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Vision plays an essential role in the life of many animals. While most mammals

are night-active (nocturnal), many have adapted to novel light environments.

This includes diurnal (day-active) and crepuscular (twilight-active) species.

Here, we used integrative approaches to investigate the molecular evolution

of 112 vision-related genes across 19 genomes representing most marsupial

orders. We found that four genes (GUCA1B, GUCY2F, RGR, and SWS2) involved

in retinal phototransduction likely became functionally redundant in the

ancestor of marsupials, a group of largely obligate nocturnal mammals. We

also show evidence of rapid evolution and positive selection of bright-light

vision genes in the common ancestor of Macropus (kangaroos, wallaroos,

and wallabies). Macropus-specific amino acid substitutions in opsin genes

(LWS and SWS1), in particular, may be an adaptation for crepuscular vision

in this genus via opsin spectral sensitivity tuning. Our study set the stage for

functional genetics studies and provides a stepping stone to future research

efforts that fully capture the visual repertoire of marsupials.

KEYWORDS

vision-related genes, marsupials, nocturnal vision, crepuscular vision, molecular
evolution

Introduction

Extant mammals include eutherians (placental mammals), metatherians
(marsupials), and monotremes (egg-laying mammals). Mammals occupy a variety
of light niches. In order to adapt to different light environments, they have activity
patterns classified as nocturnal (night-active), diurnal (day-active), crepuscular
(twilight-active), or non-circadian (Smale et al., 2003).

Approximately, two-thirds of mammals (including their ancestors) are nocturnal.
These species inhabit poor light environments underwater (e.g., aquatic cetaceans),
underground (e.g., mole rats), or in caves (e.g., bats) (Heesy and Hall, 2010; Bennie et al.,
2014). Examples of diurnal species (∼20% of mammals) include primates and squirrels.
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It follows that vision impacts animal fitness by affecting
survivorship through mating, foraging, and predator
avoidance behaviors.

Visual perception in mammals is initiated by
phototransduction, which converts light into an electrical
signal in photoreceptor cells by signal transduction (Lamb,
2013). Cones and rods are the photoreceptors of the retina.
Cones mediate vision in daylight (photopic vision) and color
vision, while rods mediate vision in dim light (scotopic
vision). These photoreceptors contain light-absorbing visual
pigments that consist of opsin proteins (cone pigment in
cones and rhodopsin, RH1, in rods) and other transduction
components. When activated by light, opsin proteins activate
G protein transduction (Gt), which subsequently activates
phosphodiesterase (PDE), decreasing cytoplasmic-free cGMP
levels and resulting in closed cGMP-gated channels and
membrane hyperpolarization (Fu and Yau, 2007; Figure 1).

The visual system of mammals has undergone substantial
anatomical and evolutionary modifications. For example, the
eye of species that inhabit dim light conditions (e.g., cetaceans
and microbats) are degraded, including decreased organisation
of the retina, malformation of the lens, and subcutaneous
positioning of the eye (Mass and Supin, 2007; Emerling and
Springer, 2014; Emerling, 2018). Most studies have focused on
the evolution of opsins and color vision in vertebrates. Cone
opsins are classified into medium/long-wavelength sensitive
(M/LWS) and short-wavelength sensitive (SWS) based on their
peak absorption wavelength (λmax). Most eutherian mammals
have two types of cone photoreceptors (SWS1 and M/LWS)
and therefore possess dichromatic color vision. Notably, all
Old World primates, apes, and humans have trichromatic color
vision mediated by an opsin (M/LWS) gene duplication, which
likely evolved for finding food in the forest (Dulai et al., 1999).
Many visual genes have lost or diverged functions in certain
mammals (Zhao et al., 2009). Previous studies demonstrated
that cetaceans and the blind mole rat Nannospalax ehrenbergi
lost the short-wavelength cone opsin OPN1SW (Peichl et al.,
2001; David-Gray et al., 2002; Levenson and Dizon, 2003). Deep
diving cetacean lineages (e.g., sperm whales and beaked whales),
as well as some baleen whales, also lost the long-wavelength cone
opsin OPN1LW, resulting in rod monochromatic vision (Peichl
et al., 2001; Levenson and Dizon, 2003). The evolution of visual
pigment tuning toward adaptation to dim light environments
also involved amino acid mutations that modify spectral tuning
and kinetics (Dungan and Chang, 2022). Meredith et al. (2013)
reported that dim-light visual pigment rhodopsin (RH1) blue
light-shifted at the base of Cetacea, ostensibly an adaptation to
open-ocean environments. The rate of light-activated rhodopsin
(meta II) decay in bats is slower compared to other mammals,
indicating a bat-specific adaptation for vision in photic-limited
conditions (Gutierrez et al., 2018). A recent study reported that
parallel amino acid substitutions in the RH1 of deep-diving
vertebrates affect retinal release and enable the visual systems

of diving species to adjust quickly to changing light levels
(Xia et al., 2021). In addition, multiple genes involved in cone
phototransduction are pseudogenized in several whale lineages
(Springer et al., 2016). Many genes associated with visual
functions (e.g., RBP3, GUCY2F, ABCB5, RP1L1, CRB1, and
ARR3) have inactivating mutations in subterranean mammals
(Emerling, 2018; Zheng et al., 2022).

