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Beijing-Tianjin-Hebei urban agglomeration (BTH), Yangtze River Delta (YRD),

and Pearl River Delta (PRD) are the most important economic hinterlands

in China, offering high levels of economic development. In 2020, their

proportion of China’s total GDP reached 39.28%. Over the 5 years of 2014–

2018, the annual maximum air quality index (AQI) of the three major urban

agglomerations was greater than 100, thus maintaining a grade III light

pollution (100 < AQI < 200) in Chinese air standards. This research thus

uses a two-stage empirical analysis method to explore the spatial-temporal

dispersal physiognomies and spillover effects of air quality in these three major

urban agglomerations. In the first stage, the Kriging interpolation method

regionally estimates and displays the air quality monitoring sampling data. The

results show that the air quality of these three major urban agglomerations is

generally good from 2014 to 2018, the area of good air is gradually expanding,

the AQI value is constantly decreasing, the air pollution of YRD is shifting

from southeast to northwest, and the air pollution of PRD is increasing. The

dyeing industry shows a trend of concentration from northwest to south-

central. In the second stage, Moran’s I and Spatial Durbin Model (SDM) explore

the spatial autocorrelation and spillover effects of air quality related variables.

The results show that Moran’s I values in the spatial autocorrelation analysis

all pass the significance test. Moreover, public transport, per capita GDP,

science and technology expenditure, and the vegetation index all have a

significant influence on the spatial dispersal of air quality in the three urban

agglomerations, among which the direct effect of public transport and the
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indirect effect and total effect of the vegetation index are the most significant.

Therefore, the China’s three major urban agglomerations (TMUA) ought to

adjust the industrial structure, regional coordinated development, and clean

technology innovation.

KEYWORDS

urban agglomeration, air quality, spillover effect, spatiotemporal variation, Kriging
interpolation

Introduction

The air pollution has been brought to the fore by
data as the rapid progress of society. The United Nations
mentioned1, “If the world does not act now, and forcefully, the
catastrophic effects of climate change will be far greater than the
current pandemic.” Climate change continues to exacerbate the
frequency and severity of natural disasters, which affected more
than 39 million people in 2018, resulting in deaths, disrupted
livelihoods and economic losses (The United Nations, 2020).
A joint report published by the World Bank and the Institute for
Health Metrics and Evaluation pointed out that air pollution has
become the deadliest type of pollution and the fourth largest risk
factor for premature death in the world (World Bank Group,
2016). Data provided by the World Health Organization reveals
that nine-tenths of global people breathe air with high pollutant
concentration. In Ten threats to global health in 2019, WHO
ranked air pollution and climate change in first place.

In recent years, China’s air quality has been gradually
improving, but the situation is still grim. Among the 161
prefectural and above cities that promoted new air quality
standard monitoring in 2014, only 16 cities reached the air
quality standard, while 90% cities exceeded the standard.2

The China government has also formulated corresponding
measures, promulgating Air Pollution Prevention and Control
Action Plan, Law of the People’s Republic of China on the
Prevention and Control of Atmospheric Pollution, and Three-year
action plan to fight air pollution from 2013 to 2018. In 2019,
among 337 prefectural and above cities in China, only 157 cities
met ambient air quality standard, accounting for 46.6% of the
total cities, while the ambient air quality of 180 cities went off
the standard, accounting for 53.4%.3 Due to the large amounts
of CO2 and SO2 emissions, acid rain frequently appears in the
east of the Yunnan Guizhou Plateau to the south of the Yangtze
River,4 seriously polluting the soil, causing the land to be acid
and saline, reducing agricultural output, and threatening the
safety of water sources.

The three major urban agglomerations in China (BTH,
YRD, and PRD) are seated in the northern, eastern coastal,
and southern parts of China, respectively, covering the nation’s
political, economic, and cultural centers and 4 of its first-tier

cities. The regional GDP of BTH, YRD, and PRD, respectively,
hit 8.6 trillion, 21.5 trillion, and 9.7 trillion Yuan, accounting
for 39.28% of Chinese GDP in 2020. The three have become
large city groups with world-class influence in China and
even in the world.

As a result of to the mobility of air, both air quality and air
pollution in various regions are undergoing dynamic changes.
Air pollutant spills from some heavily polluted cities lead to a
decrease of air quality of surrounding cities, and geographical
and climate factors also promote or inhibit the dispersion of air
pollutants. BTH in this study is bounded by Bohai Sea in the
east, Taihang Mountains in the west, and Yanshan in the north.
The terrain is low in the southeast and high in the northwest,
which is not conducive to air pollution diffusion of cities in the
northwest. YRD is an alluvial plain formed before the Yangtze
River enters the sea. It is adjacent to the East China Sea and the
Yellow Sea, and is located at the intersection of its named river
and ocean. Flat topography facilitates the spread of air pollution.
The urban agglomerations of Pearl River Delta are surrounded
by hills, mountains, and islands, and the central part is a plain.
The large fluctuation of the ground terrain limits the spread
of air pollution.

Any study of regional air quality problems therefore
must take into account the differences in their time and
space distribution in order to obtain more real and effective
information. Some Chinese researchers conducted on the
time-space distribution characteristics of air quality for urban
agglomerations via multiple indicators. Guo et al. (2019)
summarized the spatial and temporal evolution characteristics
of air quality in 20 urban agglomerations in China from
2015 to 2017. Chen et al. (2017) used spatial interpolation
technique, correlation analysis and GIS to study the spatial-
temporal distribution characteristics of the concentrations of
air pollution factor and AQI in YRD. Apart from China, most
existing international research studies on the time and space
differences of air pollution take a single city or region or most
prefecture level-cities as their object or study a single indicator.

