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Our understanding of global diversity patterns relies overwhelmingly on ecological and 
evolutionary correlates of latitude, and largely ignores longitude. However, the two 
major explanations of biodiversity patterns – energy and stability – are confounded 
across latitudes, and longitude offers potential solutions. Recent literature shows 
that the global biogeography of the Cenozoic world is structured by longitudinal 
barriers. In a few well-studied regions, such as South Africa’s Cape, the Himalayas 
and the Amazon-Andes continuum, there are strong longitudinal gradients in 
biodiversity. Often, such gradients occur where high and low past climatic velocities 
are juxtaposed, and there is clear evidence of higher biodiversity at the climatically-
stable end. Understanding longitudinal biodiversity variations more widely can offer 
new insights towards biodiversity conservation in the face of anthropogenic climatic 
change.
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Biodiversity across latitude and longitude

Global patterns in biodiversity are described primarily in terms of latitude (Hillebrand, 2004; 
Worm and Tittensor, 2018). The comparative richness of tropical biotic assemblages was noticed 
early during European explorations in the tropics (Forster, 1778). Species numbers tend to decrease 
from the equator towards the poles in most groups of organisms (Fischer, 1960; Worm and Tittensor, 
2018), as do some other biodiversity measures (Gratton et al., 2017; Daru et al., 2019). This pattern 
has been explained using present-day abiotic variables such as water-energy dynamics, historical 
climatic stability, biotic interactions, and various combinations and interactions thereof (Currie, 
1991; Mittelbach et al., 2007; Schluter, 2016; Cannon et al., 2021). That this pattern is not a smooth 
one, but presents major anomalies, has also been long recognized (Hawkins and Diniz-Filho, 2004; 
Hillebrand, 2004). These anomalies have been studied in detail at the regional scale, and generally 
ascribed to peculiarities in precipitation, often linked to geomorphic features (e.g., Kidane et al., 
2019; McDonald et al., 2021), although the specific ways in which these influence biodiversity often 
are region-specific, and thus hard to generalize. On a global scale, the most common approach has 
been to treat deviations from the general latitudinal patterns as outliers, and work towards 
minimising their contribution in global models which are still primarily focused on latitudinally-
varying climatic measures (Huang et al., 2021). Such modeling exercises have indeed been able to 
reproduce global biodiversity patterns with great accuracy (Brummitt et al., 2021), although a 
handful of regions have remained notably recalcitrant in this respect.

Reducing global biodiversity patterns to latitude is no doubt a major oversimplification, and has 
created a number of problems (Hawkins and Diniz-Filho, 2004). In particular, the assumption that 
greater biodiversity in tropical regions is due to a combination of higher speciation and lower 
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extinction has come under scrutiny. This assumption appears to be at 
least partly based on the coincidence of patterns derived from energy, 
and those derived from stability, across latitudes. While there is little 
doubt that Pleistocene glaciation cycles took their toll on polar and some 
temperate biotas, resulting in greater extinction risk at higher latitudes, 
speciation levels are not necessarily higher in the tropics, and in some 
groups are in fact lower (Dowle et al., 2013; Schluter, 2016; Igea and 
Tanentzap, 2020). This is reflected in patterns of phylogenetic diversity 
and ancient lineage diversity, which are often not well described as 
latitudinal gradients, and when they are, they can be the opposite of the 
regular species-based patterns, with values lower in the tropics 
compared to some temperate and subtropical regions (Procheş et al., 
2015; Willig and Presley, 2018; Massante et al., 2019; McFadden et al., 
2019). It also appears that, historically, a strong poleward reduction in 
species diversity was only recorded in the icehouse stages of Earth’s 
history (Mannion et al., 2014). Another factor not to be ignored is the 
role of land area distribution in latitudinal biodiversity patterns. The 
large extent of land in the tropics compared to southern temperate, and 
benign-climate northern temperate regions, is suggestive of a strong area 
effect in the tropical diversity peak (Jetz and Fine, 2012), and this pattern 
is compounded by the overrepresentation of mountainous areas – and 
hence higher ecological heterogeneity – in tropical regions (Körner, 
2000). All these shortcomings call into question the frequently held 
assumption that the influence of climate on biodiversity is best described 
in terms of latitude. In particular, there is a need to decouple energy 
from stability as explanations of patterns of regional diversity, and the 
most obvious, albeit neglected, proxy variable to this effect is longitude.