Marsupials are distributed between the Americas
(Ameridelphia) and Australasia (Australidelphia) and diverged
from a common ancestor approximately 80 million years
ago (Deakin and O’Neill, 2020). This group of marsupials
underwent considerable diversification, resulting in a range
of activity patterns among extant species. They are largely
nocturnal, but species with diurnal and crepuscular lifestyles
exist. For instance, the Tasmanian devil (Sarcophilus harrisii)
is a solitary and nocturnal carnivore predator that hunts
between sunset and sunrise and spends most of the day in
a den (Owen and Pemberton, 2005). Arboreal marsupials,
such as the koala (Phascolarctos cinereus) and common
brushtail possum (Trichosurus vulpecula), are usually nocturnal
(Harper, 2005; Adam et al., 2021). Most species of the genus
Macropus (including kangaroos, wallaroos, and wallabies) are
nocturnal and crepuscular (later, we consider the evolution
of the latter activity pattern) and spend the day in scrubs that
they leave after dusk to feed in open grass plains (Inns, 1980;
Kaleta and Chudzik, 2008). The crepuscular honey possum
(Tarsipes rostratus) has low visual acuity (Arrese et al., 2002).
Finally, the numbat (Myrmecobius fasciatus) is unique amongst
marsupials, as they are diurnal and feed exclusively on termites
(Cooper et al., 2003).

In contrast to eutherian mammals, the molecular evolution
of marsupial vision remains largely unexplored. Studies on
marsupial vision have been limited to very few species and
have focused on opsin proteins and color vision. For instance,
two classes of cone opsin (i.e., SWS1 and M/LWS) were found
in the gray short-tailed opossum (Monodelphis domestica), the
big-eared opossum (Didelphis aurita), and tammar wallaby
(Macropus eugenii), suggesting that marsupials generally have
dichromatic color vision, which is consistent with color
discrimination test data (Hemmi, 1999; Deeb et al., 2003;
Hunt et al., 2009). It has been reported that some marsupials
are trichromatic, but the genetic or cytological basis remains
unresolved. Potentially trichromatic species include the fat-
tailed dunnart (Sminthopsis crassicaudata), honey possum,
quokka (Setonix brachyurus), and quenda (Isoodon obesulus);
however, there is no genetic evidence of a third cone pigment
gene (Cowing et al., 2008; Ebeling et al., 2010; Upton et al., 2021).

In this study, we performed a comparative evolutionary
analysis of vision-related genes of 19 marsupials. We found that
gene loss in the marsupial ancestor might be related to the
nocturnal activity of this group of mammals. We also report
signals of positive selection and specific amino acid changes
in the visual phototransduction genes of the crepuscular genus
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FIGURE 1

Diagram of phototransduction pathway genes in marsupials. Rectangles represent genes involved in the phototransduction pathway (black,
rods; white, cones; gray, rods, and cones). Genes in red font could not be identified in any marsupial. Red crosses represent pseudogenes in at
least one marsupial species. Genes under positive selection (branch-site model), divergent, or rapidly evolving in the crepuscular genus
Macropus are shown as red stars, red triangles, and hollow stars, respectively. Gt denotes G protein transducing; PDE, phosphodiesterase; GC,
guanylate cyclase; GCAPs, guanylate cyclase-activating proteins; CNG, cyclic nucleotide-gated ion channels; NCKX, Na+/Ca2+-K+ exchanger.

Macropus, suggesting adaptations for a twilight environment. In
summary, our work provides new molecular insights into vision
adaptations to different photic niches in marsupials.

Materials and methods

Species coverage

To study the evolution of vision-related genes in marsupials,
the genome assemblies of 19 marsupials were downloaded from
NCBI (Kitts et al., 2016) or DNA Zoo (Dudchenko et al., 2017,
2018). The three species from the Americas (Ameridelphia)
were agile gracile mouse opossum (Gracilinanus agilis; NCBI
AgileGrace; Tian et al., 2021), Virginia opossum (Didelphis
virginiana; DNA Zoo dv-2k; Dudchenko et al., 2018), and
gray short-tailed opossum (Monodelphis domestica; DNA Zoo
MonDom5_HiC; Mikkelsen et al., 2007). Sixteen species from
Australasia (Australidelphia) were interrogated: Diprotodontia:
tammar wallaby (Macropus eugenii; NCBI Meug_1.1; Renfree
et al., 2011), red kangaroo (Macropus rufus; DNA Zoo mr-
2k), eastern gray kangaroo (Macropus giganteus; DNA Zoo
mg-2k), and western gray kangaroo (Macropus fuliginosus;
DNA Zoo mf-2k); Phalangeridae: common brushtail possum
(Trichosurus vulpecula; NCBI mTriVul1.pri) and ground
cuscus (Phalanger gymnotis; DNA Zoo pg-2k); Petauridae:

Leadbeater’s possum (Gymnobelideus leadbeateri; DNA
Zoo LBP_v1_HiC); Phascolarctidae: koala (Phascolarctos
cinereus; NCBI phaCin_unsw_v4.1; Johnson et al., 2018)
and common wombat (Vombatus ursinus; DNA Zoo vu-
2k; Dudchenko et al., 2018); Dasyuridae: Tasmanian devil
(Sarcophilus harrisii; NCBI mSarHar1.11; Miller et al., 2011;
Murchison et al., 2012), thylacine (Thylacinus cynocephalus;
NCBI UniMelb_ThyCyn2.0_hybrid_assembly; Feigin et al.,
2018), yellow-footed antechinus (Antechinus flavipes; NCBI
AdamAnt; Tian et al., 2022), brown antechinus (Antechinus
stuartii; NCBI USYD_AStu_M; Brandies et al., 2020), as well
as gapfilled nuclear genome assemblies of black-tailed dusky
antechinus (Antechinus arktos), silver-headed antechinus
(Antechinus argentus), and black-tailed dasyure (Murexia
melanurus) generated by mapping to the A. flavipes assembly
AdamAnt (Seim, 2020; Tian et al., 2022). We employed platypus
(Ornithorhynchus anatinus; NCBI mOrnAna1.pri.v4; Warren
et al., 2008; Zhou et al., 2021) as the outgroup to the marsupials.

Information retrieval

Human vision-related genes were collected from the
Kyoto Encyclopedia of Genes and Genomes (KEGG) database
(Kanehisa et al., 2017) and the literature (Schott et al., 2019;
Espíndola-Hernández et al., 2020). A total of 112 genes were
obtained, including visual and non-visual opsins, vision genes,
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visual phototransduction, photoreceptor development, optic
nerve development, nerve conduction, and ocular structure
development genes (Figure 2A and Supplementary Table 1).
Vision-related genes of other species were identified by BLASTn
v2.13.0 (Johnson et al., 2008) search (E-value cutoff 1 × 10−5)
on a local instance of sequenceserver v1.0.14 (Priyam et al.,
2019) using gray short-tailed opossum genes as queries. Protein-
coding sequence (CDS) of the gray short-tailed opossum was
downloaded from the NCBI. For each gene, the CDS was
used to conduct codon-based multiple sequence alignment
using PRANK v170427, which implements a phylogeny-aware
alignment algorithm to distinguish alignment gaps caused
by insertions or deletions (Löytynoja and Goldman, 2010).
Gaps and ambiguous bases were removed by Gblocks v0.91b
(Castresana, 2000) to obtain reliable CDS alignments. We
removed gene alignments with lengths less than 150 bp.
Genes with disruptive mutations (e.g., frameshift insertions and
deletions, premature stop codons, and splice site mutations
at intron/exon boundaries) were verified by interrogating
raw sequence reads at NCBI’s Sequence Read Archive (SRA)
database using the method described in Jebb and Hiller (2018).

To understand the processes shaping trait evolution along
the branches of a phylogenetic tree, we reconstructed the
ancestral vision states. Information on activity patterns of
marsupials was obtained from Animal Diversity Web1 and
literature searches (Pemberton, 1990; Cooper et al., 1999; Stokes
et al., 2004). The working trees used for evolutionary analyses
were retrieved using TimeTree (Kumar et al., 2017).

Molecular evolution analyses

Several different codon-based likelihood methods,
implemented in the CodeML programme of PAML v4.7
(Yang, 2007), were used to explore the strength and form of
selection acting on vision-related genes. Briefly, the ratio of
non-synonymous (dN )/synonymous (dS) substitution rates
(ω = dN /dS) was estimated. We conducted analyses on a
dataset that included 20 eutherian mammals and the platypus
(Supplementary Figure 1). We also built a marsupial-only
dataset to investigate whether there are distinct evolutionary
trajectories between marsupials with different activity patterns
(e.g., nocturnal vs. crepuscular) (Figure 2B). The free-ratios
model (model = 1) was used to estimate the evolutionary rate
along each lineage. The mean dN /dS ratios for each lineage
were calculated for all genes. The branch-site model was
used to test for episodes of positive selection along particular
foreground branches in an otherwise conservatively evolving
background (Zhang et al., 2005). Compared with the null
model Ma0 (dN /dS = 1), the modified model A (Ma) allows
a codon site class with dN /dS > 1 along specified branches