Different from these studies above, this research breaks
through the above limitations and makes the following
innovations. (1) Two-stage empirical analysis is adopted to fully
consider the spatial and temporal distribution differences of air
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quality among the three major urban agglomerations. In the
first stage, Kriging interpolation method shows the time-space
changes of the air quality index (AQI) of Chinese three major
urban agglomerations spanning 2014–2018. In the second stage,
Moran’s I and SDM models assess the spatial correlation and
spillover effect of air quality-related factors. (2) The selection
of air quality indicators is more comprehensive and rigorous.
In the first stage, specific indicators of air quality such as
AQI, SO2, PM2.5, and PM10 are selected for analysis one
by one. In the second stage, industrialization level (Indus),
foreign direct investment (FDI), technology expenditure (Tech),
population density (population), built-up area (area), public
transport (transport), and a normalized differential presence
index (NDVI) are selected along with other influencing factors
to evaluate the spatial spillover effect of air quality. (3) We
select Chinese three most representative urban agglomerations
to study the time and space differences and spillover effects
of air pollution and thus break through the limitations of
existing research on a provincial administrative region or single
city level. This runs in line with the current rapid progress
of urbanization process in China as well as its long-term
plan to integrate into the global urbanization process in the
future. This research provides a reference for other regions in
China to control air pollution and also offers a representative
case for the air pollution literature covering the world’s urban
agglomerations. Figure 1 presents the structure of this study.

Literature review

Spatiotemporal variation about air
quality

The existing research on air quality is mainly divided into
single index and multiple indexes. In terms of single index, most
scholars (Huang et al., 2015; Wen et al., 2018; Zhao et al., 2019;
Chen X. et al., 2020; Dai et al., 2020; Zhang et al., 2020; Yu
et al., 2021) selected PM2.5 as the research index. A few scholars
(Jiang et al., 2014; Wu et al., 2019) studied from the perspective
of API Pu et al. (2017) selected AQI for research. In terms
of multiple indicators, there are few researchers and different
perspectives. Some scholars (Xie et al., 2015; Mao et al., 2020)
selected PM2.5, PM10, SO2, NO2, CO and O3 for research.
Shi et al. (2020) selected PM2 5 and meteorological parameters.
Zhao et al. (2020) selected PM2.5 and O3 for analysis. There are
certain limitations in the selection of indicators of these results,
which fail to comprehensively study the regional and temporal
and spatial differences of air quality in combination with the
indicators of influencing factors.

In terms of the selection of research objects, there are
more achievements in single cities and multiple cities, but less
in urban agglomerations. Some scholars (Huang et al., 2015;
Mao et al., 2020; Zhang et al., 2020; Yu et al., 2021) have studied

single cities or provinces in China. The research of most scholars
(Xie et al., 2015; Jassim and Coskuner, 2017; Fan et al., 2019;
Chen X. et al., 2020; Dai et al., 2020; Wang et al., 2020; Zhao
et al., 2020) is based on the overall region. Yang et al. (2020)
studied the Yangtze River Delta and found that the degree of
urbanization was positively correlated with the concentration
of PM2.5, while negatively correlated with the change trend
of PM2.5 concentration. Xue et al. (2020) found that the
environmental governance of eight urban agglomerations in
China has a response lag of at least 1 year, and it takes a long
time for regional internal governance and external collaborative
governance to fully affect the concentration of PM2.5. Wang
and Fang studied the urban agglomeration around the Bohai
Sea and found that the concentration of PM2.5 showed obvious
spatial variation and aggregation, and the per capita GDP,
urbanization rate and urban construction were closely related
to the concentration of PM2.5 (Wang and Fang, 2016). Li X. L.
et al. (2019) studied the central Liaoning Urban Agglomeration
and Harbin Changchun urban agglomeration, and found that
the regional transportation of air pollutants between urban
agglomerations in Northeast China is common.

Spillover effects about air quality

At present, there are few studies on the air quality spillover
effect in the existing studies, and the research directions and
perspectives are different.

Part of the research is to show the empirical results of the
spillover effects of various air pollution indicators in different
regions. For example, Hoti et al. (2005) for the research of
atmospheric carbon dioxide concentrations between Asia and
South West Pacific shows that the spatial correlation between
the two is almost zero; The research of Zheng et al. (2018), Fang
et al. (2019), Li H. et al. (2019), and Ma et al. (2019) shows
the spillover effects of PM2.5 concentration, CO2 emission, SO2
emission and other air indicators in different degrees within and
between regions.

To summarize, the above research shows the spillover effect
of various atmospheric indicators on a regional scope, but they
only stop at displaying the data. There is no further research on
the deep-seated reasons behind the phenomenon.

Most other studies have further sunk, focusing on the
factors that affect the air quality spillover effect. Zhang et al.
(2018) studied the spillover effect of supply chain transmission
on SO2 emissions; Chen and Ye (2019) studied the influence
of wind direction on PM2.5 concentration and its spillover
effect; studied the spillover effect of cement production on air
pollution; Du et al. (2018), Xiong et al. (2018), and Song et al.
(2020) all studied the spillover effect from the perspective of
economic development or urbanization level. Chen W. et al.
(2020) considered the impact of agricultural industry factors
on this basis, and obtained research results similar to those of
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FIGURE 1

The research framework.

the above scholars: the improvement of economic development
or urbanization level has increased the spillover effect of air
pollution; Jeffrey (2017), Huang et al. (2018), and Tong et al.
(2020) studied the spillover effect of environmental regulations
and policies on air quality governance; Among them, the
conclusions of Fang et al. (2019) and Tong et al. (2020) are
similar, that is, the reduction of pollution emissions in the
target area is at the cost of the increase of pollution emissions
in surrounding areas. Liu et al. (2020) studied the air quality
changes and spillover effects during the Covid-19 epidemic
blockade. The results showed that human flow, economic
activities and other factors were closely related to air pollution
and its spillover effects.