A recent article (Cowling et  al., 2017) has drawn attention to 
longitudinal patterns in species diversity as relevant, in that case, to 
South Africa’s Cape Floristic Region. This is not the very first mention 
of longitudinal biodiversity patterns, but it is one of the few to make this 
the central point of a study in an endemic-rich region – and one 
particularly hard to model (Colville et al., 2020). Climatic processes that 
are essentially longitudinal have long been mentioned in biogeography 
textbooks. Macarthur (1984) went to great lengths to explain the 
Coriolis effect, a fundamentally longitudinal process, to biogeography 
readers, but stopped short of translating this into a description of 
longitudinal biodiversity patterns. A reading of the few available works 
describing longitudinal gradients in biodiversity leads one to suspect 
that longitudinal patterns, far from being simply a small missing puzzle 
piece, are in fact essential drivers of major global patterns.

Here we undertake to briefly review this literature, seek common 
explanations of the patterns observed, and discuss possible implications 
for future theoretical research, but also climate-minded conservation. 
Our focus is on terrestrial systems, with examples from both plants and 
animals. While we are primarily looking for patterns with explanatory 
power at the regional scale, we will first characterize the longitudinal 
distribution of biodiversity worldwide in relation to the current 
(Cenozoic) tectonic and climatic patterns. We hypothesize that, as with 
latitudinal patterns, explanations for longitudinal patterns in biodiversity 
are to be found in both past and present climatic factors.

Global patterns, long-term processes

Unlike biodiversity measurements, which are likely to first reveal 
latitudinal differences, comparisons of biotic assemblages are a 
fascinating combination of longitudinal and latitudinal patterns, with 
longitudinal often clearer. In terms of primary regional units, a 

longitudinal separation is the main pattern for northern temperate 
biotas (Palearctic vs. Nearctic). Secondary divisions show substantial 
differences between the western and eastern sections in both Palearctic 
and Nearctic floras (Donoghue and Smith, 2004). Further south, 
equatorial rainforest assemblages are divided into three major floras and 
faunas (Neotropical, Congolean, Indo-Malay; Parmentier et al., 2007), 
with a minor fourth one in Madagascar. At intermediate latitudes, 
mediterranean-type biotas comprise two in the Northern and three in 
the Southern Hemisphere (Cowling et al., 2015), and warm deserts are 
found in both hemispheres on all continents (Goudie, 2002). These 
broad patterns in continental-level biome patterns are summarized in 
Figure 1.

While most of these patterns can be predicted by simply analyzing 
continental shapes across latitudes in a mid-domain perspective (Jetz 
and Rahbek, 2001), biodiversity differences between regions requires a 
deeper understanding of present and past stability in terms of both 
climate and geomorphology. For example, in tropical rainforest 
biodiversity, the Neotropics stand out in terms of species diversity 
(Barthlott et al., 1996; Hawkins et al., 2007; Hagen et al., 2021), but 
Southeast Asia reigns in terms of higher-level phylogenetic diversity 
(Procheş et al., 2015) in both plants and vertebrates, while Africa is 
comparatively impoverished for both measures (Parmentier et al., 2007; 
Silva de Miranda et al., 2022). In contrast, for Mediterranean-climate 
systems, South Africa’s Cape is exceptionally diverse, which has been 
explained by a combination of relative climatic stability and topographic 
heterogeneity (Cowling et al., 2015). These differences and the associated 
variables suggest a way forward towards elucidating longitudinal 
variation at finer scales, within regions.

