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The surface thermal environment plays an important role in urban sustainable 

development and ecological environment protection. Existing researches 

mainly focus on the formation process and mechanism of the surface 

thermal environment and lack the analysis of its effect on the lake ecological 

environment under the influence of human activities. Therefore, based 

on the analysis of the variations in land surface temperature (LST) and lake 

surface water temperature (LSWT) of Dianchi Lake at multiple spatio-temporal 

scales, this study evaluated the response of LSWT by using the methods of 

spatial influence, the center of gravity migration trajectory, trend analysis, 

and correlation analysis. The results show that: (1) Urbanization has a greater 

warming effect on LSWT than on LST, and the warming effect at night is 

greater than that at daytime. From 2001 to 2018, the warming trend of LSWT in 

daytime and night was 0.01°C/a and 0.02°C/a, respectively, while the cooling 

trend of LST in daytime was −0.03°C/a and the warming trend of LST in night 

was 0.01°C/a. (2) Areas with high human activity are warming faster, both 

in the eastern and northern coastal areas of lake and the heavily urbanized 

sub-basins. (3) The spatial influence of LST and LSWT are highly correlated, 

and the response of the outer buffer in the range of 2 km is obvious, and the 

direction of gravity center migration trajectory is consistent. The results are 

of great significance for the control and improvement of urban heat island 

and ecological environment protection of Dianchi Lake in Kunming and can 

provide data support and decision support for urban planning, promoting the 

construction of the ecological civilization city in Kunming, and reducing the 

accumulation of urban surface heat.

KEYWORDS

surface thermal environment, lake surface water temperature, spatial influence, land 
surface temperature, remote sensing

TYPE  Original Research
PUBLISHED  26 October 2022
DOI  10.3389/fevo.2022.984692

OPEN ACCESS

EDITED BY

Changchun Huang,  
Nanjing Normal University,  
China

REVIEWED BY

Yulong Guo,  
Henan Agricultural University,  
China
Zhigang Cao,  
Nanjing Institute of Geography and 
Limnology (CAS), China

*CORRESPONDENCE

Yi Luo  
lysist@ynnu.edu.cn

†These authors have contributed equally to 
this work and share first authorship

SPECIALTY SECTION

This article was submitted to  
Environmental Informatics and Remote 
Sensing, a section of the journal  
Frontiers in Ecology and Evolution

RECEIVED 02 July 2022
ACCEPTED 05 October 2022
PUBLISHED 26 October 2022

CITATION

Zhao Y, Yang K, Luo Y and Yu Z (2022) 
Spatial–temporal characteristics of surface 
thermal environment and its effect on Lake 
surface water temperature in Dianchi Lake 
basin.
Front. Ecol. Evol. 10:984692.
doi: 10.3389/fevo.2022.984692

COPYRIGHT

© 2022 Zhao, Yang, Luo and Yu. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that 
the original publication in this journal is 
cited, in accordance with accepted 
academic practice. No use, distribution or 
reproduction is permitted which does not 
comply with these terms.

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2022.984692﻿&domain=pdf&date_stamp=2022-10-26
https://www.frontiersin.org/articles/10.3389/fevo.2022.984692/full
https://www.frontiersin.org/articles/10.3389/fevo.2022.984692/full
https://www.frontiersin.org/articles/10.3389/fevo.2022.984692/full
https://www.frontiersin.org/articles/10.3389/fevo.2022.984692/full
https://www.frontiersin.org/articles/10.3389/fevo.2022.984692/full
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2022.984692
mailto:lysist@ynnu.edu.cn
https://doi.org/10.3389/fevo.2022.984692
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Zhao et al.� 10.3389/fevo.2022.984692

Frontiers in Ecology and Evolution 02 frontiersin.org

Introduction

With the acceleration of urbanization, human social and 
economic activities are profoundly changing the urban 
thermal environment. On the one hand, impervious surfaces 
largely replace the original natural surfaces, and impervious 
materials with low specific heat capacity and high reflectivity 
aggravate the heat concentration of the city. On the other 
hand, with the surge in urban population and car ownership, 
and the increase of artificial heat sources, the overall level of 
urban heat emission is increasing day by day. Urban thermal 
environment change has an important impact on human 
settlement environment, health of residents, urban energy 
and resource consumption, and ecosystem process evolution 
(He et  al., 2021; Luo et  al., 2021). The status of the urban 
thermal environment is one of the important indicators to 
measure the sustainable development of the urban ecological 
economy, and the quantitative study of the urban thermal 
environment has attracted extensive attention (You et  al., 
2021; Yang et al., 2021b; Yu et al., 2022b). Existing studies 
mainly take the urban city as a whole to analyze the 
contribution of urban functional areas to the spatial 
distribution of urban thermal environment (Yang et  al., 
2021c; Chen et al., 2022; Yu et al., 2022a,b), the impact of 
landscape structure on the urban surface heat island effect 
(Weng et  al., 2004; Li et  al., 2011; Connors et  al., 2012; 
Estoque et al., 2017) and urban ventilation (Yang et al., 2019a, 
2020, 2021a; Ren et al., 2022; Xie et al., 2022).

As a relatively independent geographical unit, there exists 
a “land-air-water” energy exchange in the basin. The 
additional heat accumulation brought by urbanization 
changes the local microclimate cycle and precipitation 
distribution patterns (Kustas et al., 2003; Wang et al., 2012; 
Weber et al., 2017). For many years, the research on urban 
heat island and urban waterlogging caused by this has 
attracted extensive attention. Studies have demonstrated that 
large water bodies in cities contribute to urban heat island 
mitigation (Xu et al., 2013). It can be inferred from this water 
effect that the thermal effect brought by urbanization not 
only affects the land but also affects the water body and the 
most direct effect is to heat the water body. In terms of runoff, 
existing studies have shown that after the first rainstorm in 
summer, the temperature of urban surface runoff will rise by 
3°C, and the temperature of storm storage pond will rise by 
2°C (Adamowski and Prokoph, 2013; Somers et al., 2013). 
Janke et al. developed a hydrothermal model to quantify the 
impact on stream temperature of urban development in 
watersheds of cold water streams (Janke et al., 2009). Yi et al. 
revealed the heating effect of different underlying surface 
types on runoff water temperature from the micro scale, and 
found that impervious surface has a great influence on runoff 
temperature (Yi et  al., 2019). Yang et  al. discussed the 
influence of precipitation events on LSWT under the 
background of different ISC levels and different growth rates 

of impervious surface area (ISA; Yang et al., 2021d). These 
studies analyzed the short-term impact effects of runoff and 
river channel warming caused by a single rainfall event in the 
background of urbanization at the micro scale, while the 
long-term effects of urbanization on lake temperature at the 
macro scale are not widely studied. Lake water temperature is 
an important parameter for the evaluation of lake physical, 
biological, climatic processes, and aquatic ecological 
environment. Lake water temperature increase will change 
the structure and quantity of lake species, lead to a series of 
water environment problems, such as algae explosion, fish 
and shrimp death, and affect the sustainable development of 
cities (Connors et al., 2012; Layden et al., 2015; Zhang et al., 
2015; Dong et al., 2016; Hirst et al., 2017). Therefore, it is 
necessary to carry out long-term lake response research and 
has important practical significance.