To summarize, human mobility, economic activities, and
other factors closely relate to air pollution and its spillover
effects. The above studies have explored the influencing factors
of the spillover effect phenomenon and put forward relevant
improvement suggestions, but index selection is only single or
external influencing factors, thus having a certain degree of
singleness. In contrast, this study involves an exploration of the
internal influence of multiple air pollution indicators, in order
to uncover the mutual influence relationship between various
pollutants. The conclusion of Tong et al. (2020) is similar to
that of Fang et al. (2019)—that is, the reduction of pollution
emissions in the target area comes at the cost of increasing
pollution emissions in the surrounding area.

Various studies on air quality spillover effect have achieved
different results, but few of them take urban agglomeration as
the research object. In addition to Xiong et al. (2018) taking 29
prefecture level cities in the Central Plains urban agglomeration
as the research object and Song et al. (2020) taking the Bohai

economic circle as the research object, Du et al. (2018), Li H.
et al. (2019), and Tong et al. (2020) selected some cities in China’s
Representative Beijing Tianjin Hebei, Yangtze River Delta and
Pearl River Delta as the research object.

To summarize, various aspects of the literature on the
spillover effect of air quality have achieved different results,
but there are few studies on the spillover effect of urban
agglomeration. The development scale and air pollution
problems of TMUA are quite typical for other global urban
agglomerations. Taking TMUA as the research object, this paper
analyzes the air quality spillover effect, in order to obtain
conclusions and suggestions that have guiding significance for
global air pollution control.

Review of methods

Kriging method
Kriging Method is a linear unbiased optimal estimation

method for variables in a limited region. Based on the
variogram, this method takes into account not only the
positional relationship between the estimation points and the
observation data points, but also their spatial relationship.

In the existing research on air quality, scholars mostly
use three Kriging models: Ordinary Kriging (OK), Universal
Kriging (UK) and Bayesian Kriging (BK), in which Universal
Kriging (UK) also includes Kriging with an external drift (KED).
The use of ordinary Kriging is simple and convenient, with
significant flexibility. For example, Bayraktar and Turalioglu
(2005), and Pinto et al. (2020) all use ordinary Kriging. When
the trend value in the model is expressed as a linear function of
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spatial coordinates and the regression coefficient is unknown,
original Kriging evolves into Universal Kriging, such as the
research of Wolterbeek and Verburg (2004) and Mercer et al.
(2011). Kriging with an external drift method allows the
inclusion of exogenous variables on the basis of Universal
Kriging, such as Kassteele and Velders (2005), Kassteele and
Stein (2006), Ignaccolo et al. (2014), Maxime et al. (2017, 2018)
methods used in research. The Bayesian Kriging method divides
the data used for spatial estimation into observation data and
guess data according to accuracy and quantity, such as the
method used by Kassteele et al. (2009) and Vicedo-Cabrera et al.
(2013) in the study.

Spatial Durbin model
Due to the spatial correlation and spillover effect of air

pollution, SDM model is widely used in the related research
of air quality assessment. In addition, SDM model contains the
spatial lag term of explanatory variables, which helps to reduce
the bias caused by missing variables in empirical analysis.

For example, Feng et al. (2018) used SDM model to study the
impact of air pollution control on urban environment; Feng and
Wang (2019), Jiang et al. (2019) and Lv et al. (2019) used SDM
to study the correlation between urbanization level and haze
pollution and energy consumption; Long et al. (2020) and Xie
et al. (2020) studied green finance in the Yangtze River economic
belt; In addition to spatial autocorrelation, more SDM models
have been used to study the spillover effect of air quality, such as
the study of PM2.5 spillover effect on air quality improvement
by Tong et al. (2020), the study of the impact of air pollution
spillover effect on public health by Chen et al. (2016), and the
study of carbon emission spillover effect of Bohai rim economic
circle by combining Moran’s I with SDM by Song et al. (2020).
Wu and Pu (2020) and Yang and Xu (2020) studied the impact
of air pollution on income level through SDM.

Although the Kriging interpolation method and SDM are
becoming more and more mature in the current research, there
are few results from combining them. In the first stage, the
Kriging interpolation method shows the temporal and spatial
changes of AQI of TMUA from 2014 to 2018. In the second
stage, SDM helps study the spillover effects of air quality-related
factors, and Moran’s model analyzes the spillover effects. We
show its spatial autocorrelation, which has a breakthrough in
research object and research method, in order to contribute
new results and conclusions to the research of air quality for
world-class urban agglomerations.

Research methods

Kriging method

Kriging interpolation is a common statistical analysis
method in spatial statistics, which is widely used in

Environmental Science, atmospheric science and other
observation data. Kriging interpolation method, also known as
spatial local interpolation approach, is an impartial optimum
estimation of regionalized variables in a partial area based
on variogram theory and structural analysis. If the results
of variogram and structure analysis show that there is
spatial correlation between regionalized variables, Kriging
interpolation can be used for interpolation or extrapolation.
Its core is to use the original data of regionalized variables
and the structural characteristics of variogram to make
linear impartial optimum estimation of unknown sample
points. Impartial means that the mathematical expectation
of deviation is 0, and optimum means that the sum of
squares of the difference between the estimated value
and the actual value is the minimum. Therefore, Kriging
interpolation method is known sample points in the
limited unknown sample field. By considering the shape,
size, spatial direction of the sample points and the spatial
relationship with the unknown sample points, the linear
unbiased optimal estimation of the unknown sample points
is carried out, and the structure information provided by the
variogram is obtained.

The specific calculation formula runs as follows:

Z(x0) =

n∑
i=1

λiZ(xi) (1)

In formula (1), Z(xi) is the value of the ith meteorological
datapoint; n is the total number of interpolation points; λi

is the weight value of the ith meteorological datapoint; and
Z(x0) is a datapoint.

