global (Delgado-Baquerizo et al., 2018; Phillips

et al., 2019; Van Den Hoogen et al., 2019) to intermediate and

local scales (Lindo and Winchester, 2009; Caruso et al., 2019).

But the abiotic and biotic factors that control soil organism

distribution, and the ecosystem functions that these organisms

mediate, vary over space and time, and stochastic processes offer

the quantitative framework to link fluctuations in abiotic and biotic

factors to variation in population and communities (Lande et al.,

2003). This is particularly important for soil communities, that

are central to ecosystem functioning, especially biogeochemical

cycles (Bardgett and Wardle, 2010; Crowther et al., 2019), which

are connected via plants and the atmosphere to global climate

change dynamics (Bardgett et al., 2008), and are subjected to

a complex interaction of multiple global change factors (e.g.,

warming, changes in soil moisture, nitrogen deposition) (Rillig

et al., 2019; Bardgett and Caruso, 2020). Interactions with multiple

factors imply important temporal and spatial fluctuations in

populations, biomass, microbial and faunal traits, and biological

rates, including energy fluxes. Given that a fully deterministic

description of all these interactions is not feasible, we argue that

stochastic approaches offer a solution to conceptualize and model

this complexity. We thus offer a synthesis and perspective on how

stochastic processes have been considered in past soil biodiversity

research, highlighting some important aspects of the state-the-

of-the-art, current limitations in terms of data availability, and

solutions that will boost, in our view, a deeper understanding of the

response of terrestrial ecosystems to environmental variation and

perturbation regimes.

2. Sources of stochasticity in soil
biodiversity

Over the last 15 years, the factors and processes that structure

soil biodiversity have been studied intensively and over multiple

spatial scales. For example there have been some general literature

reviews and synthesis papers on different biodiversity theory and

methods as applied to soil biota (e.g., Vályi et al., 2016; Thakur

et al., 2020; White et al., 2020), large scale studies investigating

the factors that control the distribution of soil organisms (e.g.,

Delgado-Baquerizo et al., 2018; Crowther et al., 2019; Phillips

et al., 2019; Tedersoo et al., 2022), and studies that have tested

the predictions of competing community assembly models (e.g.,

Lekberg et al., 2007, 2011; Lindo and Winchester, 2009; Dumbrell

et al., 2010; Caruso et al., 2011, 2012). Much of this work was meta-

analyzed by Guerra et al. (2020). In many of these studies, and also

as recently summarized in Vályi et al. (2016), Thakur et al. (2020),

and White et al. (2020), there is a relatively large proportion of

the variance in the data that cannot be attributed to the factors

analyzed. There is typically variance observed in the abundance

of organisms, but also in relative species abundance and species

composition, as well as in ecosystem functions (for example, total

soil respiration). Much of this variance is typically spatial because

most studies have focused on the spatial dimension, and time series

of soil biota are rare. Caruso et al. (2020) recently reviewed the

literature for soil animals and highlighted the rarity of time series

for soil biota. For example, in the BioTIME database (Dornelas

et al., 2018) the only time series for soil organisms are the two we

recently submitted.

Depending on the specific context of the different research,

various authors have offered multiple explanations on the sources

underlying this “unexplained” variance, but in general there are

three main sources in ecology (Figure 1): measurement errors,

environmental, and demographic stochasticity (Shoemaker et al.,

2020). The term “unexplained” is thus not really appropriate in our

view, because the sources of variances are known, but what it is not

known are their relative contributions.

