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The riverine barrier hypothesis has been extensively explored in Neotropical

rainforests, while its importance in drier regions such as the Caatinga, a

seasonally dry tropical forest in northeastern Brazil, has only recently received

more attention. The Caatinga is bisected by the São Francisco River (SFR),

which has long been suggested to be an important biogeographic feature in
the region. However, recent studies have found mixed support for the role of

the SFR as a hard barrier, most of them relying on the presence or absence of

genetic breaks congruent with its course. Here, we used published multilocus

and next-generation data from six vertebrate species to test the SFR’s

strength as a barrier. Using model-based approaches (approximate Bayesian
computation and supervised machine learning), we tested demographic

models incorporating full, intermediate, and zero migration across the SFR,

estimating divergence times and migration rates for each species. We found

support for the SFR’s role as a barrier, allowing gene flow for some species.

Estimated divergence times varied among species but are limited to the late

Pleistocene, coherent with one of several proposed paleocourse changes in

the river’s geological history. Contrary to the mixed results of previous studies,

our study supports the SFR as an important phylogeographic barrier across

different taxonomic groups, driving diversification in the Caatinga.

KEYWORDS

approximate Bayesian computation, birds, Caatinga, reptiles, amphibians, mammals,
riverine barrier hypothesis, supervised machine learning

Introduction

Rivers have long been proposed to be vicariant barriers driving biological
diversification in the Neotropics. Wallace (1854) originally proposed what would
come to be called the “riverine barrier hypothesis,” suggesting that the Amazon River
structures primate populations. The hypothesis has since proved controversial, with
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early molecular studies offering both support (Capparella,
1988) and rejection (Patton et al., 1994), and more modern
phylogeographical research continuing to show Amazon-driven
population structure and speciation in some taxa (Moraes et al.,
2016, 2020; Naka and Brumfield, 2018; Pirani et al., 2019; Naka
and Pil, 2020), but not in others (Santorelli et al., 2018; Fraga and
Carvalho, 2021). Riverine effects on species diversification may
indeed be more complex than simply acting as vicariant agents—
they may also act as dispersal routes (Lawson, 2013; Fonseca
et al., 2021). The role of rivers in Neotropical diversification
has nonetheless been explored extensively in rainforests. On the
other hand, their importance in drier Neotropical regions such
as the Caatinga of Brazil has only recently accrued scientific
interest.

The Caatinga, located in northeastern Brazil, is a seasonally
dry tropical forest characterized by sporadic rainfall and
frequent drought (Salgado et al., 2015). The Caatinga is bisected
by the São Francisco River (SFR), the fourth-longest river in
Brazil at nearly 3,000 km, and the region’s only perennial
watercourse. The SFR runs northward from Minas Gerais and
then elbows eastward through the Caatinga before flowing
into the South Atlantic ocean, forming the boundary between
Alagoas and Sergipe states (Figure 1). Rodrigues (1986) was
the first to suggest that the SFR forms a vicariant barrier
to Caatinga taxa, later demonstrating allopatric differentiation
across the river in several reptile species and populations
(Rodrigues, 1996; Rodrigues and Juncá, 2002). Thereafter, the
authors of subsequent phylogeographic studies on Caatinga taxa
have cited the São Francisco River Hypothesis (SFRH) as an
explanation for observed biodiversity patterns in the region.
Though literature on the SFR’s geological history is sparse, it
indicates that the river shifted from a straight south-to-north
paleocourse, emptying into the North Atlantic near present-day
Piaui state (Figure 1A; Grabert, 1968), to its eastward-elbowing
present course, splitting the formerly continuous Caatinga into
northern and southern halves. The SFR may have first reached
the South Atlantic through meanders south of its present
mouth (Figure 1A) before shifting northward (King, 1957).
The principal paleocourse change possibly occurred during
the Mindel glaciation of the Middle Pleistocene ∼450 kya
(Mabesoone, 1994), but the timing is controversial, with some
authors suggesting its occurrence as far back as the Pliocene–
early Pleistocene (Ribeiro et al., 2021), mid-Miocene (Potter,
1997), or mid-Eocene (Karner and Driscoll, 1999).