Because of the contact with the atmosphere and heat exchange 
directly, lake surface water temperature (LSWT) is the most 
sensitive and direct manifestation of the change in lake water 
temperature (Sharma et al., 2015; Wan et al., 2017; Liu et al., 2019). 
Based on remote sensing technology, we can easily obtain the long 
time series and large area synchronous observation of surface 
temperature data. LSWT obtained by remote sensing technology 
is the most important data source for lake water temperature 
research. Studies on LSWT are mainly focused on the Tibetan 
plateau and other areas far away from cities that also serve as an 
indicator of the ecological environment (Zhang et al., 2014; Wan 
et al., 2017, 2018; Wang et al., 2019), focusing on the impact of 
climate change on LSWT (Kraemer et al., 2015; Magee and Wu, 
2017; Woolway and Merchant, 2018). Studies on urban lakes 
mainly focus on hydrology and water quality effects in the context 
of urbanization (Zhao et al., 2013; Luo et al., 2017, 2018), while 
there are few studies on the surface water temperature of urban 
lakes (Liu et  al., 2015). Yang et  al. conducted a comparative 
analysis of LSWT of 11 lakes on the Yunnan-Guizhou Plateau and 
found that human activities are one of the important driving 
factors of the surface temperature of urban and semi-urban lakes 
(Yang et al., 2019b). A study on the influence of surface thermal 
environment changes on LSWT in urban lakes at a inner-lake 
scale has not been carried out.

In this study, the Dianchi Lake basin was selected as the 
research object and the MODIS LST product (MOD11A2) was 
used as the main data source to systematically analyze the 
thermal environment characteristics of the Dianchi Lake basin 
and reveal the LSWT response under the background of 
human activities. The aim is to explore the characteristics and 
response rules of LST and LSWT in the Dianchi Lake basin 
and provide decision support for water resources regulation, 
water pollution control, and urban sustainable development. 
The Dianchi Lake basin is a shallow lake, and the vertical 
stratification of the lake is not obvious. In this study, only the 
surface water temperature of the lake was studied, the vertical 
variation of lake water temperature and temperature diffusion 
effect was not considered.
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Materials and methods

Study area

Dianchi Lake is the largest freshwater lake in Yunnan-
Guizhou Plateau and the sixth largest in China, it belongs to 
the Jinsha River system of the Yangtze River Basin. The 
average water depth is 5.3 m, the lake area is 309 km2, and the 
storage capacity is 1.56 billion m3. As a large urban lake, 
Dianchi Lake plays an important role in the urban 
development of Kunming and is an important water source for 
the survival and development of Kunming city. It has a variety 
of water functions such as flood control, regulation and 
storage, irrigation, landscape, climate regulation, and standby 
water source, and is known as the “Pearl of the Plateau.” The 
Dianchi Lake basin is a typical subtropical plateau monsoon 
climate, with a small annual temperature difference and 
distinct dry and rainy seasons. It’s not too hot in summer due 
to the influence of the southwest warm and humid airflow 
over the Indian Ocean. In winter, the northern mountains 
block the cold airflow from the north to the south, and the 
winter climate is mild, so Kunming has a pleasant climate like 
spring all year round. Dianchi Lake basin is a faulted tectonic 
basin. Formed by the basin’s water confluence, it is surrounded 
by mountains and the terrain gradually descends in a ladder 
form from north to south. The landform is mainly composed 
of three types: mountain and hill, silted plain, and Dianchi 
Lake water body. The overall area of the basin is 2920 km2, 
with an average altitude of 1900 m, as shown in Figure 1.

Limited by terrain, urban construction and agricultural 
planting in Kunming are mainly carried out around the flat 
land around Dianchi Lake, as shown in Figure 1. And Dianchi 
Lake has only one outlet, which led to a long water exchange 
cycle and belongs to a semi-enclosed urban lake. As the capital 
city of Yunnan Province, Kunming is the political, economic, 
cultural center, and transportation hub of Yunnan province, 
and an important gateway for exchanges and cooperation 
between China and countries in Southeast Asia and South 
Asia. According to statistics, the land area of Dianchi Lake 
basin is only 0.76% of the province, but the urban population, 
GDP, and fiscal revenue account for 1/3, 1/4, and 1/4 of the 
province, respectively. According to the statistical yearbook of 
Yunnan Province in 2016, the permanent population of 
Kunming has reached about 6.76 million. In the past 30 years, 
the urban impervious surface of Dianchi Lake basin has been 
expanding continuously, which has changed the local micro-
climate cycle and led to a series of urban problems such as 
urban heat island and urban waterlogging. At the same time, 
the occurrence of Dianchi cyanobacteria blooms has been 
reported frequently. Water pollution control of Dianchi Lake 
has always been an important part of Kunming’s urban 
ecological environment construction and has become the key 
and difficult project of freshwater lake pollution control in 
China, attracting high attention.

Data source and preprocessing

Data source
Data sources used in this study include MOD11A2, ASTER 

GDEM V2, Landsat-8 OLI, meteorological station data, and in situ 
measurement data, as shown in Table 1.

MOD11A2 is used for surface temperature extraction. MODIS 
Terra’s 8-day synthetic L3 product (MOD11A2) was selected as the 
main data source to analyze the surface thermal environment of 
Dianchi Lake basin. The satellite reentry cycle is twice a day, and 
transit times are10:30 am and 10:30 pm, respectively. And the LST 
product data error can be controlled within 1 K. MOD11A2 is 
obtained by split-window algorithm, the spatial resolution of 
1 km, the data obtained by NASA’s website.1

ASTER GDEM V2 global digital elevation data is used for 
watershed boundary determination and subwatershed division, 
with a spatial resolution of 30 m. It can be downloaded from 
the geospatial Data Cloud platform of Computer Network 
Center, Chinese Academy of Sciences,2 which was jointly 
developed by METI and NASA in Japan and distributed freely 
to the public.

Landsat-8 OLI satellite data were used to extract the water 
boundary of Dianchi Lake. The data was acquired on February 2, 
2014, with a spatial resolution of 30 m, cloud cover of 0.07, and 
strip number of 129/43. They were also downloaded from the 
geospatial data cloud platform of the Computer Network Center 
of the Chinese Academy of Sciences. This study does not consider 
the subtle variation of the Dianchi Lake water area (Xiao 
et al., 2018).

The hourly measured data of the Kunming meteorological 
station are used to analyze the climate background and the 
covariation of air temperature and water temperature in the 
Dianchi Lake basin. Due to the limitation of data acquisition, part 
of the data in the research period was intercepted for analysis. The 
data span was from 2009 to 2018. The morning and afternoon data 
were averaged at 10:00 and 11:00 respectively, as the corresponding 
air temperature were at 10:30 am and 10:30 pm.

We used the in situ measurement data of LSWT in Dianchi 
Lake from 2001 to 2016 as verification. The measured data were 
provided by Yunnan Research Academy of Eco-environmental 
Sciences, and included the monthly average measured data of 10 
conventional national control points. The site locations are shown 
in Figure 1D.

The expansion map of the impervious surface of Dianchi Lake 
basin in the study period that we extracted from the GAIA dataset 
(Figure  1D). GAIA data is freely available from Tsinghua 
University.3 The methods and procedures for the GAIA data can 
be found in their research paper (Gong et al., 2020).

1  https://ladsweb.modaps.eosdis.nasa.gov/search

2  https://www.gscloud.cn

3  http://data.ess.tsinghua.edu.cn/

https://doi.org/10.3389/fevo.2022.984692
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://ladsweb.modaps.eosdis.nasa.gov/search
https://www.gscloud.cn
http://data.ess.tsinghua.edu.cn/


Zhao et al.� 10.3389/fevo.2022.984692

Frontiers in Ecology and Evolution 04 frontiersin.org

Data preprocessing
Due to cloud pollution and sensor noise, there are a lot of 

outliers and missing values in MOD11A2, which cannot be used 
directly. As shown in Figure  2, images with missing pixels 
accounting for more than 25% were counted. The statistical results 
of image missing show that data missing in summer is more 
serious than that in other seasons, and data quality at night is 
better than that in the daytime, which is largely related to cloud 
cover and weather conditions in the research area. Therefore, it is 

necessary to preprocess MOD11A2. MOD11A2 preprocessing 
includes data extraction, reprojection, clipping, outlier 
recognition, missing value filling, timeseries filtering, and land 
and water separation, and data validation.