2.1. Measurement errors

The process of measurement in science is best modeled using

probability distributions, given that measurements are subjected

to a myriad of sources of error that together affect the accuracy

and precision of measurements (Taylor, 1997). In this sense,

measurement errors can be measured and accounted for (e.g.,

through instrument calibration, detection limits), such that, in

principle we should always be able to quantify them. In ecology,

at a theoretical level, measurement errors are perhaps the least

interesting source of stochastic variation, but in soil research

this type of error represents an important source of variance for

two reasons: firstly, soil biota are very small sized and patchily

distributed from local to broad scales (Ettema and Wardle, 2002),

meaning the sampling regime should be very intense at multiple
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FIGURE 1

Stochastic processes a�ect population fluctuations (black lines of di�erent types), and so species intraspecific and interspecific interaction and

eventually fluctuations in any properties emerging from these interactions (for example, the simple total density as the sum of individual species

density, blue solid line). The two key types of stochastic processes are demographic stochasticity and environmental stochasticity. A third source of

variance is measurement errors, which propagates when variable measured with uncertainty (species fluctuation) are combined into an aggregated

properties (for example, total sum of species densities).

scales in order to provide precise estimates of ecological variables

such as population density and biomass; secondly, basically all

taxonomic groups in soil are sampled destructively, meaning that

repeated measurements on the “same object” are not possible, and

that measurements at one particular spatial scale must be based

on either a composite sample from multiple samples or technical

replicates later pooled or averaged to represent the community at

the chosen spatial scale (Caruso and Bardgett, 2021). While this is

well-known in the practice of soil ecology, we propose that there are

also other sources of measurement errors that are underestimated

in soil biodiversity research, and that soil ecologists and ecologists

in general, rarely apply the rules of error propagation in their

estimates of measurement errors. In ecology this topic has been

considered explicitly only in a few works mostly related to the

estimate of the biomass of plants (Deutschman et al., 1999; Lo, 2005;

Molto et al., 2013).

We propose that there are two major areas where error

propagation can become an important approach to estimating the

contribution ofmeasurement error to the total variance observed in

soil ecological systems. One is the estimate of population biomass,

which is usually based on compounding information on body size

with information on population density (Turnbull et al., 2014).

The other is the related estimate of energy fluxes (e.g., Potapov

et al., 2016) that is based on the allometric scaling of metabolism

with body size and temperature. This latter case is particularly

important, given that an energetic description of soil food webs

potentially allows the estimation of matter fluxes and so, for

example, rates of CO2 emissions (Moore and de Ruiter, 2012). In

energetic food webs estimated through allometric metabolic scaling

(Barnes et al., 2018), the total metabolic loss of a trophic species

is the sum of the losses of each individual within that species

population. The metabolic loss I of one individual of biomass M

is typically estimated with an equation of the type: I ∝ Mb.

There is a measurement error σM in M, which is often due to

estimating individual biomass M by body size, with uncertainty

both in lengthmeasurements and the parameters that link body size

to body dry or wet weight. But, even more fundamentally, there

is also uncertainty in the scaling exponent b. The exact value of

the scaling exponent, and the implication of this value, have been

a subject to heated discussion in the more general debate on the

metabolic scaling theory of ecology (Enquist et al., 2003; Brown

et al., 2004; Makarieva et al., 2006, 2008; Glazier, 2010). Regardless

of the different theories and predictions on the exact value of the

scaling exponent, experimentally there is a well-known systematic

variation in the scaling exponent, which varies between taxa and

phylogenetic lineages (Ehnes et al., 2011). For example, Ehnes et al.

(2011) estimated (mean ± SE) b as 0.68 (± 0.4) for oribatid mites

and 0.69 (± 0.09) for mesostigmatid mites. Our point is that the

experimental error σb around b as well as the error σM around M

are both needed to assess the measurement error of I, which is a

combination of the two errors.

This can be demonstrated through an equation of the

type I ∝ Mb to estimate I, given uncertainty σb and

σM in b and M, respectively. From error propagation theory

(Taylor, 1997), the uncertainty in I would then be σI ≈
I2

[

(

M
b

σM
)2 +

(

ln (M) σb
)2

]

under the assumption that there is

no correlation in the error structure of M and b. If there was some

non-negligible correlation between the two measurements, one

more term should be added to the error of I, with the general effect

of further increasing measurement uncertainty. Even more, usually

the general equation used to estimate I is I = i0Mb exp(− E
kT
)

where k is the Boltzman constant, T is temperature, E activation
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energy, and i0 is a taxon-specific constant. The latter two

parameters (E and i0) are estimated experimentally with some

errors, which should also be incorporated in the estimate of σI .