To grasp how these longitudinal differences came into being, one 
needs to summarise the geological events affecting climate, 
environments and biodiversity in a longitude-centred way. From the 
time that the Earth’s magnetosphere first protected this planet from the 
harmful solar wind (Tarduno et al., 2010), life on this planet has had to 
adapt to changes of a physico-chemical nature, but also some of a 
biological nature.

The physical changes have been due to extra-terrestrial factors, such 
as variations in solar radiation and orbital solar forcing of the Earth’s 
climate (Meyers and Malinverno, 2018; Lear et al., 2020), and to internal 
factors such as the cooling of the Earth by convection cells in the mantle, 
the rate of which may be faster than previously calculated (Murakami 
et al., 2022). Despite suggestions to the contrary,  the Coriolis effect plays 
no significant role in mantle convection and orientation of continents 
(Ogawa, 2008). It is this convection that is the ultimate driving force of 
plate tectonics which has opened and closed ocean basins through time 
while molding the growth, shape, movement and geomorphology of the 
continents (Coltice et al., 2019).

Although slow in biological terms, the breakup, drifting and 
colliding of continents have not just changed the location of terrestrial 
environments but have also affected both oceanic and atmospheric 
circulation. This has played a fundamental role in the continuous change 
of physical environments and climate through time.

After the Permo-Triassic extinction 252 million years ago (Benton, 
2018), Mesozoic terrestrial life was distributed across the 
supercontinent Pangea which comprised two halves: Laurasia in the 
north and Gondwana in the south. Separating these was the wedge-
shaped ocean Tethys, tapering towards the west and opening up in the 
east into a global ocean (Scotese, 2014a). Laurasia began to break-up 
about 200 million years ago into North America and Eurasia (Marzoli 
et al., 1999) while slightly later Gondwana started to separate into 
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Africa, South America, Madagascar and India-Australia-Antarctica 
(Watkeys, 2006). Eventually this process resulted in present distribution 
of the land masses: an east–west alignment in the Northern 
Hemisphere (Eurasia-North America) and three north–south 
alignments in the Southern Hemisphere (South America, Africa, 
Australasia) with Antarctica isolated at the South Pole (see 
Figure 2, maps).

When Mesozoic life was devastated by the Cretaceous-Paleogene 
(K-Pg, formerly K-T) extinction 66 million years ago (Hildebrand et al., 
1991), all the continents were isolated within oceans (Figure 2, bottom 
right map). Furthermore, all the low-lying continental areas had been 
extensively flooded by marine waters due to high sea levels caused by 
fast spreading mid-oceanic ridges (Seton et  al., 2009). In the early 
Cenozoic the remnants of the Mesozoic terrestrial ecosystems that 
survived the K-Pg extinction evolved independently on each isolated 
continent. An exception was Africa, which maintained a tenuous 
connection with Eurasia via Iberia (Scotese, 2014b).

Since the K-Pg extinction, the Earth’s climate has gone from a warm 
house to a hot house, back to a warm house, then a cool house and into 
the present ice house (Figure 2, graph on the left after Westerhold et al., 
2020). Each of these changes relate to geological processes, one of which 
was a critical control on longitudinal biogeographic distribution.

After the K-Pg extinction the Earth’s temperature progressively 
increased from a warm house to a hot house. The broad overall increase 
was a consequence of appearance of the Iceland hot spot that caused the 
mid-Atlantic Ridge to propagate northwards between Greenland and 
Europe into the Arctic (Srivastava and Tapscott, 1986). This resulted in 
the release of frozen methane hydrates on the Arctic continental shelf 
causing Early Eocene Climatic Optimum (Storey et al., 2007). During 
this warming there was a spike in temperature, the Palaeocene-Eocene 

Thermal Maximum, caused by orbital forcing of the Earth’s climate (Li 
et al., 2022).