Extraction, reprojection

There are 46 scenes of daytime and night data each year, and 
a total of 1656 scenes of data were covered in 18 years. The MODIS 
Reprojection Tool (MRT) was used to extract four bands of 

A

B C

D

FIGURE 1

Study area [where, (A). Yunnan’s location in China; (B) the location of Dianchi Lake basin in Yunnan; (C) Dianchi Lake watershed division and 
Dianchi Lake water body division; (D) temporal and spatial variation of impervious surface and location of LSWT in-situ station].

TABLE 1  Data source.

Data Spatial resolution Temporal 
resolution

Space range Data acquisition time/
time range

Data source

MODIS11A2 1 km 8-day h27v06 10:30 am 10:30 pm 2001–2018 NASA

ASTER GDEM V2 30 m 2012 Chinese Academy of Sciences 

Geospatial Data Cloud 

Platform

Landsat-8 OLI 30 m 16-day 129/43 2014/2/2 Chinese Academy of Sciences 

Geospatial Data Cloud 

Platform

Meteorological station data Point Hour Kunming station 10:00 am 11:00 am 10:00 pm 

11:00 pm 2009–2018

Yunnan Meteorological 

Bureau

in situ measurement data Point Monthly 10 stations 2001–2016 Yunnan Research Academy of 

Eco-environmental Sciences
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daytime and nighttime data and their corresponding QC (Quality 
Control) file data, and the data were reprojected into Albers equal-
area projection.

Clipping

The boundary of Dianchi Lake basin was trimmed to obtain 
the data of the study area. The boundary of the Dianchi Lake basin 
was divided by SWAT model, and according to “the 12th Five-Year 
Plan of Kunming City” and “Water Pollution Prevention Plan of 
Dianchi Lake Basin,” the Dianchi Lake Basin is divided into 17 
sub-basins. The division of Dianchi Lake Basin and sub-basins is 
shown in Figure 1.

Outlier recognition

QC files of daytime and nighttime data, respectively, record 
the quality of corresponding pixels, which can assist in identifying 
outliers and missing values of data. The QC file is an 8-bit binary 
file. If bit 0 and bit 1 are “00,” it means that the data quality is good 
and no further check is required. If bit 0 and bit 1 are “01,” it 
means that there is some error in the data, and other bits need to 
be further checked. Considering the balance of data volume and 
quality, we ultimately chose the error ≤2 K data as the original 
dataset. The valid data in the daytime and night was 76.68 and 
83.73%, respectively. Based on this, we set an empirical threshold 
value (the highest temperature is not higher than 40°C, the lowest 
temperature is not less than −5°C), identify the values beyond the 
threshold range as abnormal data, and set these abnormal data as 
missing values.

Missing value filling

When the temperature values of adjacent images exist at the 
same time, directly interpolate using the temperature values 

before and after the present day (i.e., 8-day since it is the 8-day 
product). If the temperature values of adjacent images do not exist 
at the same time, the ordinary least square method is used to 
estimate missing values. Ordinary least square means that the 
selected regression model should minimize the sum of residual 
squares of all observations. It is implemented through the scipy.
optimize.leastsq() function in Python. In this step, we fill in the 
data based on the similarity of time series data without using the 
spatial interpolation method, mainly considering the large 
difference between LST and LSWT, and spatial interpolation may 
introduce additional errors.

Timeseries filtering

Timeseries filtering is carried out to eliminate the influence of 
abnormal data fluctuations on trend analysis. According to the 
method in reference (Wan et al., 2017), daytime data are filtered 
by the Lowess filter and nighttime data are filtered by the 
Percentile filter. This step mainly for removing outliers brought by 
weather and so on to make the data more regular.

Land and water separation

Then, the Dianchi Lake basin is divided into a water 
section and a land section by the lake boundary. The lake 
boundary was extracted by the MNDWI index of Landsat8 
data and corrected manually. Considering the influence of the 
mixed pixels in the water-land interface zone, and referring to 
previous similar studies (Wan et al., 2017; Yang et al., 2019b) 
and surface temperature profile analysis results, buffer zones 
of 1 km were made on both sides of the water boundary to 
eliminate the possible mixed pixels, and the pixels in this part 
of the transition zone would not participate in the 
subsequent analysis.

FIGURE 2

Data missing on MOD11A2.
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Data validation

We used the in situ measurement data of Dianchi LSWT to 
compare with the MODIS LST obtained. The error is basically 
within 2 K. The mean MAE and RMSE of LSWT-day were 1.69 K 
and 2.08 K, and those of LSWT-Night were 1.43 K and 1.81 K, 
respectively.

Spatio-temporal multiscale synthesis
The preprocessed MOD11A2 data were synthesized pixel by 

pixel on the time scale of year, season, and month, respectively, to 
analyze the interannual variation characteristics, seasonal 
differences, monthly differences, and periodicity of LST and 
LSWT. On the monthly scale, the composite data of the mean 
values of each month in 12 months were obtained by calculating 
the corresponding month according to the data number. On the 
seasonal scale, spring includes March, April, and May, summer 
includes June, July, and August, autumn includes September, 
October, and November, and winter includes January, February, 
and December. The annual scale was obtained by pixel-by-pixel 
synthesis of 46 sceneries and 8-day composite images per year.

Multi-scale synthesis was performed for daytime and 
nighttime data respectively, and the daily variation of LST, daily 
variation of LSWT, the temperature difference between LST and 
LSWT in the daytime, and temperature difference between LST 
and LSWT at night were calculated for each period.

To quantitatively analyze the difference in the internal spatial 
distribution of LST and LSWT, the whole basin is divided into17 
sub-basins, and Dianchi Lake is divided into Caohai and Outer 
lake, Outer zone, Middle zone, and Inner zone, as shown in 
Figure 1C. According to the area and length and width of the lake, 
we use the distances within 2 km (Outer zone), between 2 km and 
4 km (Middle zone), and more than 4 km (Inner zone) respectively 
from the lake shore to evenly divide the lake surface into three 
layers as much as possible, which can not only retain the rule of 
LSWT changing layer by layer from the lake shore to the lake 
center, but also not be excessively disturbed by pixel mosaic effect.

After removing the LST-LSWT mixed pixels, Caohai is 
disconnected from the rest of Dianchi Lake. Therefore, continuous 
LSWT is obtained through the Kriging interpolation method in 
spatial analysis, and original data are used for multiyear mean 
analysis and trend analysis.

Methods

Standard deviation method
The mean standard deviation method is used to classify LST 

into five grades: high temperature area, sub-high temperature 
area, medium temperature area, sub-low temperature area, and 
low temperature area. The specific classification method is shown 
in Table 2. The mean standard deviation classification method is 
to calculate the mean and standard deviation of LST in Dianchi 
Lake basin from 2001 to 2018 and then formulate a unified 
classification standard that can be used for the whole research 

period after calculating the classification standard. Under this 
unified classification standard, the temporal and spatial changes 
in surface temperature in the Dianchi Lake basin can be reflected.