1 http://animaldiversity.org

of the phylogeny (foreground branches) as an indicator of
positive selection within the specific lineages (Zhang et al.,
2005). The Clade model C was performed to evaluate divergent
selective pressures. This model is designed to detect sites that
vary in strength and form of selection among clades (Bielawski
and Yang, 2004). We utilised the branch-site model and the
clade model C with branches along the last common ancestor
of marsupials in the mammalian dataset and crepuscular
Macropus species in the marsupial dataset set as the foreground
separately. We identified sites under positive selection using
Bayes’ Empirical Bayes (BEB) in PAML (Yang et al., 2005).
The significance of the difference between the non-nested
and nested models was evaluated using a likelihood ratio
test (LRT). The Benjamini–Hochberg method was applied
to correct P-values for multiple testing (cutoff set at 0.05).
As a complementary to PAML models, we employed the
aBSREL model in HYPHY to estimate the dN /dS ratio on
each branch of the phylogeny without any a priori input
(Kosakovsky Pond et al., 2020).

Disruptive mutations in genes were detected as relaxed
selection by PAML branch models (Yang, 2007)2. Purifying
selection was detected by comparing models A (all branches
have a single ω value) and B (ω = 1 in all branches).
Selective pressure relaxation on pseudogenized genes was
assessed by comparing model A and model C (pseudogenized
branches had a ω2, while all others had ω1). Model
C was also compared to Model D (fixed ω2 = 1 for
pseudogenized branches) to investigate whether the selective
pressure is completely removed in pseudogenized branches.
We also performed model E, where ω is allowed to
vary among branches. RELAX uses a descriptive model to
infer a relaxation parameter k for every gene in every
species (k > 1 indicates intensified selection, i.e., positive
or purifying selection, k < 1 suggests relaxed selection)
(Wertheim et al., 2015).

A further approach, described by Sharma et al. (2018),
was used to estimate when pseudogenes were inactivated in
marsupial lineages. In the formula, K = KsTs/T + KnTn/T,
K = Ka/Ks, Kn = 1, and T is the time since the species split
from the last common ancestor. We estimated a lower and upper
bound for Tn (how long pseudogenes evolved neutrally) as T
(K−Ks)/(1− Ks).

Specific amino acid substitutions and
functional effect prediction in
crepuscular marsupials

Amino acid substitutions have been associated with changes
in protein function (Yadava et al., 2002). The segregating

2 http://www.datamonkey.org/RELAX
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FIGURE 2

Overview of vision-related genes examined and species tree of marsupials. (A) Pie diagram showing broad functional categories of the 112
vision-related genes investigated. (B) Phylogenetic relationships of 19 marsupial species. The crepuscular Macropus lineage is shown in yellow.
Four genes lost in the ancestor of marsupials are indicated by a blue triangle, pseudogenes found in one or more lineages as a red triangle.
Silhouettes of mammalian species are reproduced from http://phylopic.org under a Public Domain or Creative Commons license. (C) Overview
of the number of genes in (A) that are lost in all marsupials (“Unobtained”), pseudogenes (in at least one marsupial), and genes intact in all
marsupials (“Functional genes”).

site extraction module implemented in FasParser v2.10.0
(Sun, 2018) was used to identify species-specific amino acid
mutations in crepuscular marsupials, that is, residues shared
in all crepuscular species and different from other marsupials.
Potential functional effects of these substitutions were predicted
by PolyPhen-2 (Adzhubei et al., 2010), PROVEAN (Choi
and Chan, 2015), and SIFT (Sim et al., 2012). PolyPhen-2
predicts the possible impact of amino acid substitutions on
the stability and function of human proteins using structural
and comparative evolutionary considerations (Adzhubei et al.,
2010). PROVEAN generates predictions not only for single
amino acid substitutions but also for multiple amino acid
substitutions, insertions, and deletions using an alignment-
based score approach (Choi and Chan, 2015). SIFT is an
algorithm that predicts the potential impact of amino acid
substitutions or indels on protein function (Sim et al., 2012).

We used the protein–protein interactions database STRING
v11.53 to explore the networks of genes with specific non-
synonymous changes.

Results

Pseudogenes in marsupial
vision-related genes

Among our list of 112 vision-related genes present in
humans (Supplementary Table 1), we failed to obtain four genes
(Figure 2C, GUCA1B, GUCY2F, RGR, and SWS2) in marsupials,

3 http://cn.string-db.org
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suggesting that these genes were lost in the marsupial ancestor.
In addition, we identified several independent marsupial
pseudogenization events (Supplementary Figure 2). ABCA4
is pseudogenized in the common ancestor of two out of the
four Macropus species examined (the Western gray kangaroo,
Macropus fuliginosus, and the eastern gray kangaroo, Macropus
giganteus). The same change (a premature stop codon at exon
13) was found in both genomes. We also found two genes
(PDE6G and GUCA1C) that were inactivated via premature
stop codons in Didelphis virginiana. Two genes (REEP6 and
EYS) with premature stop codons were found in Vombatus
ursinus. A pseudogenized REEP6 was also found in Trichosurus
vulpecula (one premature stop codon and a 2-bp deletion).
A premature stop codon was found in Phalanger gymnotis
SWS1. Finally, BBS4 has a premature stop codon and frameshift
in all Dasyuromorphia species, including six of the family
Dasyuridae and one of the family Thylacinidae.