Since Rodrigues’s pioneering SFRH studies, more recent
phylogeographic studies on a variety of Caatinga taxa have
found mixed support for the SFRH. Certain squamates
(Machado et al., 2014; Fonseca et al., 2018), frogs (Oliveira
et al., 2018a; Thomé et al., 2021a), birds (Corbett et al., 2020),
insects (Andrade-Souza et al., 2017), and plants (Balbino et al.,
2018) exhibit no genetic break totally concordant with the SFR.
On the other hand, concordant genetic breaks indicate that
the river clearly structures other lizards (Passoni et al., 2008;

Siedchlag et al., 2010; Werneck et al., 2012; Almeida et al.,
2020), frogs (Bruschi et al., 2019), mammals (Nascimento et al.,
2011; Faria et al., 2013; Fegies et al., 2021), fishes (Costa et al.,
2018), and plants (Menezes et al., 2016). Meanwhile, the SFR
acts merely as a soft barrier for certain species, contributing to
fine interpopulation structure while allowing gene flow across
its margins (Werneck et al., 2015; Miranda et al., 2016; Oliveira
et al., 2018b; Lanna et al., 2020; Thomé et al., 2021b).

The apparent lack of a genetic break concordant with the
SFR shown in some studies, with mixed individuals on either
side of the river, does not necessarily invalidate the SFRH.
The size of the population relative to divergence time should
temper expectations of perfect concordance. From coalescent
theory, the average waiting time for all samples to coalesce
is approximately four times population size (in number of
generations), with a standard deviation of approximately two
times population size (Kingman, 1982). Thus, assuming a
population split due to the SFR’s paleocourse change ∼450 kya,
the effective sizes of the two daughter populations would have
to be fairly small for all gene trees to be concordant with the
split. For small populations, where gene tree concordance can
be expected, migration can have a strong effect as well. Under
the Wright-Fisher model of genetic drift, a single migrant per
generation will prevent populations from diverging (Wright,
1931). Thus, even low migration, which is expected in the
case of a soft barrier, can prevent allele fixation, producing a
“fuzzy” genetic break with coalescent trees discordant with any
historical split. It is imperative to model the effects of these
factors when testing a geographic barrier, but only a few studies
to date have tested the SFRH with a model-based approach
(Oliveira et al., 2015; Miranda et al., 2016; Bruschi et al., 2019;
Lanna et al., 2020; Thomé et al., 2021b).

Our goals in this study are twofold. We first illustrate with an
in silico experiment the effect of population size and migration
on expectations of gene tree/population tree concordance.
Second, we used coalescent simulations to test whether the
SFRH holds for various taxa. We fit published Sanger and
next-generation data from six vertebrate species to three
demographic models with approximate Bayesian computation
(ABC) and supervised machine learning (SML). The (i) Isolation
model assumes the SFR is a hard barrier; the (ii) Migration
model assumes the SFR is a soft barrier; and the (iii) Panmictic
model assumes the SFR is not a barrier at all. Incomplete lineage
sorting (ILS) and migration can generate similar patterns of gene
tree/species tree discordance (Degnam and Rosenberg, 2006).
Therefore, instead of making conclusions based solely on the
probability of each model, we also estimated and compared
two parameters of interest for each species for models i and ii:
divergence time and migration across the river. If the SFR is
not a barrier, we expect to find higher support for the Panmictic
model. A very recent divergence time posterior, nearing zero,
and a very high migration rate posterior, nearing the upper limit
of the prior, would reject the SRFH even if the Panmictic model

Frontiers in Ecology and Evolution 02 frontiersin.org

https://doi.org/10.3389/fevo.2022.983134
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-10-983134 September 20, 2022 Time: 15:4 # 3

Coelho et al. 10.3389/fevo.2022.983134

FIGURE 1

(A) Extent of the Caatinga in Brazil, bisected by the São Francisco River in its current course (light blue continuous line) and paleocourse (light
blue dotted line). 1—Older paleocourse before elbowing east; 2—More recent paleocourse south of modern course; CA, Caatinga; AMF,
Amazonia; ATF, Atlantic Forest; CE, Cerrado. (B) The distribution of samples of six vertebrate species used to test the São Francisco River (blue
line) Hypothesis in the Caatinga.

is not of highest probability. If the SFR is a hard barrier, we
expect higher support for the Isolation model, with divergence
times close to or older than the SFR’s paleocourse change, and
low migration rates. Higher support for the Migration model,
or high migration rates and recent divergence times, would
indicate that the SFR is a soft barrier. We expect a species-
specific effect of the river, with the SFR as a hard barrier
for terrestrial small-bodied amphibian, reptile, and mammal
species, and not a barrier for the bird species.