Mann-Kendall trend test
The trend analysis method used in this paper is the Mann-

Kendall trend test (Atta Ur and Dawood, 2016), which is a 
non-parametric statistical method. The advantage is that the 
samples do not need to obey a certain distribution and are not 
disturbed by a few outliers, so it is very suitable for studying the 
temperature change trend. This method is recommended by The 
World Meteorological Organization (WMO) and has been widely 
used to analyze long-term trends and abrupt changes in time 
series of hydrological, precipitation, runoff, temperature, and 
water quality factors. In the Mann-Kendall test, the null hypothesis 
H_0 is the time series data (X1, X2, …, Xn), is the sample of n 
independent random variables with the same distribution; The 
alternative hypothesis H1 is a bilateral test for al i, j ≤ n, and Xi and 
Xj are not equally distributed. Define the test statistic S:

	

S sign X X
i

n

j

i
i j= −( )

= =

−

∑∑
2 1

1

where sign() is the sign function. When Xi − Xj less than, equal 
to, or greater than zero, sign(Xi − Xj) is −1, 0, or 1, respectively. S 
is a normal distribution, the mean value is 0 and variance 
Var(S) = n(n − 1) (2n + 5)/18. When the MK statistic formula S is 
greater than, equal to and less than zero, it is:

	

( ) ( )( )

( ) ( )( )

1 / 1 2 5 / 18 0
0 0

1 /
1 2 5 / 18 0

 = − − + >
 = =

= + − + <

Z S n n n S
Z S

Z S
n n n S

In the bilateral trend test, for a given confidence level α if 
ǀZǀ ≥ Z1−α/2, then the null hypothesis H0 is unacceptable, that is, at 
the confidence level α, timeseries data has an obvious upward or 
downward trend. A positive Z value indicates an increasing trend, 
while a negative value indicates a decreasing trend.

TABLE 2  The classification standard of LST.

Level Method

High temperature area T T STD> +

Sub-high temperature area 0.5T STD T T STD+ > > +

Medium temperature area 0.5 0.5T STD T T STD+ > > −

Sub-low temperature area 0.5T STD T T STD− > > −

Low temperature area T STD T− >

Where, T is the temperature value of the current pixel, T̅ is the average LST of Dianchi 
Lake basin from 2001 to 2018, and STD is the standard deviation of the average LST of 
Dianchi Lake basin from 2001 to 2018.
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Spatial influence
The influence of LST on LSWT varies with spatial distance, 

we introduce the concept of spatial influence. According to the 
first law of geography process and heat transfer efficiency of 
diminishing, we believe that the influence of LST on LSWT is 
related to the proximity between them and the temperature of LST 
itself, and it decays with distance (Miller, 2004; Tobler, 2004; Zhao 
et al., 2014). In other words, if the distance between water pixel i  
and land pixel j is closer, water pixel i  will be influenced by land 
pixel j  more, and vice versa. Therefore, the total amount of 
influence of LST on LSWT Ti of water pixel i can be expressed by 
the following formula:
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where, Gi is the sum of the spatial influence of land pixels on 
water pixel i, Tj is the surface temperature of land pixel j, n is the 
total number of land pixels, Dij is the distance between water pixel 
i  and land pixel j. Gtotal is the total value of the spatial influence of 
a certain region, and m is the number of water units contained in 
the region. In this study, the outer area, middle area, inner area, 
Caohai, Waihai and the whole lake were counted as 
separate regions.

Pearson’s correlation analysis is used to verify the consistency 
between air temperature data and LSWT, and the consistency 
between spatial influence and LSWT. The centers of gravity of the 
annual spatial influence and the LSWT was calculated, and these 
centers of gravity were connected according to the time series, to 
analyze the trajectory and direction of the spatial distribution 
changes of spatial influence and the LSWT. The Pearson 
correlation analysis was implemented by Python software package, 
and the center of gravity migration trajectory analysis was 
implemented by ArcGIS software.

Results

Spatial–temporal characteristics analysis

Analysis of spatial–temporal characteristics at 
the annual scale

From 2001 to 2018, the average daytime temperature of LST 
and LSWT in the Dianchi Lake basin were 22.61°C and 17.44°C 
respectively, and the average nighttime temperature were 10.94°C 
and 15.27°C, respectively (Figure 3). The LST was higher than the 
LSWT in the daytime and lower than the LSWT at night. The daily 
variations of LST and LSWT in Dianchi Lake were 11.67°C and 
2.17°C, respectively. The daily variation range of LST and LSWT 

is quite different, which is caused by the difference in heat capacity 
between lake and land.

From the perspective of spatial distribution, the heat is evenly 
distributed during the day and concentrated at night. LST-day is 
mainly affected by topography, which is higher in low-elevation 
and flat terrain. While LST-night is concentrated in built-up areas. 
The heat island effect is even more pronounced during the night. 
For example, sub-basins 13, 16, 15, and 17 have higher surface 
temperatures in both daytime and nighttime (Figure 4), and these 
sub-basins have higher impervious areas (Gong et al., 2020). There 
is an obvious regular in the spatial distribution of LSWT. During 
the day, the LSWT-day of the Caohai in the north area of Dianchi 
Lake is higher than the Waihai, and the LSWT-day of the lakeside 
part was higher than that of the central part. The LSWT-day 
gradually decreased from the outer to the inner zone, while the 
regular of the spatial distribution of LSWT-night is opposite.

During the study period, LST-day showed an overall cooling 
trend with a trend of −0.03°C/a (Figure 4). Among 17 sub-basins, 
12 sub-basins showed a cooling trend, and sub-basin 1 passed the 
significance test. Sub-basin 1 is Panlongjiang North Sub-basin, 
which is far away from the urban center of Kunming and is less 
disturbed by human activities, with natural surface cover. Five 
sub-basins showed a warming trend (9, 10, 13, 14, 15), among 
which sub-basins 13 and 15 passed the significance test. These 
sub-basins with warming trends are almost all located in built-up 
areas. LSWT-day of the whole Dianchi Lake showed a warming 
trend, with a trend of 0.01°C/a. Except for the cooling trend in the 
inner zone, other parts of the lake showed a warming trend too. 
Inner zone and sub-basin 1 represent the parts where least affected 
by human activities on land and lake, respectively, and both of 
them show a cooling trend in the daytime. At night, the LST of the 
whole basin and LSWT of the whole Dianchi Lake showed a 
warming trend, with a change rate of 0.01°C/a and 0.02°C/a, 
respectively. It can be seen that the warming rate of LSWT-night 
is greater than that of LST-night. Except for sub-basin 9, the LST 
of 16 sub-basins showed a warming trend. The LST of sub-basins 
13, 12, 15, 14, 17, 16, 3, 2, and 11 passed the significance test. 
LSWT of all parts of the lake showed a warming trend, and the 
warming trend of the Waihai and middle zone passed the 
significance test. This indicates that the warming effect of 
urbanization is more significant at night, and the warming effect 
of human activities on the lake is greater than that on land.

The trend analysis results of daily variation of LST(LST-DV), 
daily variation of LSWT(LSWT-DV), and temperature difference 
between LST and LSWT in the daytime and nighttime (TD-day 
and TD-night) all showed a cooling trend of −0.07°C/a, 
−0.01°C/a, −0.05°C/a and −0.02°C/a, respectively (Figure  5). 
Most LST-DV of sub-basins is cooling trends, except sub-basins 
9, 10, and 15. The LSWT-DV all showed a cooling trend except 
for Caohai.