Spatial autocorrelation model

This paper shall explain the possible spatial lag, spatial
error, and SDM. Before setting a specific spatial econometric
model for estimation, we need to confirm the existence
of spatial correlation and construct the Moran index
statistics for verification. If the test based on LM statistics
rejects the non-spatial model and accepts the spatial
lag model or spatial error model, then Lesage and Pace
(2009) recommend to use SDM and extend the spatial
lag to the model with spatial lag explanatory variables.

yit = ρWt’
i yt + Xt’

itβ+ µi(optional)+ ξt(optional)+ εit (2)

yit = Xt’
itβ+ µi(optional)+ ξt(optional)+ φit

φit = λ

N∑
j=1

Wijφij + εij (3)
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yit = ρ
∑

Wijyij + Xt’
itβ+ ρ

∑
WijXijt + µi(optional)

+ ξt(optional)+ εit (4)

In formula (2), yit is the explained variable of observation
unit I in time t, Xt’

it is the ith line of explanatory variable, Wij is
the pre-set non-zero n∗n spatial matrix, λ is the autocorrelation
coefficient of the spatial disturbance term, and µi and ξt

correspond to spatial and temporal effects, respectively. In

formula (3), W
′

i yt =
N∑

j=1
Wijyij is the spatial interaction term

between yit and its adjacent unit yit , and the spatial effect
controls all undetermined non-time-varying variables of spatial
units. In formula (4), SDM can be used to test the hypothesis:
H:θ = 0 and H:θ = θ + ρβ = 0. The first hypothesis test examines
whether SDM can be simplified as a spatial lag model, while the
second hypothesis test examines whether it can be simplified as
a spatial error model. If both hypotheses are rejected, then SDM
can better describe the spatial spillover effect of air pollution.

Data sources and description

Table 1 lists the predicted variable and explanatory variables
we use in this paper.

Specifically, the choices of FDI indicator and Built-up area
indicator in this paper are explained here:

1) Copeland and Taylor (1994) and Javorcik and Wei (2004)
theoretically verified the existence of the “Pollution Haven
Hypothesis” by studying the relationship between foreign
trade and environmental pollution. Their results show that
FDI has a significant impact on environmental pollution.
2) This paper chooses built-up area to represent the
urbanization level of a certain region. As urbanization
will lead to the increase of industrial pollution and
the destruction of vegetation, there is no doubt that
urbanization will worsen the air quality.

The research samples are collected from 60 cities in TMUA.
The relationships between urban agglomerations and the cities
appear in Table 2.

Statistical analysis of indicators

Figures 2A–D shows a bar graph of statistical indicators
for 4 variables: GDP, industrialization level, technology
expenditure, and NDVI. As shown in Figure 2A, the mean
value of GDP shows a gradual upward trend at an average
annual increase rate of 6.68% in 2014–2018. The maximum
value steadily increases, with an average annual increment
of more than RMB 10,000. The minimum value slightly
increases, and the standard deviation gradually increases. This

TABLE 1 Predicted and explanatory variables.

Variable category Included variables

Predicted Variable Air quality index (AQI)

Explanatory Variables GDP per capita (GDP)
Industrialization level (indus)
Foreign direct investment (FDI)
Technology expenditure (tech)
Population density (population)
Built-up area (area)
Public transport (transport)
Normalized difference vegetation index (NDVI)

Variables’ choices are based on logical feasibility, scientificity, objectivity,
and accessibility.
Data sources are CEIC database, China City Statistical Yearbook 2015–2019, and Data
Center of Resources and Environment Science, Chinese Academy of Sciences.
Air quality index (AQI): It is used to denote how polluted the air currently is or how
polluted it is forecast to become.
GDP per capita (gdpper): The ratio of a country’s gross domestic product to its resident
population within 1 year. Unit: RMB.
Industrialization level (indus): It refers to the total output value of industries above a
designated size. Unit: 100 million RMB.
Foreign direct investment (FDI): An investment in which an enterprise operating
in a country other than the investor’s home country has a continuing interest.
Unit: US$ million.
Technology expenditure (tech): The proportion of science and technology in the total
government budgetary expenditure. Unit: percent.
Population density (population): Population per unit area. Unit: person/km2 .
Built-up area (area): An area that has been developed and constructed public facilities.
Unit: km2 .
Public transportation (transport): The actual number of buses (electric vehicles)
operating at the end of the year. Unit: vehicle.
Normalized difference vegetation index (NDVI): One kind of graphical indicators used
to assess whether the target being observed contains live green vegetation.

illustrates that the overall level of GDP is rising, but the
three major urban agglomerations show obvious polarization
in GDP.

As is demonstrated in Figure 2B, the mean value of indus
shows a slow upward trend at an average annual increase
rate of 4.03% in 2014–2018. The maximum value decreases
slightly in 2015–2016, by 2.84% and 0.60%, respectively, and
continues to increase in 2017–2018. The minimum value
remains basically unchanged and at a low level. The rising
trend of standard deviation is distinct. This explains that cities
with a higher level of industrialization are improving, while
the development of cities with a lower level is stagnant. The
gap in industrialization level between cities has a trend of
further widening.

As can be seen from Figure 2C, tech on average increase
steadily in 2014–2018 at an average annual growth of 5.83%. The
maximum value has an upward trend of fluctuation, or 0.0321
higher in 2018 than in 2014. The minimum value is always at a
low level. With the increase of the maximum value, the standard
deviation also increases. This shows that scientific expenditure
has an upward trend.

As is exhibited in Figure 2D, the average value of NDVI
shows slight increase during 2014–2018, with the maximum
value unchanged. The minimum shows a steady upward trend.
The standard deviation basically remains unchanged. It shows
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TABLE 2 China’s three major urban agglomerations and included cities.