All the above genes showed strong purifying selection
in marsupials (Supplementary Table 2). The selective
purifying pressure is markedly increased in branches with
a pseudogenized ABCA4 (ω2 = 0.613, ω1 = 0.140) and REEP6
(Vombatus ursinus: ω2 = 0.634, ω1 = 0.127; Trichosurus
vulpecula: ω2 = 0.739, ω1 = 0.147), suggesting that the
selective pressure on these genes was relaxed in marsupial
lineages (Supplementary Table 2). Only Model C that allowed
Vombatus ursinus lineage with pseudogenized REEP6 with
ω2 = 0.634 better fit Model D, where pseudogenized branches
were fixed at ω2 = 1. This indicates that the selective pressure
on REEP6 completely relaxed in the common ancestor of
Vombatus ursinus, as further corroborated by the results of
RELAX when Vombatus ursinus with inactivating mutations
were used as a test branch (k = 0.15, p < 0.0001). We estimate
that Vombatus ursinus REEP6 was inactivated 18.0–23.2 million
years ago (Mya) (Supplementary Table 3) after this species
emerged (31–40 Mya).

Molecular evolution of marsupial
vision-related genes

To explore variation in selective pressure among marsupials,
we used codon-based models on two datasets: mammals
(20 eutherians, 19 marsupials, and 1 monotreme) and
marsupial-only (plus monotreme as an outgroup). To test the
possible occurrence of nocturnality in ancestral marsupials,
we analysed the adaptive evolution of vision genes along the
ancestral branch of all marsupials in the mammalian dataset.
Positive selection was detected in three genes (RRH, RDH10, and
CNGA1) when the ancestral lineage of marsupials was set as the
foreground (Supplementary Table 4). In addition to positive
selection, the clade model C analyses showed evidence for a
burst of selection occurring along the lineages leading to the
diversification of the major clades. We identified eight genes

(GNB5, GRK1, RCVRN, SLC24A2, RHO, PDE6A, GUCY2D,
and CNGA3) with significant improvement over the null
model when allowing for divergent selection pressure between
marsupials and outgroups (Supplementary Table 5).

In the marsupials-only dataset, we found evidence for
selection along the last common ancestor (LCA) of the
crepuscular genus Macropus (includes kangaroos, wallaroos,
and wallabies). The lineage-specific dN /dS ratios obtained
by the free-ratio model of each gene across each branch
showed that Macropus lineages had significantly higher dN /dS

ratios of cone phototransduction pathway genes (i.e., bright-
light vision genes: ARR3, CNGA3, CNGB3, GNAT2, GNB3,
GNGT2, GRK7, LWS, PDE6C, PDE6H, and SLC24A2) than
their paired control nocturnal marsupial species (P < 0.048,
Wilcoxon test) (Figure 3A). Moreover, we also found that all
nocturnal marsupial lineages exhibited significantly elevated
dN /dS ratios of rod phototransduction pathway genes (i.e.,
dim-light vision genes: CNGA1, CNGB1, GNAT1, GNB1,
PDE6A, PDE6B, RHO, SAG, and SLC24A1) than crepuscular
marsupials (in our dataset, genus Macropus) (P < 0.0059)
(Figure 3B). The Clade model analyses also revealed that
13 genes (COL11A1, RP1, GNAT2, PDE6A, ATP8A2, PDE5A,
LWS, PDE6C, CRYBA1, SEMA3A, SLITRK6, CACNB4, and
RDH8) showed significantly higher elevated dN /dS ratios in
crepuscular Macropus species than nocturnal marsupial species
(Figure 3C and Supplementary Table 6). These results suggest
that crepuscular Macropus species show more rapid vision gene
evolution than nocturnal marsupials.

We employed the branch-site model to detect positively
selected genes (PSGs) in marsupial branches. Three different
likelihood ratio tests were performed on the transition
lineage from a nocturnal to a crepuscular lifestyle (i.e., the
ancestral branch of Macropus) and all Macropus terminal
branches (Figure 2). RDH8 was positively selected along the
transition lineage, and eight PSGs (COL11A1, PDE6D, CNGB3,
GNAT2, PDE6A, PED6C, RPGR, and GUCA1A) were found
along Macropus (Supplementary Table 7). We conducted a
complementary analysis using aBSREL, yielding five PSGs
(ATP8A2, CNGA1, RDH8, RHO, and SEMA3A) along the
transition lineage and three PSGs (RHO, RPGR, and CNGA1)
in Macropus species (Supplementary Table 8).