Taking nighttime as an example, the expansion intensity 
and direction of LST were analyzed. The standard deviation of 
LST from 2001 to 2018 was 1.48, and the mean value was 
10.94°C. The mean standard deviation method was used to 
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conduct a unified standard classification of nighttime LST in 
annual time series. The classification standards of low 
temperature, sub-low temperature, medium temperature, 
sub-high temperature and high temperature are T < 9.46, 
9.46 ≤ T < 10.20, 10.20 ≤ T < 11.68, 11.68 ≤ T < 12.42, 12.42 ≤ T, 
respectively. The annual area and total area proportion of each 
grade in the research period were statistically analyzed. The 
overall area of the high temperature region and sub-high 
temperature region expanded significantly at the rate of 

18.2 km2/a and 12 km2/a, and the area proportion increased 
significantly at the rate of 0.74%/a and 0.49%/a, respectively. 
The total area of medium temperature area, sub-low temperature 
area, and low temperature area decreased at rates of 10.48 km2/a, 
3.2 km2/a, and 14.08 km2/a, respectively. The decrease rate of the 
total area of medium temperature area passed the significance 
test. The area proportion of medium temperature area, sub-low 
temperature area, and low temperature area decreased at a rate 
of 0.42%/a, 0.13%/a, and 0.57%/a, respectively. The decreasing 

FIGURE 3

Spatial distribution of annual mean from 2001 to 2018.

FIGURE 4

Spatial differences in temperature distribution.
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rate of area proportion of medium temperature area passed the 
significance test (Figure 6).

The land area of the Dianchi Lake basin is divided into eight 
parts according to the direct relationship with the center of the 
lake, and the expansion trend of high temperature area in eight 
directions is analyzed. The expansion trend of the high 
temperature area was calculated according to the changes of the 
area and proportion of the high temperature area in the preceding 
and following years. As shown in Figure 7, starting from the upper 
left corner, the thematic map of the expansion trend of high 
temperature area in the eight directions from 2001 to 2007, 2007 
to 2013, 2001 to 2018, and 2013 to 2018 is drawn clockwise. Before 
2007, the high temperature area mainly expanded in the north 
direction, and the expansion rate was 6.87 km2/a, which was 
related to the marginal urban expansion, the depression-filled 
urban expansion, and the reconstruction of urban villages in the 
main urban area of Kunming. From 2007 to 2013, the expansion 
was mainly in the southeast direction, with an expansion rate of 
7.45 km2/a. The urban expansion in this period was mainly in 
Chenggong New Area. From 2013 to 2018, there were negative 
expansion values of high temperature areas in multiple directions 
during this period, mainly because the construction of wetland 
around Dianchi Lake and the Dianchi-Niulanjiang Water 
diversion project alleviated the thermal environment deterioration 
of the Dianchi Lake basin. During this period, the urban 
maintained positive expansion in multiple directions, including 
southeast (location of Chenggong New Area), south (location of 
Jinning and Majinpu high-tech Zone), and northeast (location of 
airport New Area) as the main development direction. The main 
expansion direction of the high temperature area was south, and 
the expansion rate was 6.56 km2/a. From 2001 to 2018, the overall 
expansion of high temperature area shows that the high 

temperature area expanded in different degrees in eight directions. 
Except for the west direction, which showed a slight expansion 
trend due to topography, the other seven directions expanded 
significantly. The main expansion directions were southeast and 
north, and the expansion rates are 4.21 km2/a and 3.25 km2/a, 
respectively.

Analysis of spatial–temporal characteristics at 
the seasonal scale

From 2001 to 2018, the order of the seasonal average of 
LST-day from high to low is spring, summer, autumn, and winter, 
while the order of the seasonal mean values of LSWT-day, LSWT-
night, and that of LST-night from high to low is summer, spring, 
autumn and winter (Figure 8). It is noteworthy that in summer 
LST is lower than in spring during the daytime, which may 
be related to urban rain island. LST-day showed a cooling trend 
except in autumn, while LST-night showed a warming trend in all 
seasons. LSWT-day and LSWT-night both showed a warming 
trend except in summer. As can be seen, LST and LSWT have the 
same trend in autumn, showing a warming trend. Except for 
LST-night, there was a cooling trend in summer. In summer, cloud 
and rain weather interferes greatly and water temperature is 
affected by many factors, the cause of the cooling trend needs to 
be further studied.

The seasonal order of daily variation of LST from high to 
low is spring, winter, summer, and autumn. And the order of 
daily variation of LSWT from high to low is summer, spring, 
autumn, and winter. Caohai has the largest daily variation, 
which is above 5.5°C in all seasons. It is worth noting that the 
Caohai and the outer zone show the phenomenon that 
maximum in spring, minimum in autumn, followed by summer 
and winter, which is consistent with the LST. The seasonal order 

FIGURE 5

Multiscale temperature difference and trend from 2001 to 2018.
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of daytime lake-land surface temperature (LST) difference from 
high to low is spring, winter, summer, and autumn. The seasonal 
order of lake-LST difference at night from high to low is 
autumn, winter, summer, and spring. It can be  seen that in 
autumn, the lake-LST difference is the smallest in the daytime 
and the largest at night. In spring, the day is maximum and the 
night is minimum.

As shown in Figure 9, in spring, the whole Dianchi Lake and 
all parts of the lake show a warming trend in daytime and 
nighttime. The daytime LST showed a cooling trend, but the 
overall cooling trend was not significant. Sub-basin 13 and 
sub-basin 15 showed a warming trend, and sub-basin 13 showed 
a significant warming trend. At night, LST showed a warming 
trend except for sub-basin 9, and sub-basins 2, 3, 12, 13, 14, 15, 16, 
and 17 showed a significant warming trend. The annual mean 
daily variation of LST, daily variation of LSWT, the daytime 
temperature difference between LST and LSWT, and nighttime 
temperature difference between LST and LSWT were 14.55°C, 
2.03°C, 9.31°C, and 3.21°C, respectively, and all showed a 
decreasing trend.

In summer, the LSWT of the whole Dianchi Lake and all parts 
of the lake show a cooling trend in the daytime. And there is a 
cooling trend at night, except for Caohai. And the overall trend of 
LSWT-day and LSWT-night were −0.03°C/a and −0.02°C/a. 
LST-day showed a cooling trend, and the overall trend was 
−0.02°C/a. Sub-basins 5, 9, 10, 13, 14, and 15 showed a warming 
trend, among which 9, 10, 13, and 15 were significant. LST-night 
showed a warming trend, with the overall trend being 0.01°C/a. 
Sub-basins 1, 4, 9, and 10 showed a decreasing trend, while other 
sub-basins showed an increasing trend, among which 12 and 13 
showed a significant increasing trend. The annual mean daily 
variation of LST, daily variation of LSWT, the daytime temperature 
difference between LST and LSWT, and nighttime temperature 
difference between LST and LSWT were 10.35°C, 2.86°C, 3.31°C, 
and 4.18°C, respectively. The temperature difference between LST 
and LSWT increased in the daytime, while the daily variation of 
LST, daily variation of LSWT, and nighttime temperature 
difference between LST and LSWT decreased.

In autumn, LSWT of the whole Dianchi Lake and all parts of 
the lake showed a warming trend in daytime and nighttime, and 

FIGURE 6

Classification of annual mean LST-night from 2001 to 2018.
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all but Caohai passed the significance test in the nighttime. LST 
showed a warming trend in daytime and nighttime, with a change 
rate of 0.03°C/a and 0.07°C/a, respectively, and the change rate of 
LST-night passed the significance test. The LST-day of sub-basins 
1, 6, and 7 showed a cooling trend, while the rest showed a 
warming trend, among which sub-basins 13 and 15 passed the 
significance test. The LST-night of all sub-basins showed a 
warming trend, and sub-basins 2, 3, 11, 12, 13, 14, 15, 16, and 17 
passed the significance test. The annual mean daily variation of 
LST, daily variation of LSWT, the daytime temperature difference 
between LST and LSWT, and nighttime temperature difference 
between LST and LSWT were 10.04°C, 1.96°C, 2.70°C, 5.39°C, 
respectively. The temperature difference between LST and LSWT 
increased at nighttime, while the daily variation of LST, daily 
variation of LSWT, and daytime temperature difference between 
LST and LSWT decreased.