Materials and methods

Simulation experiment

To demonstrate the effects of population size and migration
on gene tree concordance, we performed two simulation
experiments with ms (Hudson, 2002) via the phyclust R package
(Chen, 2011). In the first experiment, we simulated a two-
population isolation model with a divergence time of 400 kya.
We sampled 20 haploid individuals in each population and
simulated eight different constant effective population sizes with
the same 400 kya divergence time. For each population size,

we simulated 1,000 replicates and calculated the proportion of
coalescent trees that were concordant with the population split,
which can be seen as the probability of complete sorting, using
the function is.monophyletic from the R package ape (Paradis
and Schliep, 2019). In the second experiment, we simulated an
isolation-with-migration model with two populations, a fixed
population size of 10,000 individuals, and a divergence time
of 400 kya. We simulated eight different migration rates (Nm;
number of migrants per generation). As in the first experiment,
we simulated 1,000 replicates and calculated the proportion of
coalescent trees that were concordant with the population split.

Data acquisition and processing

We tested the SFRH with six model species that are
distributed both north and south of the river: three lizards
(Ameivula ocellifera, Polychrus acutirostris, Tropidurus
semitaeniatus), a frog (Dermatonotus muelleri), a mammal
(Gracilinanus agilis), and a bird (Phacellodomus rufifrons)
(Figure 1B). The only criterion for a species’ inclusion was the
availability of more than one locus in the GenBank database,
or genomic-scale data available online (Table 1). We did not
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include available single-locus data because of the intrinsic
wide uncertainty of time estimates associated with such
datasets. Genetic data consisted of both Sanger data (mtDNA
and nDNA) and genome-scale ddRADseq data. For species
complexes with resolved phylogenetic relationships, such as
Tropidurus semitaeniatus (Werneck et al., 2015), we retained
sequences from neighboring clades separated by the SFR,
excluding clades that occur in the Caatinga but far from the
river. On the other hand, for species without a well-resolved
phylogeny (e.g., Ameivula ocellifera), we retained all sequences
available throughout its entire distribution in the Caatinga.

For Sanger data, we aligned sequences with MUSCLE
(Edgar, 2004) as implemented in Geneious 9.0.5 (Kearse et al.,
2012). We phased nDNA fragments with PHASE (Stephens
et al., 2001; Stephens and Donnelly, 2003) as implemented in
DnaSP 5.10.1 (Librado and Rozas, 2009) and removed allele
pairs with a probability lower than 0.7.

We downloaded the Ph. rufirons ddRADseq data (Corbett
et al., 2020) from the NCBI Sequence Read Archive. We then
used ipyrad for de novo assembly (Eaton and Overcast, 2020)
and subsequent processing (see Supplementary Table 1 for
parameters). Ipyrad outputs a “.alleles” file with phased loci,
which we further converted to FASTA format with the function
“iPyrad.alleles.loci2fasta” available in the R package PipeMaster
(Gehara et al., 2020).1 Our final dataset consisted of 2,725
unlinked loci (Table 1) from 10 individuals. Before analyzing
the data, we trimmed and removed all missing data from both
Sanger and genomic data alignments to ensure there were no
sites with unknown nucleotides.

Model description

We built three models to explore the SFR’s role in the
phylogeographic histories of Caatinga species. The Isolation
model (Figure 2) assumes that the river acts as a hard barrier,
preventing any gene flow across the SFR. Despite the variety
of proposed dates for the change in SFR’s paleocourse, for
comparison with most of the phylogeographic literature on
the SFRH, we assumed a vicariant event beginning ∼450 kya
(Mabesoone, 1994). Our aim was to evaluate if the genetic
evidence available is consistent with this date. By clearly framing
this hypothesis, we allow objective testing, repeatability, and
the possibility of refutation. Furthermore, we accounted for
uncertainty in the timing of this event by setting a wide
divergence time prior (see next section and Supplementary
Table 4). The Migration model assumes that the river is a
soft barrier, with no divergence time between groups (i.e.,
no topology) and only migration. By removing a divergence
time parameter, we isolated migration as the only process that
can explain the gene tree discordance in the data. Differently

1 Available at: github.com/gehara/PipeMaster.

from an isolation-with-migration model, where both divergence
time and migration can account for gene tree discordance, the
Migration model allowed us to properly test the maximum
migration value supported by the data. Finally, the Panmictic
model disregards the river’s vicariant effect entirely so that
populations occurring on each side of the river interbreed freely.
It is important to emphasize that this model assumes that all
samples in the data have equal chances of coalescing with one
another (i.e., no population structure). Any population structure
present in the data, even the neutral effect of space (i.e., Isolation
by distance), violates this assumption. Thus a low probability
of this model does not necessarily indicate that the river is a
barrier.