Widespread species-specific amino
acid substitutions in the crepuscular
genus Macropus

We found 170 specific non-synonymous changes in 50
proteins in all Macropus lineages (Supplementary Table 9).
Seven genes (COL11A1, GUCA1A, PDE6A, PDE6C, RPGR,
DMD, and TMEM126A) possess both specific amino acid
residues and a positive selection signal. Twenty-five amino
acid substitutions in 15 proteins were predicted to be probably
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FIGURE 3

Divergently selected genes in marsupials with different activity patterns. (A) Omega (dN/dS) ratios of cone phototransduction pathway genes
(i.e., bright-light vision genes) of crepuscular and nocturnal marsupial lineages obtained using the PAML free-ratios model. We compared each
pair of groups by the Wilcoxon test (*P < 0.05). (B) Omega (dN/dS) ratios of rod phototransduction pathway genes (i.e., dim-light vision genes)
of crepuscular and nocturnal marsupials. We compared each pair of groups by the Wilcoxon test (**P < 0.01). (C) Overview of a shift in
selection pressure on vision genes between crepuscular and nocturnal marsupials using PAML clade model C. Blue dots indicate the omega
ratio of background nocturnal species, and yellow dots represent the omega ratio of crepuscular Macropus species. A green line between the
two dots indicates a significant P-value (LRT, P < 0.05).

deleterious by PROVEAN, and 44 sites in 29 proteins were
also predicted to be probably damaging (score ≥ 0.909) or
possibly damaging (0.447 ≤ score < 0.909) by PolyPhen-2
(Supplementary Table 9). In addition, 13 specific substitutions
in nine Macropus proteins were predicted to have damaging
effects using SIFT (score < 0.05) (Supplementary Table 9).
Notably, 17 substitutions in 13 genes (ARR3, CACNA2D4,
CCDC66, CLN5, DMD, GRK7, LAMC3, NTRK2, OPA1, OPTC,
PDE6A, RPGR, and TMEM126A) were identified by at least two
methods, and seven sites in four proteins (LAMC3: Y741H,
L620F, N473D, and D27N; OPTC: E67V; RPGR: E210G;
TMEM126A: F91L) were predicted to be damaging by three
methods. STRING analysis revealed that these proteins interact
with a relatively high degree of connectivity (P < 1 × 10−16,
Figure 4A and Supplementary Table 10) and show enrichment
for gene ontology (GO) terms, such as “sensory perception
of light stimulus,” “visual perception,” “opsin binding,”

“photoreceptor outer segment,” and “photoreceptor disc
membrane” (Figure 4B and Supplementary Table 10).

Discussion

Vision gene loss may be a marsupial
dim-light adaptation

Eighty years ago, Walls proposed the concept of a “nocturnal
bottleneck” in placental mammals, where these species evolved
a nocturnal lifestyle to avoid daytime activity during the
dinosaur era (Walls, 1942). This hypothesis is supported by
several lines of evidence, from early paleontological records to
more recent comparative genomics and phylogenetic studies
(Heesy and Hall, 2010; Borges et al., 2018). For example, when

Frontiers in Ecology and Evolution 07 frontiersin.org

https://doi.org/10.3389/fevo.2022.982073
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-10-982073 August 25, 2022 Time: 6:37 # 8

Tian et al. 10.3389/fevo.2022.982073

FIGURE 4

Protein interaction network and functional enrichment of vision genes with specific amino acid replacement in the crepuscular genus
Macropus. (A) Protein–protein interaction network generated using the STRING database. Lines between each node indicate inferred or
experimentally demonstrated biological associations. (B) Gene ontology (GO) term and Reactome pathway enrichments of genes examined
in (A).

placental mammals adopted nocturnality, they lost some vision-
related genes, such as the visual pigmentation genes RH2 and
SWS2, manifesting as dichromacy in most mammals (Gerkema
et al., 2013). Regressive evolution is widespread among the visual
systems of species that have invaded dim-light niches, including
caves (Policarpo et al., 2021), deep oceans (Meredith et al., 2013),
nocturnal environments (Wu et al., 2016), and subterranean
habitats (Kim et al., 2011; Emerling and Springer, 2014). It is
generally appreciated that marsupials have adapted to dim-light
conditions. However, studies have largely overlooked marsupials
despite the wide variety of species and ecological niches in this
group of mammals.