In winter, LSWT showed a warming trend day and night. In 
the daytime, LSWT-day of the whole lake, Waihai, and the outer 
zone showed a warming trend, and the rest showed a cooling 
trend. While in the nighttime, LSWT-night of the whole lake, 
Caohai, and the outer zone showed a warming trend, and the rest 
showed a cooling trend. LST-day showed a cooling trend with a 
change rate of −0.06°C/a, and all sub-basins showed a cooling 

trend except for sub-basins 9 and 15. LST-night showed a warming 
trend, with an overall change rate of 0.04°C/a. Except for sub-basin 
9, the LST-night of all sub-basins showed a warming trend, among 
which sub-basin 13 showed a significant warming trend. The 
annual mean daily variation of LST, daily variation of LSWT, the 
daytime temperature difference between LST and LSWT, and 
nighttime temperature difference between LST and LSWT were 
12.17°C, 1.85°C, 6.22°C, and 4.10°C, respectively. And all four 
showed a decreasing trend.

As can be seen from the above results, the warming effect of 
urbanization is most obvious in autumn, and LST and LSWT 
show a warming trend in both daytime and nighttime in autumn. 
During the daytime, the trend of LST and LSWT was opposite in 
winter and spring, but the trend was the same in summer and 
autumn. The change trend of LSWT of Caohai and LST is the 
same in all seasons except for summer. During the nighttime, the 
change trend of LST and LSWT is opposite in summer, and the 
trend is the same in winter and spring. The change trend of LSWT 
of Caohai and LST is the same in all seasons. It indicates that the 
change trends of the whole lake and each part of the lake are not 
the same, and the LSWT of Caohai is heavily influenced by LST. In 
addition, consistent with the results of the annual scale, the 
warming effect at nighttime is more obvious than that at daytime. 

A B

C D

FIGURE 7

The expansion direction of the annual mean LST-night [where, (A) 2001–2007; (B) 2007–2013; (C) 2013–2018; (D) 2001–2018].
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The trend pattern of Caohai and the outer zone is more likely to 
be inconsistent with that of the whole lake, and the sub-basins 
with high urbanization are more likely to show a warming trend 
in each season.

Analysis of spatial–temporal characteristics at 
the monthly scale

In the daytime, the LST reaches the annual maximum of 
28.93°C in May and the annual minimum of 16.21°C in December. 
The difference between the average LST in the highest month and 

the lowest month is 12.72°C. The maximum monthly LSWT is 
21.54°C in August, and the lowest monthly temperature is 11.76°C 
in January. The LSWT difference between the highest month and 
the lowest month is 9.87°C. During the daytime, the LST-day 
showed a warming trend in May, June, July, August, September, 
and November, and a cooling trend in January, February, March, 
April, October, and December (Figure 8). Among them, the whole 
basin and all sub-basins showed a warming trend in November, 
and sub-basins 13, 14, and 15 showed a significant warming trend. 
Sub-basin 15 showed a warming trend in all months, while 

FIGURE 8

Multiscale average temperature and trend from 2001 to 2018.
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sub-basin 1 showed a cooling trend except in November. 
LSWT-day showed a warming trend except for April and August, 
and LSWT of all spatial scales passed the significance test 
in November.

At night, the LST-night reached a peak of 14.81°C in May and 
a minimum of 5.24°C in January. The difference between the 
average LST-night in the highest month and the lowest month was 
9.57°C. At night, the LSWT-night reached a peak of 18.63°C in 
August and a trough of 9.90°C in January. The average difference 
between the highest and lowest monthly LSWT-night was 8.73°C 
(Figure  8). During the nighttime, The LST-night showed a 
warming trend in all 12 months, and the warming trend was 
significant in May, with the maximum trend reaching 0.10°C/a. 
From the point of view of sub-basins, there was a warming trend 
in all months of sub-basins 2–4 and 12–17. Except for June and 

July, LSWT-night showed a warming trend, and the warming 
trend was significant in May and November. In May and 
November, all spatial scales LSWT passed the significance test 
except Caohai.

The daily variation of LST (LST-DV) reached a maximum 
value of 15.43°C in April and a minimum value of 9.46°C in 
August. The daily variation of LSWT (LSWT-DV) reached a 
maximum value of 3.22°C in July and a minimum value of 1.70°C 
in November. The maximum and minimum monthly diurnal 
variation of LSWT was 3 months later than that of LST. The 
maximum temperature difference between LST-day and 
LSWT-day (TD-day) is 10.11°C in April and the minimum is 
1.90°C in August. The maximum temperature difference between 
LST-night and LSWT-night (TD-night) was 5.86°C in November 
and 3.16°Cin April. In April, the temperature difference between 

FIGURE 9

Seasonal scale temperature trends from 2001 to 2018.
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LST and LSWT was the largest in the daytime and the smallest in 
the nighttime (Figure 5). Similar to the previous results, most 
temperature differences show a cooling trend. LST-DV showed a 
cooling trend in all months. Except for July and October, 
LSWT-DV also showed a cooling trend. Except for June, August, 
and November, TD-day showed a cooling trend. TD-night showed 
a cooling trend except for October (Figure 5).

To sum up, on the monthly scale, we find that LST and LSWT 
peak months are not consistent, the former peak in May, and the 
latter in August. The extremum months of daily variation are not 
consistent too. LST-DV reached its maximum value and 
mini-mum value in April and August, respectively. The maximum 
and minimum values of LSWT-DV appeared in July and 
November. The maximum daily variation time of LSWT is three 
months behind that of LST. The maximum and minimum daytime 
temperature differences between LST-day and LSWT-day were in 
April and August, respectively. The temperature difference 
between LST-night and LSWT-night was the largest in November 
and the smallest in April. LST-day showed a warming trend in the 
rainy season and a cooling trend in the dry season. All months of 
LST-night show a warming trend, and there is a significant 
warming trend in peak months. LSWT showed a warming trend 
in most months. For LSWT-Day, the temperature dropped in 
April and August, and the temperature increased in other months. 
For LSWT-night, the temperature drops in June and July, and 
increases in the rest months.

Response analysis of LSWT to LST

Analysis of air temperature background
The results of the Pearson correlation analysis showed that 

there was a high correlation between air temperature (AT) and 
LSWT during the study period from 2009 to 2018. The 
correlation coefficients of daytime and nighttime were 0.9474 
and 0.9538, respectively. The LSWT is consistent with the AT 
highly, indicating that AT is an important factor affecting 
LSWT. Then the variation trends of AT, LSWT, and LST from 
2009 to 2018  in daytime and nighttime were calculated, 
respectively (Figure 10). In the daytime, the AT showed cooling 
trends most time except for March, September, and December, 
the LST also showed cooling trends most time except for 
November and December. While LSWT does not always cool, 
the cooling trends only in February, May, September, winter, 
spring, and yearly, and the increasing rate of LSWT in December 
was greater than that of AT. At night, LSWT showed a warming 
trend in July, October, and November, while AT showed a 
cooling trend in the corresponding period. And the increasing 
rate of LSWT was greater than that of AT in the year, autumn, 
January, and December. The abnormal warming phenomenon 
of LSWT may indicate that AT is not the only reason of the 
LSWT changing, and it is reasonable to speculate that additional 
heat sources contributed to the rise of LSWT.