Given that the Ij of each individual j is estimated with an error

σI , and that the total metabolism of a trophic species is the sum

of all individual metabolisms, that is Itot =
∑

Ij, the error of Itot
will be obtained by propagating the errors from the sum of all

Ij. That would simply be σtot =
∑

σI assuming no correlation

between the measurements of the metabolic loss of each individual

(a correlation would further increase the combined error for

the total).

These estimates of individual biomass based on allometric

scaling become compound errors with calculations into population

level biomass, which are then used in calculations of flux in food

web models. The estimate of the energy fluxes between two trophic

species finally requires the knowledge of other coefficients, which

express the efficiency of energetic transfers between trophic levels.

Arguably, these coefficients are known with some errors and the

errors should thus propagate to the estimate of the energy flux

together with the error of the metabolic loss. All these errors are

rarely, if ever, taken into account, and are (implicitly) assumed to

be negligible (Barnes et al., 2014, 2018; Potapov et al., 2019, 2021),

or are not taken into account (Gauzens et al., 2019). Similar issues

apply to conversions from abundance to biomass data, assignment

of species into trophic groups (see Buchkowski and Lindo, 2021),

extrapolation of density data across scales, and in general any

conversion based on measurements and coefficients that, being

based on experimental measurements, are necessarily known with

a degree of uncertainty intrinsic to the measurement process. We

thus recommend that future soil biodiversity studies explicitly

consider the issue of error propagation in the quantification of error

measurements, as this is important to estimate lower and upper

bounds for key ecosystem level quantities such as respiration and

fluxes of C and N.

2.2. Demographic stochasticity

Individuals within a species differ in vital rates, especially

survival and fecundity, that together determine individual fitness

(Caswell, 2000; Lande et al., 2003). In very small populations

(typically < 100), this variability in vital rates is the source of

demographic stochasticity, and can be measured by following

cohorts of individuals, their survival and reproduction output

(Lande et al., 2003). This is relatively straightforward, while time

consuming, for vertebrates such as birds (Engen and Sæther,

1998; Sæther et al., 2000; Engen et al., 2001, 2003) but much

more challenging for soil organisms, apart from laboratory studies

on soil animals (Siepel, 1994; Søvik and Leinaas, 2003; Stamou,

2012). Despite the fact that direct measurements of demographic

stochasticity are difficult to obtain for soil biota, there is theoretical

ground to expect demographic stochasticity plays a minor role in

structuring soil biodiversity. For example, following Lande et al.

(2003), in simple, unstructured density independent stochastic

models, the total variance σ 2
λ of the finite rate of population

growth λ equals σ 2
e + σ 2

d
N , where σ 2

e is environmental variance

(defined in the next section), σ 2
d
is demographic variance, and

N is total population size. Density independence is appropriate

because demographic stochasticity applies to small populations,

which are arguably far away from their carrying capacity. In large

populations, population sizeN≫ σ 2
d

σ 2
e
and demographic stochasticity

plays a much smaller role than environmental stochasticity. A

critical population size Nc = 10
σ 2
d

σ 2
e
can be defined, above which

demographic stochasticity can be ignored. In birds, this critical

population size can range from a few tens to various hundreds

of individuals (Lande et al., 2003). Clearly, the issue is that we

do not know the magnitude of environmental and demographic

variance in soil organisms. However, it is textbook knowledge that

the density per square meter of most soil organisms is typically

well above 100 or 1,000 units for animals and up to 1 billion

bacterial cells and 200m of fungal hyphae per gram of soil microbes

(Coleman et al., 2004).

It is thus unlikely that demographic stochasticity plays any role

at all for most species at scales larger than 1 m2 (see also Section 3).