We tested among these models by grouping sequences by
locality, either North or South of the river (see Supplementary
Table 2 for voucher and locality of individuals in each group).
We considered individuals northwest/west of the river as North,
and southeast/east as South. Even though some of the species
used here do not necessarily present genetic structure delimited
by the river’s current course (Werneck et al., 2015; Oliveira et al.,
2018a), the lack of congruence with the river should inform
model probabilities and parameter estimates. For example, for
a species in which genetic structure is not perfectly delimited
by the river, we may find a recent divergence time and high
migration, supporting the river as a soft barrier. On the other
hand, the river may be a hard barrier, and incongruence with
the river may result from incomplete lineage sorting, which will
result in an old divergence time in the Isolation model and low
migration in the Migration model.

Model testing with approximate
Bayesian computation

To test among the Isolation, Migration, and Panmictic
models (Figure 2) we used the R package PipeMaster (Gehara
et al., 2020; see text footnote 1). First, we calculated the following
summary statistics for our observed data: segregating sites,
nucleotide diversity (π), Watterson’s theta, Kelly’s ZnS, fixation
index (FST), % shared polymorphisms for subpopulations, %
private polymorphisms for subpopulations (private 1), and %
fixed polymorphisms for subpopulations. For each summary
statistic, we calculated both the average and variance across all
loci for each group, North and South of the SFR.

For the Isolation model, we assumed a two-population
topology with a prior divergence time ranging from 0 to
1,000,000 years. Here, we corrected (divided) time by species
generation time, assuming a generation time of 2 years for
lizards and 1 year for the other taxa (Puida and Paglia,
2015; Gehara et al., 2017; Batalha-Filho et al., 2019). For
the Migration model, we assumed two populations with no
topology or divergence time, and a migration prior ranging
from 0.1–10 migrants per generation, except for Ph. rufifrons,
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TABLE 1 Species, genetic markers, and sequence counts used to test the São Francisco River Hypothesis (SFRH).

Group Species Locus type Marker Length n n (North) n (South) References

Squamate Ameivula ocellifera mtDNA 12S 388 398 291 107 Oliveira et al., 2015

ATPSB 638 246 172 74

nDNA NKTR 354 226 162 64

R35 396 268 188 80

RP40 354 262 184 78

Amphibian Dermatonotus muelleri mtDNA ND2 514 70 48 22 Oliveira et al., 2018a

nDNA POMC 305 42 32 10

TMEM 495 80 64 16

Mammal Gracilinanus agilis mtDNA CYTB 1149 22 15 7 Faria et al., 2013

nDNA E28VWF 867 37 23 14

Squamate Polychrus acutirostris mtDNA CYTB 836 17 13 4 Fonseca et al., 2018

nDNA CASC5 624 16 11 5

KIF24 529 17 12 5

PRLR 526 15 11 4

Bird Phacellodomus rufifrons nDNA ddRADSeq (2725 loci) 240 (SD 1.78) 10 7 3 Corbett et al., 2020

Squamate Tropidurus semitaeniatus mtDNA 16S 504 84 42 42 Werneck et al., 2015

CYTB 391 79 40 39

nDNA BDNF 388 142 76 66

PDC 414 122 60 62

For genomic data, we present mean sequence length and standard deviation.

FIGURE 2

Representation of models tested to explain the phylogeographic history of species distributed on both sides of the São Francisco River (blue
line). (A) Isolation model in which the river acts as a strong barrier isolating groups with no gene flow beginning at ∼450 kya. (B) Migration
model in which the river acts as a soft barrier, allowing migration across the river with no divergence time. (C) Panmictic model, in which the
river is not a barrier and populations interbreed freely.

for which we used a prior ranging from 0.1–2.5 to improve
model fit. We used the same parameters for the Panmictic
model except for a divergence time ranging from 0 to 1
generations. By forcing groups to coalesce in one generation,
we imposed panmixia on the populations while allowing for
the calculation of the same summary statistics as the other
models.

We also specified species- and marker-specific priors for
each model, e.g., mutation rate and effective population size.
For mutation rate (µ) priors, we used information available
in the literature specific to each species and marker (see
Supplementary Table 3 for mutation priors and references).
Where this information was not available we defined the
mutation rate prior according to a general mtDNA mutation
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rate for vertebrates (1 × 10−8; Allio et al., 2017) and nDNA
mutation rates estimated for close relatives of the study species.
The mutation rate prior was then corrected by generation time.
For effective population size (Ne), we used priors from previous
studies (Supplementary Table 4). When this information was
not available, we roughly estimated Ne using the formula
Ne = π/4 × µ and set up a wide prior around the resulting value.