There then followed was a progressive return to a warm house 
during the Eocene and then a sharp drop in global temperature at the 
Eocene–Oligocene boundary to cool house conditons. This was due the 
collision of India with Asia changing plate motion (Torsvik et al., 2017), 
causing the separation of Australia from Antarctica to produce the 
Tasman seaway (van den Ende et al., 2017; Figure 2, right middle map). 
This allowed a cold circum-polar current to encircle Antarctica 
triggering the onset of the glaciation that has lasted to the present day. 
It also cooled the northerly flowing currents on the west side of the 
southern hemisphere continents which caused desiccation of the 
adjacent terrestrial environments, loss of soil and the development of 
deserts (Van Zinderen Bakker, 1975). It was this event that produced the 
marked longitudinal contrast of environments across continents at the 
same latitude.

It was also responsible for the rapid global cooling that caused the 
Grande Coupure extinction in Europe (Ivany et  al., 2000) and its 
equivalents in Asia (Meng and McKenna, 1998) and Africa (de Vries 
et al., 2021). This is the time of the first appearance of C4 grasses that 
were to have a profound effect on terrestrial ecosystems, particularly 
from about 7 million years ago (Bouchenak Khelladi et al., 2009).

The cool house of the Oligocene started to warm slightly in the 
Miocene (O’Brien et  al., 2020) before cooling again at around 15 
million years ago due to the increase in in volume of circum-Antarctic 
current because of widening of Drake Passage (Livermore et  al., 
2007). This cooling continued when the Panama seaway was closed 
around 5 million years ago when the volcanic island arc between 
North and South America developed into an isthmus (Coates et al., 
2004; Figure 2, top right map). This shut down the flow between the 

FIGURE 1

Regional-level longitudinal subdivisions (with numbers) in biotic assemblages derived from present-day continental arrangement and climatic patterns.
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central Pacific and central Atlantic, possibly initiating the El Niño-
Southern Oscillation (ENSO), and diverted North Atlantic Deep 
Water around the southern margin of Africa (Ovechkina et al., 2021). 
The Central America isthmus enabled the Great American 
Interchange to take place (Woodburne, 2010). Meanwhile, on the 
other side of the globe, the continuing movement of India northwards 
into Asia caused uplift of the Himalayas that precipitated the 
monsoonal rains that flushed increased amounts of CO2 out of the 
atmosphere causing the planet to cool further into an ice house (Tada 
et al., 2016).

Thus, unlike the Mesozoic world, where the main biogeographic 
division was along latitudinal lines (Laurasia in the north vs. Gondwana 
in the south), today we  see primarily longitudinal biogeographic 
differences (Procheş, 2006).

Continentality in temperate systems

The early works examining latitudinal variation in biodiversity in 
Northern Hemisphere systems were primarily in endemic-poor regions, 
and found it to be linked most often to area / mid-domain / peninsula 
effects in butterflies and vertebrates (Järvinen, 1978; Martin and Gurrea, 
1990; Danell et  al., 1996). Based on the low endemism, these areas 
exhibited low if any speciation, but presumably substantial extinction 
throughout the study regions. Even so, some parts of these regions 

would have experienced higher extinction than others, resulting in 
extinction patterns arranged along longitudinal gradients.

More interesting from an endemism perspective, among the 
temperate Northern Hemisphere studies, is the work on the floras of 
eastern North America and eastern Asia (e.g., Qian et al., 2005, 2017). 
Overall, East Asia has a vastly more complex topography, and more 
diverse climates – and accordingly higher plant diversity (species and 
phylogenetic) and endemism. The very separation of eastern and 
western assemblages in both Eurasia and North America is due to the 
interposition of low diversity central regions, derived from a 
continentality effect (Donoghue and Smith, 2004). The onset of this 
interposition has been mapped across geological time, for example in 
the case of Tibet (He et  al., 2020). Nevertheless, the species-poorer 
continental assemblages of these northern continents have their fair 
share of endemics (Copeland and Harrison, 2015).