Urban agglomeration Included cities Total

Beijing-Tianjin-Hebei Metropolitan Region Beijing, Tianjin, Baoding, Tangshan, Langfang, Shijiazhuang, Qinhuangdao,
Zhangjiakou, Chengde, Cangzhou, Hengshui, Xingtai, Handan

13

Yangtze River Delta Shanghai, Nanjing, Wuxi, Changzhou, Suzhou, Nantong, Yangzhou,
Zhenjiang, Yancheng, Taizhou (in Jiangsu), Hangzhou, Ningbo, Huzhou,
Jiaxing, Shaoxing, Jinhua, Zhoushan, Taizhou (in Zhejiang), Hefei, Wuhu,
Maanshan, Tongling, Anqing, Chuzhou, Chizhou, Xuancheng, Bengbu,
Lu’an, Huangshan, Huaibei, Fuyang, Bozhou

32

Pearl River Delta Guangzhou, Foshan, Zhaoqing, Shaoguan, Qingyuan, Yunfu, Shenzhen,
Dongguan, Huizhou, Shanwei, Heyuan, Zhuhai, Zhongshan, Jiangmen,
Yangjiang

15

A B

C D

FIGURE 2

Statistical analysis of indicators.

TABLE 3 Average of FDI, population, area, and transport.

2014 2015 2016 2017 2018

FDI 215749.7333 214459.0333 244746.9167 227814.1500 232394.3167

Population 633.6265 638.4457 644.8849 652.5088 659.7333

Area 236.8167 246.1018 255.3000 261.8667 272.5932

Transport 3022.8667 3320.8667 3499.5000 3618.5500 3764.9500
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that the NDVI level is relatively high at the current stage, and
backward cities have steadily improved.

In addition to the above indicators, we also selected FDI,
population, area and transport. indicators for analysis (Table 3).
The overall FDI level is low, showing a straight line decline in
2017–2018. The population and the area are similar, showing a
slow development trend as a whole. The gap between cities in
terms of public transport is widening.

Research results and analysis

Overall analysis of key air pollutant
indicators

Figures 3A–D help provide an overall analysis of the four air
pollution indicators of AQI, PM2.5, PM10, and SO2 in the three
major urban agglomerations.

From Figure 3A the average AQI shows a downward trend
in 2014–2018. Except for the flat part in 2016–2017, BTH has
a downward trend and the largest annual decrease of 8.28%.
There are fluctuations in both YRD and PRD, with a small
decrease. From a numerical perspective, the AQI values of YRD
and PRD have been maintained at level two standard (51–
100), of which PRD’s is lower. The AQI value of BTH is at
level three standard (101–150) in 2014–2017, but improved to
level two in 2018.

Figure 3B depicts that the average PM2.5 emissions show
a downward trend in 2014–2018. The PM2.5 emissions of
BTH are declining for 5 years, with an average annual
decrease of 13.48%. The PM2.5 emissions of YRD shows
a downward trend, with a decrease of 10 over 5 years,
except for 2015. The PM2.5 emissions of PRD decreased
significantly in 2015 and 2018 and remained the same in
2016 and 2017. In terms of value, the lowest PM2.5 in
PRD decreased to below 30 in 2018, followed by YRD to
41 in 2018, and PM2.5 in BTH fell to 51 by 2018, nearly
approaching that of YRD.

From Figure 3C we see that the average PM10
emissions decrease steadily over 2014–2018. The PM10
emissions of BTH continue to decline for the 5 years,
with a significant annual drop of 12.11%. The PM10
emissions of YRD and PRD decrease slightly, staying
the same in 2016 and 2017, with an annual decrease
of 7.83% and 6.92%, respectively. From the numerical
perspective, the concentration of PM10 in PRD is the
lowest, followed by YRD, and the highest is in BTH.
Although the decrease is significant, there is still a certain
gap between BTH and YRD.

Figure 3D illustrates that the average SO2 emissions
decreased significantly during 2014–2018. The SO2 emissions
of BTH decreased in a straight line, with an average annual
decrease of 24.08%. YRD and PRD also decreased for

5 years, but at a relatively slow decrease, reaching 17.85%
and 16.02%, respectively. In terms of value, in 2014 BTH
was above 50, while YRD and PRD were both around
20. In 2018, YRD and PRD were around 10, and BTH
dropped to 17.0897.

Combining Figures 3A–D, we note that BTH has
the most serious pollution, but the highest governance
efficiency. The efficiency of air pollution control in YRD
and PRD is similar, and the air quality in PRD is the
best. In terms of the four air pollution indicators, SO2
treatment is the best, followed by PM2.5 and PM10.
Although AQI is decreasing, the drops in YRD and PRD
are not significant.

Time and space evolution trend of air
quality index

AQI is a dimensionless index to quantitatively describe air
quality issued in 2012. The index includes hourly measurements
of 6 pollutants: PM10, PM2.5, O3, CO, SO2, and NO2.
As the most authoritative and commonly used air quality
monitoring indicator in China, the analysis of the time-
space evolution trend of AQI values is one of the most
significant measures to evaluate the air pollution status
of the three major urban agglomerations. Figures 4A–I
show the AQI spatial distribution of Kriging interpolation
in 2014, 2016, and 2018, respectively, with the help of
Arcgis10.3 software.

From the angle of spatial distribution, the AQI value of
BTH gradually increased from the north to the south in 2014,
but nearly one-third of the areas were excellent. The AQI
value of the southernmost city was the highest, and its air
pollution was relatively serious. From the perspective of time
evolution, the excellent areas in the northern part of BTH
continued to extend in 2014–2018. Although air pollution
in the southern area is still grave, most serious areas have
gradually decreased.

Spatially, in 2014 the AQI value of YRD in the central cities
was the highest, while the AQI values of the western and eastern
coastal areas were better. The overall air pollution is relatively
serious. Temporally, the most severe areas of YRD gradually
transferred to the northwest in 2014–2018, the air pollution
of southeast cities and some southern cities gradually became
better. The most severe areas are shrinking, and overall urban
agglomeration turned better.