At scales smaller than 1 m2, however, various soil animal species,

such as Collembola and mites, can have population sizes of a few

tens of individuals, making demographic variance a likely source

of stochasticity. If we assume a small population size at this scale,

and thus a density independent model following Lande (1998), and

the formulation in Lande et al. (2003), we can also formulate an

unstable stochastic equilibrium for population size that establishes

a critical threshold below which the probability of extinction

approaches unity. This critical equilibrium value can be calculated

as N∗ =
σ2
d
4

λ −1− σ2e
2

. For example, if σ 2
d

= 1 and σ 2
e = 0.04,

and the average λ = 1.03, the critical population size would be 25

individuals. This is a likely scenario at some spatial scales (1–100m)

for some groups of soil fauna given existing estimates of population

size and finite rates of increases (e.g., Caruso et al., 2020). However,

at this scale interactions between individuals in soil become very

likely, as also shown by highly aggregated distribution of soil fauna

and microbes at small scales (Ettema and Wardle, 2002). The

implication is that other biological mechanisms will potentially

contribute to population fluctuations, especially Allee effects, which

makes again pure demographic stochasticity unlikely to be a large

and only source of fluctuations in soil biota.

These considerations are very relevant to the large body of

literature that has investigated the relative roles of stochastic

and deterministic determinants of soil biodiversity. A recent

synthesis has been offered by Thakur et al. (2020), who found

about 100 papers explicitly testing community ecology assembly

theory in soil communities, and concluded that theory such as

the neutral theory, which has demographic stochasticity as the

core process, are generally not well-supported suggesting niche-

based explanations underly community composition, and the high

levels of unexplained variance are likely due to other stochastic

processes described here (see next section). This conclusion is

consistent with the general consideration that for most soil species,

large population sizes over relatively broad scale (>100m) imply a

small role of demographic stochasticity. It is, however, important

to remark that in many of the papers reviewed in Thakur et al.

(2020) there is, in our opinion, very often confusion between

the assumption of neutrality in certain models and the role of

stochastic processes. As made clear by Adler (2007), demographic
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stochasticity is just a demographic process that may be at play both

in neutral and niche community dynamics (see also the simple

niche stochastic model example by Tilman, 2004). This means that

the rejection of a neutral model does not imply that community

fluctuations are not affected by demographic stochasticity, but only

that the assumption of neutrality is not sufficient to explain the

tested community patterns (Vellend, 2010).

2.3. Environmental stochasticity

Besides individual-level variability in vital rates such as birth

and survival rate, the average expression of rates in the population

also depends on the environment, which fluctuates. Sometimes

conditions are favorable, sometimes they are not. After removing

structural, periodic fluctuations due to, for example, the day and

night cycle, or the seasonal cycle, or trends due, for example, to

global warming,many environmental fluctuations are bestmodeled

as probability distributions (Figures 2, 3), that is, stochastic

fluctuations. The implication is that the vital rates, too, will

fluctuate stochastically. A simple density independent model for

this type of stochastic fluctuations is Nt = N0
∏t

i=1 λi where

the population size N grows geometrically from time 0 to time t

according to the finite rate of increase λ, but at each time step the

value of λ changes, because the environment changes (Botsford

et al., 2019). This implies fluctuations in the rate of growth and

so population size over time. It will also imply fluctuations in

interspecific interactions, and all the ecosystem processes that

depends on these interactions (Figure 1).