Mediterranean and tropical systems

Perhaps the most detailed illustration of a longitudinal biodiversity 
gradient across multiple plant lineages comes from mediterranean-
climate regions. This is best seen in the Cape Floristic Region, and the 
pattern has been named Levyns’ Law, after Margaret Levyns, who first 
documented it (Levyns, 1938; Cowling et al., 2017). This pattern of 
decreasing plant diversity and endemism from west to east is best 

FIGURE 2

Summary of the changes in global temperatures (after Westerhold et al., 2020) and distribution of exposed land masses during the past 66 million years 
(after Scotese, 2022) relevant to latitudinal and longitudinal biodiversity patterns.
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explained by higher stability in terms of climate and biome distribution 
during the Pleistocene, but is also well matched by present-day patterns 
in rainfall seasonality (winter rainfall) and reliability. This is the case 
both in typical mediterranean-climate areas, with substantial winter 
rainfall (Cowling et al., 2017; Colville et al., 2020) and in arid vegetation 
further north, where rainfall is a reliable winter occurrence too, albeit 
much reduced (Cowling et al., 1999). A similar pattern, specifically 
explained by lower extinction rates at the Oligocene–Eocene boundary 
in the west compared to the east, is illustrated for the mediterranean-
type flora of Australia (Nge et al., 2020). However, these west-to-east 
Cape and Australian gradients of decreasing diversity are based on the 
diversity of the dominant typical mediterranean-climate plants, which 
are most diverse in these regions – shrubby, fire-adapted, and more often 
than not re-seeders, that are killed by fire and regenerate from seed. 
Conversely, plants characteristic of forests, such as trees, are more 
diverse in the eastern parts of southern Africa, where summer rainfall 
is dominant (O’Brien and Peters, 1998; Keil and Chase, 2019). Further 
north, this pattern is matched by higher tree genetic diversity in the 
eastern parts of the Mediterranean Basin (Fady and Conord, 2010).

Elsewhere, and in a different climatic setting, a well-documented 
longitudinal gradient is that in species richness and nestedness in 
Himalayan vertebrates (Srinivasan et al., 2014), with most endemics 
found in the east, and the impoverished western assemblages nested 
within richer, eastern ones. Again, this is best explained by past climate, 
as the western Himalayas were more extensively glaciated at the last 
maximum (Yan et al., 2020).

Both of these examples thus make a case for climatic stability as a 
driver of longitudinal patterns in species richness. Apparently 
contradicting this is Amazonia (Hoorn et  al., 2010), where higher 
diversity and endemism in the west have been linked to the Andean 
uplift via a number of processes involving topographic heterogeneity 
and climate, but perhaps even more so nutrient enrichment. This needs 
not contradict the South African and Himalayan examples, but more 
likely builds a case for maximum diversification being associated with 
orogenesis and intermediate levels of stability in the long term, which 
can nevertheless be viewed as highly stable over the intermediate time 
scales most relevant to speciation and extinction. This has in fact been 
advocated in mediterranean climates (Cowling et al., 2015) as well as the 
Himalayas (Favre et al., 2014; Xu et al., 2021).

Other patterns on global maps

The Amazonian and Himalayan examples, with diversity/endemism 
increasing in the west and east, respectively, can also be documented 
with patterns from global and broad regional studies on diverse taxa 
such as plants (Barthlott et al., 1996; McFadden et al., 2019), vertebrates 
(Hawkins et al., 2007; Parmentier et al., 2007) and fungi (Tedersoo et al., 
2014). The Cape gradient, with species diversity peaking in the west, is 
only noted in plants, as dominated by herbaceous and shrubby species 
(Barthlott et al., 1996); fungi and most large-bodied animal groups show 
the opposite pattern here, in line with trees (Hawkins et  al., 2007; 
Tedersoo et al., 2014; Keil and Chase, 2019). The aforementioned global 
maps also illustrate continentality effects, with lower diversity values in 
the central parts of North America and Eurasia, compared to the east 
and west coasts. In these cases, endemism is proportionally higher close 
to the coastlines, and thus, all-in-all, nestedness outweighs turnover. By 
comparison, in the Mediterranean-climate and Andean cases, endemism 
is typically high (not just in absolute terms, but also proportionally, in 

relation to total species richness) even towards the species-poor end of 
the gradient, meaning that an important turnover component is present 
(Colville et al., 2020). It has to be noted though that, at least for plants, 
there is no comprehensive global mapping exercise with fine-enough 
scale data to back up this statement across all the regions discussed here.