From the spatial distribution, in 2014 the highest AQI values
of the central cities and the northern cities in PRD were on the
high side, while the values of the southern and eastern cities was
at a low level, and the overall air pollution was relatively low.
From the perspective of time evolution, the central and southern
cities with more serious air pollution in PRD are increasing and
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FIGURE 3

Changes of key air pollutant indicators.

have been on the high side in 2014–2018. The air conditions in
other areas of PRD have improved and performed well.

As a whole, the pollution in YRD and BTH is relatively
serious. Moreover, areas with serious pollution in BTH are
relatively fixed, and there is a trend of gradual reduction.
The air pollution in most areas of the YRD city group was
serious in 2014, and the number of cities with serious pollution
was reducing in 2016–2018, mainly reflected in the transfer
of pollution from the east to the northwest. The pollution
of the whole city group is still severe. PRD performed the
best among the three. Except for the most polluted cities
with pollution, other cities have gradually improved and
presented a good trend.

Spatial effect analysis

In this section we use two-stage data analysis on
spatial correlation and spillover effects using the spatial
econometric model.

Spatial correlation test
Before using a spatial econometric model to analyze the

data, we need to study the spatial connection test between AQI
and explanatory variables to prove the requirement of using
the spatial econometric model. This study uses Moran’s I to
explore the spatial model of regional air quality so as to show
the spatial correlation and spatial differentiation of air quality in

three major urban agglomerations and to show the resemblance
of specific feature values in adjoining regions.

Moran’s I is a description of the correlation degree of
attribute values of units with similar or adjacent spatial distance.
The test is to evaluate the existence of associations that have
known certain attributes and must have spatial attribute data
arrays, and finally determine whether there is clustering, discrete
or random pattern data distribution in space.

Morant’s I =
n

∑n
i=1

∑n
j=1 Wij(xi − x̄)(xj − x̄)∑n

i=1
∑n

j=1 Wij(xi − x̄)2
(5)

Moran’s I can show the spatial correlations between
variables and infer the overall distribution of values in space.
The adjacency space weight matrix is adopted here. For example,
adjacency is 1 and non-adjacency is 0. Its specific calculation
is shown in formula (5). N means the spatial samples in here,
subscripts i and j shows different regions, x is the average value
of the observed characters of the spatial unit, s is its standard
deviation, and Wij represents the elements in row i and column
j of the n∗n-dimensional space weight matrix.

The results of Moran’s I are in Table 4. We see from Table 4
that Moran’s I of AQI and each explanatory variable are greater
than 0, and there is a significantly positive correlation between
2014 and 2018. Among them, Moran’s I of AQI and per capita
GDP fluctuate at a high level, indicating that AQI and GDP per
capita present a high spatial autocorrelation, while population
density, built-up area, and public transport fluctuate at a low
level, indicating that they present weak spatial autocorrelation.
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FIGURE 4

AQI spatial distribution by Kriging interpolation. (A–C) The BTH urban agglomeration. (D–F) YRD urban agglomeration. (G–I) The PRD urban
agglomeration.

Moran’s I of science and technology expenditure from 2014 to
2015 shows a high spatial autocorrelation. However, according
to the original data, the proportion of science and technology
expenditure does not increase significantly, but per capita GDP
does show significantly positive growth, considering that the
rise in per capita GDP led to a significant increase in the
spatial autocorrelation of science and technology expenditure.
Moran’s I of other variables show a trend of shock from 2014 to
2018. Therefore, we cannot use the traditional OLS regression
estimation, but instead should use the spatial econometric
model for analysis.

Double fixed effect model test
Table 5 presents the results of selecting the fixed effect

model and random effect model by the Hausman test. The
results of the LR test show that the P value of double fixed
and regional fixed comparison is 0.5667, which supports the
hypothesis of adopting the regional fixed effect model at the 1%

TABLE 4 Results of Moran’s I.

Variable 2014 2015 2016 2017 2018

AQI 0.742*** 0.774*** 0.759*** 0.692*** 0.647***

gdpper 0.750*** 0.645*** 0.792*** 0.724*** 0.802***

indus 0.524*** 0.522*** 0.509*** 0.472*** 0.450***

FDI 0.429*** 0.391*** 0.496*** 0.478*** 0.354***

tech 0.129** 0.548*** 0.455*** 0.532*** 0.460***

population 0.219*** 0.216*** 0.214*** 0.213*** 0.220***

area 0.226*** 0.254*** 0.297*** 0.305*** 0.279***

transport 0.191*** 0.214*** 0.218*** 0.216*** 0.208***

NDVI 0.438*** 0.433*** 0.471*** 0.442*** 0.437***

The symbols ** and *** represent significance at 5% and 1% levels, respectively.

significance level. The P value of double fixed and time fixed
comparison is 0.0000, which rejects the hypothesis of adopting
the time fixed effect model at the 1% significance level. Due
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TABLE 5 Hausman test.

Inspection type Statistics P value Conclusion

LR test (comparison of double
fixation and regional fixation)

13.46 0.5667 Accept

LR test (comparison of double
fixation and time fixation)

368.70 0.0000*** Refuse

The symbol *** represents significance at 1% level.

TABLE 6 SAR and SEM examination of SDM degradation.

Inspection type Statistics P value Conclusion

Wald test 34.43 0.0000 Refuse

Lratio test 29.78 0.0002 Refuse

to the opposite conclusions, this paper adopts the double fixed
effect model.

Test of the spatial Durbin model
Through the Wald and lratio tests, we select the SDM, SAR

and SEM spatial econometric models. Table 6 tests whether
the SDM model can degenerate into the SAR model and SEM
model. The findings show that the two test results reject the
original hypothesis that can degenerate at the 1% significance
level, and so the SDM model should be used.

Analysis of the spillover effect
Table 7 presents the spatial spillover effect of air quality

in three urban agglomerations. The results of spatial spillover
effect analysis have three kinds of results: direct effect, indirect
effect, and overall effect. The direct effect shows the influence
of explanatory variables on the air quality of the three
urban agglomerations, the indirect effect shows the influence
of explanatory variables on the surrounding areas, and the
overall effect reflects the influence of all areas of the three
urban agglomerations.