After calculating summary statistics from the GenBank data
we simulated genetic data under the three models. PipeMaster
uses a modified version of ms (Hudson, 2002; Pavlidis et al.,
2010) to simulate genetic data. For each species, and each of the
three models, we performed 1,000,000 and 100,000 simulations
for Sanger and genomic data respectively. We assessed model
fit by summarizing simulated data in a PCA and plotting
against observed data and with the gfit function of abc R
package (Csilléry et al., 2012). Then calculating the posterior
probability of each model with the function postpr from the
same package using a rejection algorithm with a tolerance of
0.0001 and 0.001 for Sanger and genomic data respectively,
retaining the 100 closest simulations to the observed data. To
examine model identifiability and the reliability of our results,
we performed leave-one-out cross-validation with the function
“cv4postpr” (Csilléry et al., 2012), using a rejection algorithm
with a the same tolerances as above. We also estimated the
posterior distributions of each model’s parameters with “abc,”
then assessed the reliability of our results with “cv4abc,” using
the same algorithm, tolerances, and sample size as before.

Model testing with supervised machine
learning

In addition to ABC, we also used supervised machine
learning (SML) to test the SFRH. We performed model
classification with the Keras interface (Chollet, 2015) in R.
We centered and scaled simulated data from PipeMaster, then
partitioned 80% of the data for training and 20% for testing
an artificial neural network (ANN). We built an ANN with
three hidden layers, each with 32 nodes, and three units in the
last layer. We used “relu” and “softmax” activation functions
for the hidden and last layer respectively. We used the “adam”
optimizer with loss function “sparse_categorical_crossentropy.”
The ANN was trained for 1,000 epochs using 10,000 batches
and a validation split of 0.1. We then used the trained ANN to
classify our data into one of the three models.

After classification, we also estimated parameters with
another ANN, also via Keras. For each model, we randomly
retained 10% of simulations, then centered and scaled simulated
data from PipeMaster to train an ANN regression model. To
get a posterior density that informs the uncertainty between
summary statistics and model parameters, we ran 100 replicates
of the ANN regression, randomly sampling a different training
dataset for each replicate. The model had the same number of

hidden layers and nodes and the same activation function as
that used in model classification. For the final layer, we used a
single node with a linear activation function. As the optimizer,
we used “RMSprop” with a loss function “mse.” We used 88%
of the data to train and 12% to test the ANN respectively. We
trained the ANN with 1,000 epochs, 10,000 batches, and a 0.1
validation split. Finally, we re-transformed the parameters after
estimating them, undoing the steps of centering and scaling
the data. We assessed the accuracy of parameter estimates by
calculating correlation coefficients between testing data and
estimated values. More details about optimizers, activation and
loss functions can be found in the Keras manual (keras.io).

Results

Simulation experiment

The simulation experiment shows that for two populations
of effective size 400,000 that diverged 400,000 generations
ago, less than 0.1% of coalescent trees are concordant with
the population trees. That is, 0.1% are completely sorted in
both populations (Table 2) and would support reciprocally
monophyletic populations on each side of the river (assuming
mutation rate variation is negligible and inheritance is
autosomal). Only populations with 40,000 individuals or less
will have close to 100% of coalescent trees sorted. A migration
rate of as few as 0.1 individuals per generation is enough to
render more than 70% of coalescent trees showing a paraphyletic
topology, that is, discordant with the population split (Table 3).
Only very low migration values of 0.01 individuals per
generation will result in a large proportion of concordant
coalescent trees.

Isolation vs. migration with
approximate Bayesian computation

The observed data for all six species fit at least one
model well (Supplementary Figure 1). All three models
were identifiable as shown by the cross-validation experiment
(Supplementary Figure 2). The Isolation model was the most
supported model, explaining the data for four of six species
(Table 4). On the other hand, the Panmictic model had the
lowest probability for all species. We found high support for the
Migration model only for the bird Ph. rufifrons, suggesting that
the river is a soft barrier for this species. We found mixed results
for the lizard Po. acutirostris and the mammal G. agilis, with
both Isolation and Migration models having similar posterior
probability.