Sharp decreases in diversity from the coast inland are also seen in 
many other regions besides those detailed above, as described in 
dedicated studies. Particularly abrupt changes characterise west coasts 
in the Mediterranean climates of California, Chile, but also further 
polewards, where Mediterranean vegetation is replaced by temperate 
rainforest. Inland, both Mediterranean vegetation and temperate 
rainforest are replaced by grasslands or arid systems, in most places the 
transition happening across high mountain chains. Strong decreases 
inland also are found on east coasts, such as in Madagascar and 
Queensland, where coastal tropical rainforest is replaced inland by 
savanna or thickets (Barthlott et al., 1996; Hawkins et al., 2007; Tedersoo 
et al., 2014).

Explanations

Based on the examples listed above, the factors potentially involved 
in explaining longitudinal gradients have to do with climate, tectonics 
and geomorphology – present and past. As mentioned, past orogenic 
events, such as the Andean uplift (Hoorn et  al., 2010), have been 
essential in promoting the accumulation of biological diversity. Past 
continental movements have certainly also played a role in shaping 
present-day diversity patterns. One such example is Australia’s rapid 
movement across latitudes during the Cenozoic, meaning that the 
southwestern part of that continent has enjoyed a proper Mediterranean 
climate for much shorter the South Africa’s Cape, which partly explains 
the differences in plant diversity between the two regions, but also the 
shaping of the longitudinal gradients with each region (Cowling et al., 
2015; Nge et al., 2020). Despite these important roles of orogeny and 
tectonics, climate remains probably the single most important factor in 
the context of our discussion, and we will discuss how climatic patterns 
correlate with the occurrence of strong gradients, while also pointing 
out its interactions with topography. We argue that the two key factors 
which commonly vary longitudinally and have the most profound 
impacts on biodiversity, are present climate (best represented by inter-
annual climatic variability) and past climate (best described in terms of 
long-term climatic stability).

Present climate

In a present climate context, decreases in diversity and endemism, 
both associated with biome transitions and within a single biome, are 
most often found in coastal areas where air circulation from the sea 
brings in more abundant and/or more reliable rainfall close to the 
coast, but precipitation, or the reliability thereof, decreases inland 
(Barthlott et al., 1996; Hawkins et al., 2007; McFadden et al., 2019). 
This is most pronounced where precipitation-bearing air masses meet 
perpendicular mountain ranges, e.g., where westerly tropical air 
circulation or easterly temperate circulation meet north–south 
trending mountain ranges (Hoorn et al., 2010; Baldwin et al., 2017; 
Colville et al., 2020). Often, coastal mountain ranges stop precipitation 
from reaching inland, but in the case of the tropical Andes much of 
the circulation is easterly, most of the continent at that latitude is 
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humid, and only the western coastal and mountainous section are arid 
(Hoorn et al., 2010). The most predictable patterns remain those in 
Mediterranean climates, always associated with westerlies (Donoghue 
and Smith, 2004; Cowling et  al., 2017). Even in the tropics, the 
presence of gradients (in either direction!) seems to be more often 
associated with the predominance of westerlies (Figure 3), although 
often these are cases characterized by either very low velocities, or with 
substantial longitudinal components (Oliver, 1987; Hu et al., 2020).

Besides the zonal circulation detailed above, which seems to be the 
leading atmospheric component in terms of longitudinal gradient 
effects, one should not discard other components such as meridional 
and vertical circulation. In particular, multi-year climatic cycles such as 
ENSO have unevenly distributed effects across and within regions. Apart 
from affecting Pacific coasts more intensely than other continents, this 
recurring climatic pattern also amplifies the effects derived from the 
average zonal circulation, as seen in southern Africa, with variations in 
ocean-land interactions that have different effects on the eastern vs. 
western coastlines (Meuser et al., 2013).