From the above table we see that the direct, indirect, and
overall effects of FDI, population density, and built-up area are
not significant. This indicates that although FDI, population
density, and built-up area have an impact on the air quality of
the three urban agglomerations, their impact is not distinct.

The direct effect, indirect effect, and overall effect of the
industrialization level are negative, but not significant, meaning
that improvement of the industrialization level can inhibit the
deterioration of air quality in TMUA to a certain extent, but
this effect is not obvious. It indicates that TMUA are paying
attention to the protection of air quality while developing
industrialization and have made great progress at improving
air quality. Some achievements have been realized, but the
improvement results are not obvious. It can be seen that
China still does not put air quality protection in the most
important position of its industrial development. At the same
time, although China has continuously strengthened the policy

TABLE 7 Results of the spillover effect.

Variable (1) Direct
effect

(2) Indirect
effect

(3) Overall
effect

lngdpper 0.1789 21.7169** 21.8958**

(0.070) (2.414) (2.169)

lnindus −0.9395 −7.4316 −8.3711

(−0.230) (−0.448) (−0.455)

lnFDI 0.2128 −0.0252 0.1876

(0.145) (−0.005) (0.029)

tech 61.3251 792.9722** 854.2973**

(1.204) (2.076) (2.025)

population 0.0045 −0.1267 −0.1223

(0.222) (−1.053) (−0.913)

area −0.0200 −0.0537 −0.0737

(−1.187) (−0.923) (−1.045)

transport −0.0023* −0.0020 −0.0043

(−1.869) (−0.349) (−0.651)

NDVI 36.9522 −4.1e + 02*** −3.7e + 02***

(1.078) (−3.273) (−2.748)

*, **, and ***, respectively, represent significant differences at the 0.1, 0.05, and 0.01 levels.

stimulus for green economy in industrial development since
2014,5 more and more industrial enterprises have begun to apply
energy-saving and emission reduction technology to industrial
development and production, but the technology has not had a
great positive influence.

The direct effect of per capita GDP and science and
technology expenditure on air quality is positive, but not
significant. Considering that there are many factors affecting
local air quality, the impact of economic development and
science and technology expenditure on local air quality is not
obvious, while the indirect effect and total effect of the two are
significantly positive, which shows that the development of the
regional economy and science and technology expenditure on
the surrounding areas and the three areas increase air pollution
in the three urban agglomerations and have a significant
aggravating effect. It can be seen that the economic development
of the three urban agglomerations comes ultimately at the
cost of the aggravation of air pollution, and the positive
correlation between science and technology expenditure and
air pollution also shows that the increased science and
technology expenditure by the three urban agglomerations
is not only applied to the development of environmental
protection technology, but also raises air pollution. Therefore,
the three urban agglomerations should consider increasing the
proportion of environmental protection technology innovation
in the next science and technology expenditure.

Public transport shows a weak and significantly negative
correlation direct effect, which indicates that the development
of public transport can improve the air quality of its own areas
to a certain extent. The reason is that the proportion of new
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energy use in public transport is further increased. From 2013 to
2018, a number of ministries and commissions in China issued
a series of policies such as Notice on Continuing the Promotion
and Application of New Energy Vehicles.6 The policies have
effectively promoted the use of clean energy by public transport.
Moreover, the indirect and total effects of public transport on
air quality are not significant, showing that the impact of public
transport is more limited to local areas, and its impact on the
surrounding external areas is not obvious. Considering that the
development of public transport is limited by a city’s own scale,
only the direct effect is significant, which is reasonable.

We also see at the same time that the indirect and total
effects of vegetation index on the air quality of the three urban
agglomerations have a significantly negative impact on the air
quality. This shows that vegetation, as a natural air purifier,
plays a great role in improving the air quality of the three urban
agglomerations. In addition, we should face up to the impact
of vegetation’s increase on the improvement of air quality. This
has a certain guiding significance for the next development of
China’s green economy.

Through the spatial econometric analysis of air quality in
TMUA, this paper finds that some variables have a significant
spillover effect. This further shows that the governance of air
quality needs to pay close attention to the impact of the spillover
effect, which has certain guiding significance for the governance
of air quality in TMUA.

Discussion

Comparing our results with previous studies, we find some
similarities and differences as follows.

1. In terms of research findings, Zheng et al. (2018) offer
similar conclusions with us. Zheng et al. (2018) took
PM2.5 as the basic of research and analyzed the haze
pollution in Beijing and surrounding areas. The results
show that PM2.5 between the above cities has obvious
spillover effect, and the pollution in the south is more
serious than that in the north. In this paper, there is also
a spillover effect of air pollution in neighboring areas in
TMUA. Their same empirical results as this paper are not
only an auxiliary proof of the research conclusion on the air
quality of BTH, but also a detailed indication of the PM2.5
pollution spillover effect of BTH, which can be regarded as
a supplement to the research object of this paper.
Xiong et al. (2018) show that science and technology
expenditure has a certain inhibitory effect on industrial
sulfur dioxide emissions of Central Plains urban
agglomeration, which is different from the conclusion
of this paper about the deterioration of air quality caused
by science and technology expenditure. Considering that
the spillover effect research in this paper is the empirical
result obtained by taking TMUA as a whole as well as the