Retinal photoreceptor cells adjust their sensitivity to
allow photons to be transduced over a wide range of light
intensities. One mechanism of sensitivity adjustments is the
Ca2+ regulation of guanylate cyclase (GC) by GC-activating
proteins (GUCA1A and GUCA1B) (Figure 1). In the present
study, we found that two genes (GUCA1B and GUCY2F)
required for normal photoreception were lost in the marsupial
ancestor. Mouse knockout studies have shown that GUCA1A
and GUCA1B paralogs are capable of facilitating vision, and
GUCA1A restores the recovery of photoreceptor responses in
the absence of GUCA1B (Howes et al., 2002; Pennesi et al.,
2003). GUCY2F (GC2) is a retina-specific gene. No human
retinal disease is linked to a GUCY2F defect, and knockout mice
show normal electroretinographic responses (Baehr et al., 2007).
These results hint that GUCA1B and GUCY2F loss in marsupials
has a limited visual fitness consequence. RGR (retinal G-protein
receptor) was also lost in the ancestor of marsupials. RGR
is a non-rod or non-cone opsin localised to the membranes

of retinal pigment epithelium and Müller cells (Kumbalasiri
and Provencio, 2005). A study in Rgr-null mice demonstrated
that RGR is involved in generating 11-cis-retinaldehyde and
functions in the classical retinoid (visual) cycle (Chen et al.,
2001). Rgr-null mice show normal morphological development
and no apparent retinal degeneration in adults (Chen et al.,
2001). Thus, similar to the above finding, loss of marsupial RGR
is likely tolerated.

Several other visual genes (e.g., REEP6 and BBS4) are
inactivated in one or more marsupial species. Receptor
expression enhancing protein 6 (REEP6) belongs to the REEP
family of proteins and has been implicated in shaping tubular
organelles, such as the endoplasmic reticulum (ER) and Golgi.
Reep6 knockout mice exhibit progressive retinal degeneration
from disrupted ER homeostasis and protein trafficking (Agrawal
et al., 2017). This gene evolved under relaxed selection
in Vombatus ursinus and Trichosurus vulpecula. Both are
burrowing species: Vombatus ursinus spends long periods
resting in deep, thermally favorable burrows (Evans, 2008),
while Trichosurus vulpecula rests in hollow-bearing trees
(Cawthen and Munks, 2011). REEP6 loss might be an adaptation
for the dim-light habitat of these species. Furthermore, we
found that BBS4 is inactivated in all species of the carnivorous
Australian order Dasyuromorphia. Knockdown of Bbs4 in
mice is associated with photoreceptor cell damage and retinal
degeneration (Swiderski et al., 2007).

Interestingly, ATP Binding Cassette Subfamily A Member
4 (ABCA4) is pseudogenized in both species of gray kangaroos
(eastern gray kangaroo, Macropus giganteus, and western
gray kangaroo, M. fuliginosus). For example, the eastern
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gray kangaroo actively forages during both daylight and
twilight hours (Clarke et al., 1995), different from the red
kangaroo (M. rufus) and tammar wallaby (M. eugenii) also
examined here. Although the loss of ABCA4 in eutherian
mammals (trichromatic humans and dichromatic mice alike)
is associated with progressive vision loss (Al-Khuzaei et al.,
2021), we speculate that its pseudogenization facilitated the
evolution of diurnal foraging in a marsupial genus that is
ostensibly crepuscular.

Considering that gene losses or pseudogenization may occur
as an adaptation or because the gene function becomes obsolete
and the gene sequence drifts (Albalat and Cañestro, 2016),
we hypothesise that the above vision genes are functionally
redundant in marsupials, possibly owing to a decreased demand
to quickly regenerate photoreceptors in a nocturnal lifestyle.

Molecular evidence of a shift in
selection pressure of Macropus vision
genes

A previous study on deep-sea pearlside fishes reported
that their retina is composed almost exclusively of transmuted

cone photoreceptors, implying an adaptation to twilight light
conditions (de Busserolles et al., 2017). Even though Macropus
species, such as the tammar wallaby, are crepuscular animals,
they are active during the day to varying degrees (Hemmi and
Mark, 1998) and see discussion on ABCA4 above). Therefore, we
hypothesised that cone phototransduction genes of crepuscular
Macropus experienced shifts in selection pressure. We found
evidence for a burst of accelerated, positive, and divergent
selection on the branch leading to Macropus species and
the transition branch representing a nocturnal to crepuscular
activity pattern (Figure 5A), suggesting that there has been
some vision modifications along this branch since its emergence.
Most genes with selection shifts are bright-light genes and
have roles in photoconduction (e.g., CNGA1, CNGB3, GNAT2,
GUCA1A, PDE6A, PDE6C, PDE6D, RDH8, and RHO) or
are photoreceptors (e.g., COL11A1 and RPGR). Intriguingly,
several models revealed strong signals of selection on PDE6C
and GNAT2 along the ancestral branch of Macropus. We
also found two radical amino acid substitutions in Macropus
PDE6C (Figure 5B). PDE6C encodes the cone α subunit of the
cyclic guanosine monophosphate (cGMP) phosphodiesterase,
which converts cGMP to 5-GMP and plays an essential role
in cone phototransduction (Thiadens et al., 2009). At the