The estimated divergence time for the Isolation
model was in general older than 450 kya (Figure 3 and
Supplementary Table 5), reinforcing the role of the SFR as
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TABLE 2 Results of in silico experiment exploring the importance of divergence time in generating/preventing the existence of monophyletic
groups (concordant gene trees).

Ne τ Proportion of
concordant trees

Ne (mtDNA) τ (mtDNA) Proportion of concordant
trees (mtDNA)

4,000,000 0.025 0.001 1,000,000 0.1 0.032

2,000,000 0.05 0.004 500,000 0.2 0.094

400,000 0.25 0.153 100,000 1 0.734

200,000 0.5 0.415 50,000 2 0.979

100,000 1 0.756 25,000 4 0.999

40,000 2.5 0.99 10,000 10 1

20,000 5 1 5,000 20 1

10,000 10 1 2,500 40 1

Proportion of concordant trees is presented as a function of effective population size (Ne). τ represents divergence times (from 400 kya to 10 kya) as a fraction of 4Ne used to assess the
proportion of concordant trees for different scenarios. The equivalent mtDNA Ne, τ , and proportion of concordant trees are also shown.

a hard barrier. However, despite good performance in cross-
validation (Supplementary Figure 3), divergence times should
be interpreted with caution, since they were likely affected
by their prior distributions. Estimated migration rates for
A. ocellifera, Po. acutirostris, and T. semitaeniatus were ∼1

TABLE 3 Results of in silico experiment exploring the importance of
migration in generating/preventing the existence of monophyletic
groups (concordant gene trees).

Nm Proportion of concordant trees

0.00025 0.996

0.0025 0.966

0.01 0.849

0.025 0.703

0.1 0.275

0.25 0.083

1 0.003

2 0.001

Proportion of concordant trees presented as a function of the total number of migrants
per generation (Nm).

TABLE 4 Posterior probabilities for each model and study species
from approximate Bayesian computation (ABC).

Species Isolation
(PP)

Migration
(PP)

Panmictic
(PP)

Ameivula ocellifera 0.86 0.14 0

Dermatonotus
muelleri

0.9 0.08 0.02

Gracilinanus agilis 0.43 0.57 0

Polychrus
acutirostris

0.32 0.66 0.02

Phacellodomus
rufifrons

0.14 0.86 0

Tropidurus
semitaeniatus

0.73 0.27 0

individual per generation, while more than 1 for G. agilis
and D. muelleri, and less than one for Ph. rufifrons (Figure 3
and Supplementary Table 5). However, cross-validation for
migration showed low accuracy for this parameter for G. agilis
(Supplementary Figure 4).

Isolation vs. migration with supervised
machine learning

Model classification with SML recovered a result similar to
that of ABC analysis, with low support for the Panmictic model
(Table 5). However, as opposed to ABC, SML recovered high
support for the Isolation model for only three of six species. The
Migration model was the best not only for the bird Ph. rufifrons
but also for the lizard T. semitaeniatus. Similarly to ABC, SML
was unable to clearly classify Po. acutirostris, supporting both
the Isolation and Migration models with similar probabilities,
but strongly supported Isolation model for G. agilis. The overall
accuracy of model classification was high (Table 5).

For most species, the divergence time estimated with SML
was close to or older than 450 kya, except for D. muelleri
and P. rufifrons (Figure 3 and Supplementary Table 6),
but coherent with the pattern found using ABC. Similarly,
estimated migration followed the same trend as ABC results,
except for G. agilis, with less than one migrant individual
per generation. Accuracy of parameter estimates with SML
performed better than ABC, with a high correlation coefficient
between estimated and true parameter (Supplementary Table 7
and Supplementary Figure 5).

Discussion

In this study we found strong multi-taxon support for the
São Francisco River Hypothesis (SFRH), which posits that the
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FIGURE 3

Divergence time and migrants per generation estimated with approximate Bayesian computation (ABC) and supervised machine learning (SML)
for each study species. Violins show the density of estimated values for each parameter. The dotted orange line marks ∼450 kya. Boxplots
within violins show median, first and third quartile, and minimum and maximum values estimated. Nm, number of migrants; Aoce, Ameivula
ocellifera; Dmue, Dermatonotus muelleri; Gagi, Gracilinanus agilis; Pacu, Polychrus acutirostris; Prufi, Phacellodomus rufifrons; Tsemi,
Tropidurus semitaeniatus.

TABLE 5 Posterior probabilities for each model and study species from supervised machine learning (SML).