The first population level implication of environmental

stochasticity is that the long-term growth rate of the population will

be smaller than the expected average growth rate, and the higher

the environmental variance the smaller the rate will be (Caswell,

2000; Lande et al., 2003). This also applies to populations structured

by age and stages (Caswell, 2000; Tuljapurkar, 2013), which is the

case with many soil animals (Walter and Proctor, 1999). However,

while this is generally true for so called “white noise”, which is

fluctuations without temporal autocorrelation (Figure 3), many

time series of environmental variables display autocorrelation in

their random component (Figures 3, 4). This is the so called

“color” of noise, which has been shown to have different types and

sometimes contrasting effects on the long-term rate of population

growth (Ripa and Lundberg, 1996; Ruokolainen et al., 2009)—we

argue this is particularly important in soil properties such as soil

moisture. For example, in the time series we show in Figure 4,

soil moisture and temperature, but especially soil moisture, clearly

show fluctuations due to the day-night cycle and pulses of rain.

After removing these fluctuations, the remaining random noise

is positively autocorrelated, with highest variance displayed over

short period of times. This is relatively easy to interpret: if soil

becomes dry, it will stay so for a certain time until it rewets. As well

as the rewetted soil may be subjected to another bout of drought

but with loss of moisture that will take a certain time, meaning

that the closer in time any two soil moisture measurements are, the

more similar the measurements are likely to be (i.e., red noise). The

implication is that both wet and dry conditions may persist longer

than under purely white noise, and certain population models

imply that red noise may reduce the risk of extinction (Ripa and

Lundberg, 1996).

Regardless of the particular population model, however,

an important tool to describe the structure of environmental

stochasticity in time series analysis is the Fourier transformation

(Bloomfield, 2004; Bush et al., 2017). The Fourier transform of

a time series moves data from the time domain (x-axis) to the

frequency domain (new x-axis); in the original time series, the y-

axis is simply the measured variable (Figure 3), and in the Fourier

transform the y-axis becomes variance (Figure 3). In practice,

the Fourier transform allows detection of the frequencies or,

conversely, time period mostly expressed in the data (i.e., that

shows more variance). If all the frequencies are equally expressed,

the pattern (or spectrum) of the Fourier transform is flat (white

noise), and there is no relationship between frequency and variance.

If low frequencies show more variance than high frequency there

will be a negative correlation between frequency and variance (i.e.,

there will be positive autocorrelation in the time domain referred to

as red noise). Fourier analysis of soil time series can thus quantify

the autocorrelation structure of environmental stochasticity in soil,

thereby elucidating the effect of this stochasticity on soil biota

population and communities. This analysis is straightforward for

abiotic variables especially for data collected from data loggers that

allow the collection of time series of desired length and resolution

(see example in Figure 4).

Unfortunately, the same is not possible for soil biota (Caruso

and Bardgett, 2021). Yet, future modeling studies (see example in

Figure 2) still benefit from incorporating forms of environmental

stochasticity, that reflect the random structure observed in

soil abiotic environments. For example, energetic food webs

incorporate temperature as a key parameter via the fundamental

metabolic scaling equation I = i0Mb exp(− E
kT
). There are

now soil food web models parameterized on field data (Potapov

et al., 2021; Pettit et al., 2023) using the energetic approach

(Moore and de Ruiter, 2012). Thus, in silico soil food web

models (i.e., computer model estimations) can explore the effect of

environmental stochasticity on energy fluxes using information on

the stochastic structure that can be revealed by a Fourier analysis

of soil temperature time series (Figure 4). These models could

also simulate the impact of perturbation regimes, that changes the

temporal structure of fluctuations in environmental variables.

3. Community level estimate of
stochasticity

One major limitation in the study of stochastic fluctuations in

soil biodiversity is the lack of time series (Bardgett and Caruso,

2020; Caruso and Bardgett, 2021). However, many ecological

processes that happen over time potentially leave their signature in

the spatial distribution of organisms, and there are some models

that may allow estimate of environmental and stochastic variance

from combined spatial and temporal time series (Lande et al.,

2003; Botsford et al., 2019). We offer an example here, based on

a publicly available time series of soil oribatid mites (https://doi.

org/10.5061/dryad.tmpg4f4vt), which was the subject of previous

work of ours (Caruso et al., 2020). The dataset consists of several

9-year time series replicated over multiple sampling locations. We
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FIGURE 2