It appears that the failure of global models to comprehensively explain 
biodiversity in all regions has to do with region-specific climatic variables. 
For example, a recent study (Antonelli et al., 2018) found that seasonality 
has no predictive value for the world as a whole, although it does have a 
clear value in some regions (while keeping in mind the use of analytically-
defined regions (Coops et al., 2018) could have improved prediction power).

Based on these aspects of present climate, we  predict that 
biodiversity gradients will be stronger in places where air circulation 
meets mountain ranges with high ranges, which are not only barriers to 
dispersal, but are more so in the tropics, where biodiversity is higher and 
the study of gradients based on endemism is stronger (Ghalambor et al., 
2006). ENSO could theoretically impact biodiversity both negatively and 
positively, via an intermediate disturbance effect (Connell, 1978).

Past climate

Climatic fluctuations over evolutionary time scales have profoundly 
influenced global patterns of biodiversity (Rosenzweig, 1995; Jansson, 
2003), stimulating diversification where changes are sufficiently muted 
to prevent the extinction of resident lineages (Hewitt, 2004), and reducing 
it where large climatic changes result in the mass extinction of lineages, 
as has occurred in high-latitude regions of the Northern Hemisphere 
during Pleistocene glacials (Jansson and Dynesius, 2002). Indeed, areas 
of the globe that have experienced mild Pleistocene climate fluctuations 
are invariably associated with taxonomically and phylogenetically diverse 
and endemic-rich biotas, irrespective of latitude (McGlone, 1996; Sandel 
et al., 2011; Harrison and Noss, 2017; Colville et al., 2020).

Perhaps the most important opportunity provided by longitudinal 
gradients is to decouple variables reflecting climate stability from those 
associated with water-energy or productivity (Cowling et al., 2017). The 
increase of both productivity and Pleistocene climate stability with 
latitude – a pattern especially pronounced in the Northern Hemisphere - 
confounds attempts to independently test hypotheses related to historical 
and contemporary climate processes for driving biodiversity patterns 
(Jetz and Fine, 2012). While the vast tropical regions of the world are 
home to much of its biodiversity, there are significant nodes of high 
diversity in temperate regions, especially in the Southern Hemisphere 
(Dubey and Shine, 2011; Sandel et  al., 2011). These cases refute the 
generality of high water-energy dynamics as a determinant of biodiversity 
(Currie, 1991; O’Brien, 2006); thus, a general theory of global biodiversity 
patterns must accommodate such cases, thus far treated as exceptions 
(Fine, 2015). The study of longitudinal gradients is key to developing a 
more general theory of biodiversity than those currently invoked, ones 
that considers both historical and contemporary drivers independently 
(Cowling et  al., 2017). Patterns reviewed here suggest that relative 

FIGURE 3

Documented longitudinal gradients in species diversity and endemism (arrows), as mentioned in the text, in relation to present-day continental 
arrangement, major mountain chains, and predominant direction of tropospheric circulation (westerlies in blue, easterlies in red, otherwise seasonally-
varying (Oliver, 1987; Hu et al., 2020); horizontal lines indicate limits between tropical Hadley atmospheric cells – mostly easterlies, and temperate Ferrel 
cells – mostly westerlies). Black arrows indicate gradients with a strong endemism component, involving both nestedness and turnover; grey 
(continentality) patterns are mostly nestedness-driven.
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Pleistocene climate stability combined with high habitat heterogeneity 
can explain a large proportion of the global variation in phylogenetic 
diversity and turnover (Srinivasan et  al., 2014; Cowling et  al., 2015; 
Colville et al., 2020). On a shorter time scale, variations in climatic cycles 
can also impact biodiversity. For example, in southern Africa there is a 
connection between the strength of El Niño events over geological history 
and shifts in the boundary between the summer and winter rainfall 
regions, with the areas that shift from one regime to the other having 
lower long-term stability (Meuser et al., 2013).