Species Isolation (PP) Migration (PP) Panmictic (PP) Accuracy

Ameivula ocellifera 0.94 0.06 0 0.97

Dermatonotus muelleri 0.88 0.01 0.11 0.86

Gracilinanus agilis 0.89 0.11 0 0.82

Polychrus acutirostris 0.36 0.64 0 0.88

Phacellodomus rufifrons 0.01 0.99 0 0.99

Tropidurus semitaeniatus 0.03 0.97 0 0.94

river acts as a vicariant barrier in the Caatinga, a seasonally
dry tropical forest in South America. The SFR acts as a barrier
driving genetic structure for not only reptiles, for which the
SFRH was first proposed (Rodrigues, 1986), but also for other
vertebrate groups such as mammals, amphibians, and birds,
contradicting our initial hypothesis that it would not be a

barrier for a bird species. Some of the previous studies from
which our data were obtained suggested mixed or no support
for the SFRH (Faria et al., 2013; Oliveira et al., 2015; Corbett
et al., 2020), and were contradicted by our results. For instance,
Corbett et al. (2020) rejected the SFR as a barrier for the
bird Phacellodomus rufifrons due to evidence of gene flow and
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individuals from the same population occurring on both sides
of the river. Different from previous studies, our analytical
approach models incomplete lineage sorting and migration,
accommodating these two possible sources of discordance in
the hypothesis testing (e.g., Lanna et al., 2020; Thomé et al.,
2021b). Our results may also contradict previous results due
to the scale of the study. Oliveira et al. (2018a) found that
populations of the frog D. muelleri are primarily structured by
the Central Brazilian Plateau in their broad range across the
South American Dry Diagonal, and did not detect any signal
from the SFR in the Caatinga, likely because of that study’s large
geographic scale. By focusing only on D. muelleri populations
in the Caatinga, we support the SFRH as a soft barrier for the
species despite high support for the Isolation model; the recent
estimated divergence between populations (ABC: ∼348 kya;
SML: ∼153 kya) is likely due to migration across the river
(Figure 3), increasing genealogical discordance, and pushing
divergence time estimates closer to the present when migration
is not a parameter of the model.

We found mixed support for divergence times during the
late Pleistocene, and different divergence times from different
methodologies. Because SML usually performs better than
ABC in model-based analysis (Gehara et al., 2020), hereafter
we will base our discussion on parameter estimates from
that method. The Caatinga potentially passed through several
droughts associated with Pleistocene glaciation cycles, possibly
decreasing the river’s water level and its corresponding strength
as a barrier (Barreto, 1996; Nascimento et al., 2013; Bruschi et al.,
2019). This may explain the apparent asynchrony in divergence
times; among the six species, we recovered divergence times
of< 450 kya (D. muelleri, Ph. rufifrons), ∼450 kya (A. ocellifera,
and T. semitaeniatus), and ∼1 Ma (G. agilis and Po. acutirostris).
These divergence times are nonetheless notably consistent when
compared to the wide range of SFR-related divergence times
compiled in the literature, which range from late Miocene (∼11–
5 Ma) (Werneck et al., 2012) to early Pleistocene (∼2 Ma)
(Nascimento et al., 2011), to late Pleistocene (<300 kya)
(Fegies et al., 2021). This incongruence is possibly due to not
considering the possibility of both ILS and sporadic migration
in their analysis, which can influence gene tree discordance as
shown in our in silico experiment, affecting divergence time
estimates. However, the most glaring problem with inferring
the SFR as a causal mechanism for divergence in the Caatinga
is the dearth of information on the river’s geological history,
much of it in obscure gray literature (e.g., Ab’Saber, 1969;
Tricart, 1974; Mabesoone, 1994; Valadão, 1998). A geological
narrative compiled from these sources is contradictory and
difficult to reconcile [though for good attempts at synthesis,
with some extrapolation, see Werneck et al. (2015) and Thomé
et al. (2021b)]. Geological studies have inferred the SFR’s
paleocourse change as having occurred in time periods as
disparate as the Eocene (Karner and Driscoll, 1999) and the

very late Pleistocene [∼12 kya; Tricart (1974)]; as such, authors
of phylogeographic studies can indicate the geological study
that suits their taxon’s divergence time best to support their
narrative of SFR-mediated divergence. This has prevented a
coherent phylogeographic narrative from developing in the
Caatinga phylogeography literature. On the other hand, the
relative consistency of our inferred divergence dates in a variety
of vertebrate taxa, with SFR-mediated divergence occurring
within the last million years, represents a first step toward this
goal, agreeing with our simulation experiment’s demonstration
that divergence times ∼400 kya are not enough for populations
to be completely monophyletic unless population sizes are
small.