The “observed” population stochastically fluctuate around an equilibrium. The fluctuation follows a normal distribution with autocorrelation

parameter “phi”. The parameter phi and the mean and variance of the observed population can be estimated from a sample of the population. The

estimate of the mean, variance and autocorrelation parameter can be used to draw a desired number of “simulated” populations. In this example,

three simulated populations (Simulated R1, R2, and R3) are shown together with the originally observed population. The three simulated population

and the observed one represents four realizations of the same stochastic process, with the probability distribution of the process been estimated

from the observed population. This time series displays positive autocorrelation, that is “red” noise.

fitted the model by Engen et al. (2002) to this dataset, and we

provide an R script (see Data Availability Statement) that displays

all the key step of the model fitting procedure. The key output

of the model is a partitioning of the total community variance

in terms of environmental variance, and a term that is the sum

of demographic variation and overdispersion (which is relative to

the underlying Poisson distribution assumed by the model). The

environmental variance is further decomposed into two sources:

general environmental variance, which is a forcing component that

applies to all species, and species-specific environmental variance.

The model takes the relative abundance of species, location and

sampling time as input. It is fitted in stages: first, a bivariate Poisson

distribution is fitted to the combined species relative abundance of

all pairs of possible samples. Second, the variance and correlation

parameters of each fit are combined with the spatial and temporal

distance between each pair of samples. Third, an estimate is

obtained for the parameters that control the dependency of the

correlation parameter on the spatial and temporal distance between

any two samples.

These parameters contain the main output, that is the estimate

of environmental and demographic variance. Note however, as

outlined in the previous section, because measurement errors

are generally not well-incorporated into models and analyses,

estimates of environmental and demographic stochasticity are

likely overestimated. This model is based on the following main

stochastic model, where the logarithm X of the abundance of

any species i in the community has the following forms: dXi
dt

=
ri − mXi − A(X) + σd√

Ni
Di + σeSi + σEE. Where the subscript

i indicates a certain species, D, S, and E are Brownian motions

and, respectively, represents demographic (D), species specific (S)

environmental, and general environmental (E) effects. The sigma

coefficient of each of this term (D, S, and E) is the variance we

aim to estimate in order to quantify the relative importance of

environmental (e+E) vs. demographic (d) stochasticity. The model

is not neutral with respect to intrinsic growth rate r and the species

level stochastic effect D and E, and it includes interactions between

speciesA(X) as well as density dependence controlled by parameter

m.With these simple assumptions, a crude but field-based estimate

of environmental and demographic stochasticity is possible from

the type of community data sets available to soil ecologists. Our

calculations (see R script, Sup. Info.) show that for an old conifer

forest (>100 yrs), the total variance observed in the temporal and

spatial fluctuation of oribatid species could be partitioned as 85%

environmental variance (σe + σE) and 15% demographic variance

+ overdispersion (that is σd + o). However, the method does

not allow separation of demographic variance from overdispersion

(the deviation in the relationship between mean and variance

of the underlying Poisson distribution of the model), which is

likely due to spatial aggregation observed at small scales (Engen

et al., 2002). Regardless, the results empirically confirm the
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FIGURE 3

A Fourier transformation decomposes the overall pattern of the time series to reveal the underlying frequencies present in the original function. As

such, the Fourier transformation can be used to provide information on seemingly stochastic processes. Environmental variables typically display

“red” noise or positive autocorrelation over time. In this figure, a time series of soil moisture with red and white noise (no autocorrelation) are

simulated. A Fourier transformation of the two timeseries (top panels, red and white noise) demonstrates that in the spectrum of the red noise most

of the variance is displayed over short time scales, with a negative correlation between variance and periods. The spectrum of the white noise is flat,

with all periods displaying similar variance.

theoretical expectation for the main source of stochastic variation

as environmental, but also non-neutral. Following, the 85% of

total environmental variance can be partitioned into interspecific

differences in the response to the general environmental variance

(82% of the 85%, or 70% of the total) and local, species-specific

response (18% of the 85%, or 15% of the total). The variance values

were σe
2 = 0.36; σE

2 = 1.37; σd+o
2 = 0.29. Assuming no

overdispersion we would have σe
2 = 0.36 and σd

2 = 0.29, which

we use to estimate an average critical population density of 12

individuals (using Nc = 10
σ 2
d

σ 2
e
).