selections of indicators in Xiong et al. (2018)’s research are
different from this paper. Therefore, the empirical results
herein are different from those of Xiong et al. (2018).
2. In the existing research on air quality through Moran’s
I and SDM, Song et al. (2020) has a similar research
structure and purpose with this paper, they explores the
spatiotemporal regularity, the spatial correlation, and the
spillover effect in carbon emission intensity in The Bohai
Economic Rim (BER) employing the Moran index and the
spatial Durbin model. But their research object is BER,
which is different from the three urban agglomerations
studied in this paper in terms of magnitude and structure.
It is worth noting that the above research also includes
Beijing City and Tianjin City, two cities belonging to BTH.
The research shows that the carbon emissions between the
two cities also have a certain spatial correlation, which
also strengthens the confirmation of the conclusion of
this paper. However, taking their urban agglomerations
as the research object, we arrive at a constructive
recommendation in a larger agglomeration range.
The research of spatial-temporal characteristics and
determinants of PM2.5 in BER by Wang and Fang (2016)
is literally similar with the research by Song et al. (2020).
However, the difference between Wang and Fang (2016)
and this paper also lies in the different research objects.
Du et al. (2018) take TMUA as the research objects and
draw the conclusion that there is a positive correlation
between the urbanization level and the concentration of
PM2.5 in cities. Moreover, their empirical methods used
and research objects selected are exactly the same as those
in this paper. However, their research is only limited
to the thinking of PM2.5, and this paper examines the
spillover effect of more influencing factors. Totally, this
paper further expands the scope of the topic by considering
the impact of multiple factors on air quality.
3. The deficiency of this paper is that it does not
separate the three urban agglomerations and discuss
them independently. The end result is that it is
impossible for future research to further study individual
urban agglomerations.

Conclusion and recommendation

Conclusion

Based on the data of TMUA from 2014 to 2018,
this paper analyzes the spatial and temporal differences
and spatial autocorrelation of air quality in urban
agglomerations and studies the spatiotemporal distribution
characteristics of air quality in TMUA and the spillover
effects among its own region, surrounding region, and
the whole region.
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1. From 2014 to 2018, the air quality of TMUA had
a great performance, and the AQIs and other various
pollutant indicators of them were steadily declining. The
5-year average of AQI decreased from 89.40 to 75.06, the
5-year average of PM2.5 concentration decreased from
57.92 to 40.35, the 5-year average of PM10 concentration
decreased from 85.22 to 66.16, the 5-year average of
SO2 emissions decreased from 27.75 to 11.46, and the
AQI level of the three urban agglomerations gradually
improved from the third level of air quality standard to the
second level.
2. The internal individual air quality levels of each urban
agglomeration are different, and the gaps are large. The
air quality in the north of BTH is improving, while the
air pollution in the south is still serious, but the area
of heavy air pollution is gradually decreasing. The air
pollution areas in YRD are gradually transferring to the
northwest, while the air pollution in the southeast and some
southern cities is gradually improving, and the overall air
pollution in the whole YRD is better. The air pollution in
PRD urban agglomeration is more serious: air pollution in
the east and the west of PRD has improved. In general,
the pollution problems of BTH and YRD have decreased,
but are still serious. PRD performs the best among the
three urban agglomerations, and most cities in PRD are in
a good situation.
3. There are spatial autocorrelation and spillover effects of
air pollution in TMUA. The direct effect of public transport
is the most significant, and the indirect effect and overall
effect of the vegetation index are the most significant. The
development of public transport has a weak effect on the
improvement of air quality, while the increase of per capita
GDP and science and technology expenditure has led to the
deterioration of air pollution, and the improvement of the
vegetation index has a significantly positive effect on the
improvement of air quality.

Recommendation

According to the different characteristics of air quality and
economic development of TMUA, it is necessary to formulate
differentiated environmental governance policies.

1. From the results of spatiotemporal variation analysis,
TMUA have different priorities for improvement. The
air pollution area of BTH is relatively fixed and shows
signs of slow transfer to the south. Tianjin and Tangshan
in the south of BTH are the largest comprehensive
industrial bases in the north of China, with a strong
foundation of a secondary industry, which not only brings
economic development to BTH, but also brings serious

air quality problems. Therefore, the government should
strengthen the adjustment of industrial structure, eliminate
backward production capacity, and increase investment in
the development of environmental protection technology
in BTH.
YRD shows obvious characteristics of air pollution
transferring from coastal cities to the northwest inland,
because the pollution transfer is brought about via
industrial transfer. Industrial transfer is a double-edged
sword for inland cities, which not only helps develop the
urban economy, but also damages it with air pollution.
Therefore, coastal cities in YRD should continue to protect
the environment. With good air quality control effect,
inland cities cannot blindly pursue economic development
and accept industrial transfer regardless of air pollution.
At the same time, YRD as a whole needs the government
to promote coordinated development, and coastal cities
can help inland cities to promote innovative development,
environmental protection, and clean technology.
The air quality performance of PRD is the best, which
relates to the industrial structure of PRD—the degree of
PRD’s tertiary industry development degree is much higher
than that of BTH’s and YRD’s. However, air pollution in
PRD from 2014 to 2018 shows a trend of clustering to the
middle. Considering that PRD is vigorously promoting the
integration of Guangzhou, Foshan, and Zhaoqing in recent
years,7 PRD presents a trend of industrial park gathering
and transferring to Foshan, which explains the reason
why air pollution is concentrated in the central region.
Therefore, Guangzhou, Foshan, and Zhaoqing should make
great efforts to use technological innovation to improve
energy efficiency and reduce energy consumption, and PRD
should continue to give full play to the advantages of the
development of the tertiary industry and maintain the
existing achievements in economic development and air
quality control.
2. The spillover effect should also be a focus of
attention. Due to the significant spillover effect of spatial
autocorrelation, the government must attach importance
to the impact of the spillover effect during air quality
governance. When dealing with air quality problems in
TMUA, the influence that the spillover effect brings to air
quality should be noticed, so as to promote the spatial
linkage of policies among urban agglomerations. According
to the results of spatial autocorrelation, policies can further
focus on increasing the proportion of clean energy use
in public transport and the proportion of environmental
protection technology innovation and development in
science and technology expenditure. As a variable factor
that plays a significantly positive role in improving air
quality, NDVI needs to attract more attention, and each
urban agglomeration needs to further increase the content
of vegetation area.
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