FIGURE 5

Five retinal phototransduction proteins have fixed amino acid substitutions in the crepuscular genus Macropus. (A) Venn graph of positively
selected genes, rapidly evolving genes, and divergently selected genes in genus Macropus. (B–F) Proteins with fixed amino acid substitutions in
Macropus. PDE6C (phosphodiesterase 6C, cGMP-specific, cone, and alpha prime), LWS (long wavelength-sensitive opsin), SWS1 (short
wavelength-sensitive opsin 1), OPA1 (OPA1 mitochondrial dynamin-like GTPase), and OPTN (optineurin). Top, overview of amino acid change
locations (functional domains were predicted using Pfam). Bottom, Multiple sequence alignments. The human sequence was used as the
alignment reference.
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level of the phototransduction cascade, the Gα subunit of
transducin is critical for signal transduction (Chabre et al.,
1988). GNAT2 encodes cone-specific G-protein transducin
alpha subunit, and loss of Gnat2 expression in mice abolished
cone phototransduction (Ronning et al., 2018). In addition, we
found one positively selected and accelerated cone-expressed
gene, CNGB3. This gene encodes the β subunit of the cyclic
nucleotide-gated channels in cone photoreceptors (Wu et al.,
2016). The strong positive selection of this gene may enhance
the photoresponse and visual acuity of Macropus species. Taken
together, these genes may serve to optimise the vision of
Macropus for a twilight environment.

Retinal opsin photopigments initiate mammalian vision
when stimulated by light (Figure 1). It is interesting to note
that LWS, a long-wavelength sensitive opsin, was positively
selected in the Macropus ancestor. In addition, we found
two radical amino acid replacements (sites 248 and 277) in
the LWS cytoplasmic domain (Figure 5C). Among these,
the Y277F substitution is associated with a short-wavelength
shift in mammals (Yokoyama and Radlwimmer, 2001; Davies
et al., 2012). Twilight is primarily characterized by relative
enrichment of shorter wavelength light (Roenneberg and
Foster, 1997). We propose that Macropus LWS, with positively
selected radical amino acid changes, may increase photon
absorption in a twilight environment. Short wavelength-
sensitive opsin 1 (SWS1) is also intriguing. It has been
suggested that mammal SWS1 amino acid residue changes
are associated with photic niche adaptation by spectral tuning
(Emerling et al., 2015). SWS1 of different species has a peak
absorption wavelength (λmax) that range from ultraviolet-
sensitive (UVS) to violet-sensitive (VS) (Hunt and Peichl,
2014). We found that all nocturnal marsupial SWS1 proteins
harbor F86 and T93 substitutions (Figure 5D), suggesting
that these species may have UVS pigments. In contrast, all
Macropus species and Vombatus ursinus are more likely to
have VS pigment due to their SWS1 possessing Y86 and
T93 (Figure 5D). In agreement with a previous hypothesis
on mammalian SWS1 evolution (Emerling et al., 2015),
our finding supports a scenario where nocturnal marsupials
have UVS pigments to facilitate the detection of a broader
spectrum of light while crepuscular Macropus species evolved
reduced UV lens transmittance to limit the retina exposure
to damaging UV light and improve visual acuity under
twilight conditions.

Finally, several genes (e.g., OPA1 and OPTN) with
Macropus-specific amino acid sites are associated with
the development and integrity of the retina. OPA1 (OPA1
mitochondrial dynamin-like GTPase) encodes a dynamin-
related mitochondrial protein essential for retinal ganglion
cell synaptic architecture and connectivity (Williams
et al., 2012). OPA1 deficiency has been associated with
increased autophagy in retinal ganglion cells in a murine
model of dominant optic atrophy (White et al., 2009).

Three radical amino acid substitutions (residues 245,
246, and 676) were identified in Macropus OPA1. One
was predicted to be deleterious using PROVEAN and
Polyphen-2 (Figure 5E and Supplementary Table 9, T676A).
OPTN (optineurin) has two amino acid substitutions
in Macropus (Figure 5F). Optineurin is an autophagy
receptor (Sarfarazi and Rezaie, 2003). Considering that
the retina of Macropus species, such as tammar wallaby,
shows a high ganglion and cone cell density (Hemmi and
GRUeNERT, 1999; Wimborne et al., 1999), the OPA1 and
OPTN amino acid changes may confer neuroprotection or
improve visual acuity.

Conclusion

This study provides new insights into the molecular
evolution of marsupial vision. While a limited number of
marsupials have been genetically sequenced to date, the genomes
of many species are forthcoming (reviewed in Deakin and
O’Neill, 2020) and should enable a photic niche survey across
the diverse marsupial taxonomy. Further research is also
required to determine whether the gene changes identified have
a functional significance. Our work provides a gene set that can
now be tested in various animal models, including marsupials
(Kiyonari et al., 2021).
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