Long-term climatic stability is commonly described in terms of its 
inverse measure, climatic velocity. In terms of past climates, sharp 
longitudinal biodiversity gradients are often located in regions where 
low and high past climatic velocities are juxtaposed (Sandel et al., 
2011; Harrison and Noss, 2017). Long-term climatic stability can 
be  achieved via geographic stability of the tectonic plates, thus 
avoiding major latitudinal movements, in combination with a more or 
less constant pattern of atmospheric circulation, as was the case in the 
Cape (Jansson and Dynesius, 2002), or buffering through, e.g., 
multiple monsoon systems, as in the eastern Himalayas (Spicer, 2017). 
Recent studies modeling upcoming climatic change tend to suggest 
such buffering will continue to function in the future (Tangang et al., 
2020), although this will require confirmation for other regions 
and scenarios.

Concluding remarks

In conclusion, there are good theoretical reasons to expect that 
longitude can be a powerful variable for understanding regional and 
global biodiversity patterns. Globally, longitude is critical in defining the 
regional subdivisions of the Cenozoic world. However, within regions, 
an appraisal of the importance of longitude has only been achieved 
partly and then only for regions where substantial work on present and 
past climate and geomorphology has been conducted. Illustrating 
changing longitudinal biodiversity over geological time has the potential 
to clarify some of the complexities associated with the biotic impacts of 
contemporary climate change.

The mechanisms linking longitude and biodiversity may be more 
complex than those relevant to latitude effects – but this does not make 
them any less important. While longitude does help solve the energy 
vs. stability puzzle persistent in latitudinal patterns – and stability is the 
winner, longitude comes with its own puzzle. Understanding 
longitudinal gradients is to a great extent about disentangling the effects 
of (a) current and (b) past environmental factors, which can both 
be  invoked to explain biodiversity variation along various 
unidimensional gradients (Fitzpatrick et  al., 2013) and are often 
correlated. The relative importance of the two may vary from taxon to 
taxon depending on dispersal abilities (Graham et al., 2006).

Our results have clear implications relating to climate change 
preparedness. While areas with high biodiversity due to past stability 
are more often than not likely to be more climatically-stable in the 
future too, their conservation status needs to be reassessed having in 
mind the potential shifting of biodiversity gradients (Chase et al., 

2019), in conjunction with habitat fragmentation. Longitudinal, 
together with elevational, gradients, are more likely than latitudinal 
gradients to be relevant to medium- and fine-scale climatic variability, 
which, in conjunction with temporal climatic variability, in turn 
showing specific longitudinal patterns, is key to predicting species’ 
responses to climate change (Nadeau et al., 2017; Freeman et al., 2018; 
Kling and Ackerly, 2020). It is of particular concern that regions with 
strong longitudinal gradients, such as Mediterranean-climate regions 
and tropical mountains, are overall likely to be  more severely 
impacted by land-use and climatic changes (Newbold et al., 2020), 
and are likely to be hit by abrupt ecological disruption sooner than 
other regions (Trisos et  al., 2020). Key types of information on 
biodiversity responses to climate change, which are well studied in 
temperate regions, are poorly understood in the tropics 
(Sheldon, 2019).

We recommend that the use of established (Chevalier et al., 2020) 
and innovative (Chase et al., 2019) methods for understanding past 
climates be employed along longitudinal gradients, towards an improved 
theoretical framework aimed at conservation in the face of contemporary 
anthropogenic climate change. Based on our summary, biodiversity 
modelling can use new indices combining distance from key regional 
features such as coastlines, and topography, as proxies for longitudinal 
biodiversity gradients. Presently, planning for conservation in the face 
of climate change is happening at local, regional, and global scales 
(Harrison and Noss, 2017; Olazabal et al., 2019; McDonald et al., 2021). 
Our summary of results to date highlights the importance of the regional 
scale, although more cross-scale studies are needed to confirm this. If 
confirmed, it could prove vital to delimit natural regions analytically on 
climatic and ecological criteria (Coops et al., 2018) rather than intuitive 
biotic regions or political boundaries, although the latter remain of 
course essential in an implementation perspective.
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