It is important to emphasize that migration rates may
be lower than estimated here. According to our simulation
experiment and the literature (Qu et al., 2012), certain values of
migration and τ can generate similar proportions of concordant
trees (e.g., Nm = 0.025 and τ = 1 yield 70% and 75% of
gene trees concordant, respectively). Our Migration model
does not account for the effect of ILS since it lacks a
divergence time parameter; migration accounts for all gene
tree discordance. Nevertheless, even when assuming an island
model as the Migration model does, migration rate estimates
are still relatively low and do not indicate free movement
of individuals across the river—population identity can be
maintained with a “fuzzy” genetic break or a hybrid zone
(e.g., Burbrink et al., 2021). Besides the models’ limitations,
geological events could also have influenced migration rates.
After the SFR’s initial elbowing eastward in the Pleistocene,
its mouth, emptying into the South Atlantic, may have shifted
northward to its present-day location between Sergipe and
Alagoas states (Figure 1A; King, 1957; Tricart, 1974); it is
possible that the gene flow recovered here may be an artifactual
result of the southern group capturing northern individuals after
this paleocourse change (Werneck et al., 2015; Thomé et al.,
2021b). The timing and occurrence of this hypothesized event
is, of course, uncertain. Despite the particularities described
above, our study supports the SFRH and highlights that not
only the riverine hypothesis, but any barrier hypothesis, should
not be rejected based solely on the evidence of paraphyletic
populations.

The strength of the SFR’s vicariant effect varies among
species, with dispersal capability or vagility being an important
factor. Body size is often used as a proxy of dispersal capability,
with small bodied-animals presenting stronger responses to
vicariant barriers (Wollenberg et al., 2011; Arteaga et al.,
2016). Species-specific traits other than body size, such
as habitat use, may also affect dispersal (Zamudio et al.,
2016; Reid et al., 2019; Kuhn et al., 2021). For example,
phylogenetic studies indicate a strong vicariant effect of the
SFR on several species of limbless (or reduced-limb) fossorial
squamate (Rodrigues, 1996; Rodrigues and Juncá, 2002;
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Siedchlag et al., 2010; Almeida et al., 2020), which likely have
limited river-crossing abilities due to their underground
lifestyles. Three of the species analyzed here, though not
limbless, are squamates, and show divergence times matching
the hypothesis of a hard barrier. Together with the mammal
species, these lizards have the oldest divergence times among
the six species. Not surprisingly, the bird and the amphibian
species have posteriors that span into more recent times.
The complex life history of anurans, with aquatic larvae, and
the aerial dispersal abilities of birds, could allow sporadic
migration, accounting for the recovered patterns (Figure 3).
The bird Ph. rufifrons is able to cross the SFR and sustain
some degree of gene flow (Corbett et al., 2020), but its small
body size and ground-foraging behavior (Skutch, 1969), traits
associated with low dispersal capability, may still play a role in
limiting gene flow. The frog D. muelleri is an explosive breeder,
reproducing only after heavy rainfall (Fabrezi et al., 2012),
which may wash tadpoles from one margin to the other. The
variation in the SFR’s vicariant strength could also have arisen
from the sequences used herein not being collected for the
primary purpose of testing the SFRH, or by the low number
of sampled loci. For some species, we do not have sequences
covering their entire distributions or from localities near the
river (Figure 1). Scattered sampling may contain more noise
or miss important genetic variation, generating wide or biased
posterior densities. More refined sampling and spatially explicit
analyses have the potential to model, together with a physical
barrier and landscape features associated to the region (e.g.,
campos rupestres, sand dunes), other important processes such
as the effects of paleoclimate and isolation-by-distance, testing
the SFRH as a soft or hard barrier with more precision.

We used a model-based approach to test the São Francisco
River Hypothesis, finding support for the river acting as
both a hard and soft barrier for six Caatinga vertebrate
species. It is likely that the SFR’s paleocourse changes
caused at least partial divergences in these taxa within the
past million years. Genomic analyses with additional taxa
and more complete spatial sampling on both sides of the
river along its entire length may clarify this matter. The
cause of the limited asynchrony in divergence times can
only be properly examined after a more coherent picture
of the SFR’s geological history is achieved. Regardless of
divergence time, the migration across the river is low,
supporting the hypothesized importance of the river
as a phylogeographic and biogeographic feature driving
diversification in the Caatinga.
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