Spatial influence distribution and LSWT water 
partition response

The results of multiyear mean normalization of spatial 
influence and water partition change trend response are shown 
in Figure  11. According to the results of spatial influence 
calculation, the spatial influence of LSWT has a certain 
directional rule. The annual mean temperature differences of 
day, night, and day showed the same rule that the spatial 
influence values of the north, east and south directions were 
large, while the west, southwest, and northwest directions were 
relatively small. This is related to the fact that the west part of 
Dianchi Lake is Xishan mountain and the urban development 
is limited. The spatial influence well reflects the spatial 
distribution of LST in the basin. The calculation results of the 
zonal trend of LSWT showed that the north, northwest, and 
west directions showed a cooling trend during the daytime. This 
is similar to daytime LST. The other directions showed a 
warming trend, basically in line with the trend of gradually 
weakening from the outer layer to the inner layer. The trend 
distribution of the outer buffer is consistent with the spatial 
influence. At night, the LSWT showed an overall warming 
trend. Similar to the daytime situation, the warming trend in 
the northwest and west direction is low. The lower warming 
trend in the northeast may be  the mitigating effect of some 
wetland projects around the lake. It is worth noting that the 
contrast between the east and west trends is striking. The 
warming trend on the East Coast was large during daytime and 
at night, while the warming trend on the west coast was small, 
and the temperature even dropped during daytime. The greater 
the spatial influence of the lake partition is, the greater the trend 
of LSWT is, and the more obvious the correlation is in the outer 
buffer zone. This pattern is more pronounced in the outer 
buffer. And the temperature difference is a downward trend. The 
decline is greater in the north, northwest, west, and east.

Correlation analysis between spatial influence 
and LSWT

The correlation analysis between spatial influence and water 
temperature showed that the correlation between spatial 
influence and LSWT was high in daytime, nighttime, and 
temperature difference, most of which were above 0.8 
(Figure  12). The mean values of correlation between spatial 
influence and lake surface temperature were 0.9168 and 0.9196, 
respectively. Overall, the nocturnal correlation was higher than 
the diurnal correlation. Both daytime and nighttime correlations 
show that the grass sea has a higher correlation than the open 
sea and the correlation between the outer buffer and the inner 
buffer decreases.

During the daytime, the correlation of LSWT of all parts and 
the whole was the highest in February, and the correlation of 
Caohai was as high as 0.9814 in February. The inner buffer has the 
lowest correlation in May, which is 0.7909. At night, Waihai, outer 
layer, and inner layer had the highest correlation in February, 
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while the whole lake, Caohai, and middle layer had the highest 
correlation in autumn, March, and July, respectively. The highest 
correlation was 0.9658  in Caohai in March, and the lowest 
correlation was 0.7843 in the inner buffer in June.

The correlation between spatial influence temperature 
difference and the LSWT temperature difference is very high, the 
correlation is greater than 0.9, and the average correlation is 
0.9780. On the whole, the temperature difference correlation of 
Caohai is the lowest, and that of the inner buffer is the highest. The 
correlation between daytime and nighttime is the opposite. The 
correlation between temperature differences in the Caohai is lower 
than that in the Waihai, and the correlation between the outer 
buffer and the inner buffer is increasing. The specific reasons need 
to be further analyzed.

Centre of gravity migration trajectory
In general, the migration range of the monthly gravity center 

in the dry season is small, while that in the rainy season is large, 
and the seasonal and annual scale changes are also large. In the 
dry season, due to the small range of change, the change is not 
obvious, small interference. The consistency of gravity center 
trajectory direction is 82.9% after the dry season is excluded.

The transfer trajectory of the gravity center of LSWT is very 
consistent with that of space influence. The characteristics of the 
center of gravity migration are analyzed by taking the center of 
gravity migration trajectory of the annual mean at night as an 
example (Figure 13). The research period is divided into three 
periods, namely 2001 to 2007, 2007 to 2013, and 2013 to 2018. It 
is found that the gravity center migration of G and T shows a 

FIGURE 10

Temperature trends of AT, LSWT, and LST from 2009 to 2018.

https://doi.org/10.3389/fevo.2022.984692
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Zhao et al.� 10.3389/fevo.2022.984692

Frontiers in Ecology and Evolution 16 frontiersin.org

northeast-southwest trend, which is related to the urban expansion 
of Kunming to Airport New Area, Chenggong New Area, and 
Majinpu High-tech Zone. The migration space range of spatial 

influence G is larger than that of LSWT T. From 2001 to 2007, the 
migration of spatial influence G was mainly in the north direction, 
and the urban expansion in this period was mainly the marginal 
and depression-filled urban expansion in the northern main city 
of Dianchi Lake. In the second period, 2007–2013, the situation 
changed. From 2007 to 2008, the center of gravity showed a 
southward trend. This is mainly because Chenggong New Area is 
located in the southeast of the old city. After 2008, it showed a 
trend of east and north development. From 2013 to 2018, it still 
keeps the trend eastward, and the migration range of the center of 
gravity becomes smaller. The change range of T center of gravity 
of LSWT is small, and it also migrated northward and eastwards 
on the whole, but the direction and range of migration are not 
completely consistent with the spatial influence, mainly because 
there are many factors affecting the change of water temperature 
center of gravity, so the migration trajectory of the center of 
gravity presents certain differences.

Annually from 2001 to 2018, the center of gravity position 
relative to the previous year’s center of gravity location of the 
relative spatial orientation mapping statistics, we found that the 
relative location of the center of gravity position diagram, all the 
year present G and T consistent direction migration or migration 
of north and south direction is consistent even two directions are 
consistent with the rule, not present situation, the focus of the 
migration path in the opposite direction, Therefore, we believe that 
there is an obvious relationship between the two migrations. It is 
found that the years of G and T moving in the same quadrant are 
gradually increasing, including 1 from 2001 to 2006, 2 from 2007 
to 2012, and 4 from 2013 to 2018. Surface With the rapid expansion 
of the impervious surface of Dianchi Lake basin, the influence 
degree of spatial influence G on the surface water temperature of 
the lake is increasing, and the influence proportion is increasing.

Discussion

Studies have shown that the world’s lakes are warming quickly 
by about 0.3°C each decade on average, according to a new global 

FIGURE 11

Spatial influence and LSWT trends of lake partition.

FIGURE 12

Correlation of G and T.
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synthesis of lake temperature data (Witze, 2015). In our results, 
LSWT of Dianchi Lake increases by 0.01°C/a in the daytime and 
0.02°C/a at night, respectively, which is slightly lower than the 
former data. The spatial difference of temperature trend 
distribution indicates that Dianchi Lake basin does not present an 
overall warming trend. The surface temperature of inner zone of 
lake and the sub-basins dominated by natural environment all 
show a cooling trend (Figure 4). The general climate background 
is a cooling, and the warming of LSWT and LST is not the result 
of the general climatic background but is obviously related to 
human activities at the local scale of the watershed. Lakes, as 

sentinels of global climate change, are sensitive indicators of 
climate change (Livingstone and Dokulil, 2001; Adrian et al., 2009; 
Politi et  al., 2012; Wan et  al., 2018). At the local scale of the 
watershed, we can see that LSWT is more sensitive than LST, and 
it is also a sentinel of the impact of human activities on the 
thermal environment (Yang et al., 2019b) compared the effects of 
human activities on the LSWT across lakes, and found that the 
warming trend of urban and semi-urban lakes was higher than 
that of natural lakes. By comparing the characteristics of LST and 
LSWT, this study verifies the impact of human activities on LSWT 
from the perspective of spatial heterogeneity for a single lake, 

A

D

B C

FIGURE 13

Migration trajectories and direction quadrants of spatial influence (G) and LSWT (T) from 2001 to 2018. (A) migration trajectories of G and T; 
(B) migration trajectory of G; (C) migration trajectory of T; (D) quadrant diagrams of gravity center migration direction of G and T.
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laying a foundation for subsequent quantitative research on the 
threshold of impact range. Abnormal warming of LSWT at a rate 
higher than that of climate warming also has been mentioned in 
several studies (Schneider et al., 2009; Schneider and Hook, 2010; 
O'Reilly et al., 2015; Dong et al., 2016; Woolway and Merchant, 
2017; Sharma et al., 2019; Woolway et al., 2019). Factors affecting 
LSWT are different in different lakes, and the long-term trend of 
lake temperature does not necessarily follow the change of air 
temperature (Andrew et al., 2008; Politi et al., 2012; Schmid et al., 
2014), but also related to external environmental conditions such 
as lake morphology, hydrological characteristics, internal physical 
structure, air temperature, wind speed, water transparency, solar 
radiation, and surrounding landform changes (Livingstone and 
Dokulil, 2001; Layden et al., 2015; Woolway et al., 2016; Gray 
et al., 2018). The rise of LSWT in Dianchi Lake basin is mainly 
related to the change of land use type and urbanization around 
Dianchi Lake.