Most oribatid mite species in forest soils have densities above

50 individual m−2. Using the formula for the critical equilibrium

value Nc with a long-term stochastic rate λ = 1.6, σe
2 = 0.36 and

σd
2 = 0.29 (see Caruso et al., 2020), Nc is < 1, suggesting the risk

of extinction is negligible. Although crude, the example shows that

relatively short time series (9 years) with some spatial replication

and community level data allows an estimate of environmental

and demographic stochasticity in soil communities. The time scale

of the time series might be tuned to the biological groups under

consideration. For example, for bacteria a time series could occur

over a single season. In the northern hemisphere at temperate

latitudes, bacterial communities could be sequenced molecularly at

10 intervals from May to August (the growing season) in multiple

locations with relatively affordability.

4. Emerging concepts and way
forward

Stochasticity can be fully embraced in the study of the factors

that control the structure and functions of soil biodiversity and

aboveground-belowground linkages. Through modeling stochastic

processes, we can better predict and identify populations,

communities or ecosystems that are vulnerable to stochasticity

in terms of fluctuations that can make soil biological activities

uncertain and unstable (Bardgett and Caruso, 2020). This is

important because instability in soil biological activities cause

uncertainty and instability in fluxes that link aboveground and

belowground components, and functions such as nutrient cycling.

To obtain this goal, we need to improve data in terms of a

quantification of measurement errors based on the theory of

error propagation, and produce more time series of different soil

biota across multiple locations. Experimental time series are the

main tool to elucidate potential divergent (i.e., alternative stable

state) soil-climate feedbacks through examining the resistance and

resilience of soil biodiversity and function (Bardgett and Caruso,

2020). However, experimental tests and empirical data of this are

lacking. In terms of new data and models, we need a quantification

of the relative roles of different sources of stochasticity and

explicit incorporation of stochastic autocorrelation structure into
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FIGURE 4

Two real world time series of soil moisture and temperature. In the time domain (top panels) both variables, but especially soil moisture, displays clear

positive autocorrelation (over short time scales values tend to be similar). After detrending linear and periodic trends and isolating the stochastic

component, the calculation of the autocorrelation coe�cient phi confirms the presence of positive autocorrelation (i.e., red noise). With these

parameters, one can now draw a desired number of stochastic trajectories, which can inform the modeling of population, community, and

ecosystem level (e.g., energy fluxes and soil respiration) processes.

soil models (at population, community, and ecosystem levels).

Improved experimental designs, theory and practical methods are

already available to quantify and propagate measurement errors

(for example see Caruso and Rillig, 2022). It is just a matter

of applying them more extensively and critically, acknowledging

errors at the various levels at which they occur (e.g., in energetic

soil food webs). Time series remain challenging to obtain but

there is an increasing number of contributions toward a temporal

description of soil biota (e.g., Barreto et al., 2021), and especially

for microbial groups the collection of time series within a

single year or season is both feasible and informative of short

terms dynamics.

We demonstrate that even a modest time series replicated over

space allows a crude but reliable quantification of demographic

and environmental stochasticity in soil communities and the

quantification of the joint spatial and temporal autocorrelation

observed both in biota and the environment, while a Fourier

analysis of the stochastic components of time series can reveal the

type of autocorrelation that characterizes stochastic fluctuations

both in biota and the environment. We believe this approach will

be very useful in future manipulative experiments, such as global

change experiments that manipulate the intensity, frequency, and

type of multiple perturbations (Rillig et al., 2019), which generate

complex fluctuations.
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