However, the existence of some objective factors may have a 
negative impact on the research results. On the one hand, the 
surface thermal environment is highly sensitive to time, and 
MODIS is a good choice for this research. However, the spatial 
resolution is limited, and the impact range and distance threshold 
of urbanization on the lake need further quantitative analysis. 
We describe the response range of LSWT only through rough 
three-layer buffer and eight directions. This division is subjective 
to a certain extent, and it is difficult to satisfy the requirements of 
determining the range of influence and the threshold of distance 
from shore to LSWT. In future studies, multi-source data fusion 
and downscaling methods should be considered to obtain more 
accurate data. On the other hand, due to the interference of cloud 
and rainfall, it is very common to lose data in summer. In order to 
verify whether the missing data in summer after interpolation and 
filtering still affect the results, we compared LSWT with in-situ 
data through error analysis and correlation analysis. The results 
show that RMSE and MAE are 2.43 K and 2.34 K, respectively, in 
summer daytime, and the RMSE and MAE at night in summer are 
3.11 K and 2.12 K respectively, It is slightly lower than the overall 
level, but the error range is acceptable. The Pearson coefficient of 
daytime and nighttime in summer are 0.73 and 0.79 respectively, 
while on the whole are 0.86 and 0.90, respectively. The results 
show that the missing of summer data does have some impact on 
the accuracy of the data. The estimation result obtained by 
interpolation is pixel temperature under theoretical clear sky 
condition, which is different from the real pixel temperature under 
cloud, which may inevitably bring some errors in this process. The 
reconstruction of cloud data is still a problem worthy of further 
discussion in order to obtain more accurate LST data.

The following three aspects need to be further studied. First 
of all, during the study period, the positive effects of Dianchi Lake 
water environment treatment projects such as water diversion 
project, wetland project around the lake, and thermal pollution 
discharge pretreatment facilities exist at the same time as the 
negative effects of urbanization, population pressure and 
economic growth. These factors have a comprehensive impact on 

the thermal environment of the whole basin, and the contribution 
of each driving factor needs to be  further analyzed. Then, the 
internal mechanism and process between short-term impact and 
long-term impact of urbanization on lake water temperature need 
to be  further discussed. Finally, the contribution of human 
activities to surface water temperature of Dianchi Lake needs 
further analysis.

Conclusion

From a new research perspective, we  comprehensively 
analyzed the characteristics of surface thermal environment at the 
watershed scale, divided the Dianchi Lake basin into two parts: 
land and lake, and conducted a comparative analysis of LST and 
LSWT. At the same time, the warming phenomenon of Dianchi 
Lake has been verified at annual, seasonal and monthly scales. It 
can be found that the urban heat island effect of the land part of 
Dianchi Lake is not obvious, and even the surface temperature has 
a trend of decreasing. The spatial distribution of LSWT, intra-lake 
heterogeneity of thermal responses and the shift of center of 
gravity are related to human activities on land. The main 
conclusions are summarized as follows:

From 2001 to 2018, the surface thermal environment of 
Dianchi Lake basin presents the following characteristics: (1) Due 
to the difference of specific heat capacity, multiyear mean of LST 
is higher than that of LSWT in daytime, while nighttime LSWT 
is higher than LST. The seasonal patterns of LST and LSWT are 
inconsistent, while Caohai is greatly affected by land, and the 
seasonal patterns of temperature change are similar to those of 
land. LST and LSWT peak months are not consistent, the former 
peak in May, and the latter in August. The extremum months of 
daily variation are not consistent too. The maximum daily 
variation time of LSWT is three months behind that of LST. (2) 
In terms of time series changes, the warming effect of 
urbanization on LST is greater than that on LST, and the warming 
effect at night is greater than that at daytime. From 2001 to 2018, 
the daytime and nighttime warming trends of LSWT were 
0.01°C/a and 0.02°C/a, respectively, while the daytime cooling 
trends of LST were −0.03°C/a and the nighttime warming trends 
were 0.01°C/a. The warming effect of urbanization is most 
obvious in autumn, and LST and LSWT show a warming trend 
in both daytime and nighttime in autumn. The trend pattern of 
Caohai and the outer zone is more likely to be inconsistent with 
that of the whole lake, and the sub-basins with high urbanization 
are more likely to show a warming trend in each season. (3) In 
terms of spatial distribution, the surface thermal environment 
effect of land is mainly reflected in the spatial expansion of LST 
high temperature region. From 2001 to 2018, the overall 
expansion of the high temperature region showed that the high 
temperature region expanded in eight directions to different 
degrees. Except for the west, the expansion is obvious in the other 
seven directions. The main expansion direction was southeast 
and north, and the expansion rate was 4.21 km2/a and 3.25 km2/a, 
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respectively. The warming response of LSWT to thermal 
environment has spatial heterogeneity. The change rate decreases 
from the shore to the center of the lake, and the warming trend 
in the eastern lake area is greater than that in the western lake 
area. (4) Areas with high human activity are warming faster. The 
variation trend of surface thermal environment has spatial 
differences. The sub-basins with high urbanization and lake parts 
near the shore of human activity usually have obvious warming 
effect, while the near-shore water body is greatly affected by LST, 
and the change rule of seasons and months tends to be similar. 
Highly urbanized sub-basins tend to have a warming trend, even 
as other sub-basins generally decline. In Caohai and the 
Outerzone area, the change rule of LSWT is similar to that of LST, 
and usually has a higher warming trend. (5) Temperature 
differences show a cooling trend. The daily variation of LST, the 
daily variation of LSWT, the temperature difference between 
LSWT and LST in the daytime, and temperature difference 
between LSWT and LST at night all showed a decreasing trend. 
The decreasing trend of temperature difference reflects the 
response of heat exchange in the basin, that a greater warming 
trend at night than during daytime and a greater warming trend 
of LSWT than that of LST.

Response characteristics of LSWT in Dianchi Lake basin: 
Lake water temperature is not a single air temperature response. 
In this case, LSWT has an obvious response to the spatial 
influence of LST. The LSWT in the regions with high spatial 
influence tends to rise, especially in the outer buffer zone 
(within 2 km of the shore). The most obvious example is the 
comparison between the east part and the west part of Dianchi 
Lake. The east part has a higher spatial influence and obvious 
warming trend than the west part. The correlation between 
spatial influence and LSWT is different at different spatial and 
temporal scales. At the spatial scale, the correlation between 
spatial influence and LSWT of Caohai and the outer zone is 
higher. At the time scale, it is most correlated in February, less 
correlated in summer, and more correlated at nighttime than at 
daytime. This shows that the spatial influence has a certain 
scope of action and time window. The gravity transfer trajectory 
of LSWT and spatial influence is consistent. The transfer 
direction of gravity center of spatial influence is consistent with 
that of LSWT. The influence of LST brought by human activities 
on LSWT cannot be ignored.
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