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of Architecture, Tianjin University, Tianjin, China

The emotional health of urban residents is increasingly threatened by

high temperatures due to global heating. However, how high temperature

affects residents’ emotional health remains unknown. Therefore, this study

investigated the spatiotemporal pattern of temperature’s impact on residents’

irritability using data from summer high-temperature measurement and

emotional health survey in Beijing, combined with remote sensing images

and statistical yearbooks. In detail, this study formulated a multiscale

geographically weighted regression (MGWR) model, to study the differentiated

and spatial influence of high-temperature factors on emotion. Results show:

From 09:00 to 20:00, irritability level rose first then gradually dropped,

with a pattern of “aggregation-fragmentation-aggregation.” Irritability is

very sensitive to intercept and building density (BD). Other variables all

have spatial heterogeneity [except for fraction vegetation coverage (FVC)

or road network density (RND) as they are global variables], including

normalized difference vegetation index (NDVI), water surface rate (WSR),

floor area ratio (FAR), and Modified Normalized Difference Water Index

(MNDWI) (sorted from the smallest to the largest in scale). Irritability

is negatively correlated with NDVI, WSR, and RND, while positively

correlated with intercept, MNDWI, FVC, FAR, and BD. Influence on irritability:

WSR < NDVI < BD < MNDWI < RND < intercept < FVC < FAR.

KEYWORDS

influencing factors of thermal environment, hourly temperature, emotional health,
irritability, multiscale geographically weighted regression, Beijing
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Introduction

Global heating and continued urbanization have aggravated
the urban heat island (UHI) effect and created health challenges
to the public. Oxford English Dictionary recently added a new
phrase “global heating.” According to the Oxford Monitor
Corpus, the term “global heating” appeared nearly 15 times
more frequently in the first half of 2021 than in the first half
of 2018 (Simpson and Weiner, 1993). This word strengthens
passive and mild terms such as “climate change” and “global
warming” to express the seriousness of climate change caused
by human activities and the urgency of solving such problem
(World Meteorological Organization [WMO], 2021). In 2020,
China’s urbanization level has reached 63.89%, and more natural
landscapes have been replaced by impervious surfaces, and
highly concentrated human activities have been changing the
urban thermal environment (Yang et al., 2019; Yin et al., 2022).
This phenomenon occurs in nearly every urban area, no matter
whether the city is small or large, or located in warm or cold
climates. UHI effect, in turn, endangers residents’ survival and
wellbeing. UHI, in addition, is a major trigger of psychological
issues like pain, anxiety, and fear (Fritze et al., 2008; Hayes and
Poland, 2018).

The research on the influence of urban thermal environment
on human health mainly focuses on physiological aspects,
discussing the relationship between high temperature and
heat-related diseases and mortality (Nitschke et al., 2011;
Guo et al., 2018; Thompson et al., 2018; Yin et al., 2018),
and paying less attention to emotional health. Studies have
shown that there is a significant relationship between high
temperature and mental illness. For example, according to
a research in Australia, the number of patients hospitalized
for mental illness increased by 7% during the heat waves
(Hansen et al., 2008). A study of data during four heatwaves
in Jinan also found that the number of daily medical visits
for mental illness increased significantly during the heatwaves
(Liu et al., 2012). Further, a study on the relationship between
the daily average temperature and the hospitalization rate
of mental disorders in Shanghai from 2008 to 2015 found
that when the temperature reached 24.6◦C and above, there
was a significant positive correlation between the increase in
temperature and the increase in the number of hospitalizations
for schizophrenia. When the temperature was above 33.1◦C,
the risk of hospitalization for mental disorders was 1.266 times
that of the mean (Peng et al., 2017). However, the analysis
of the influence of thermal environment on the emotional
health of the general population and its specific influencing
factors is still lacking. Therefore, under the background of global
heating, it is urgent to pay attention to the emotional health of
residents in rapidly urbanized areas, carry out risk assessment
of thermal environment on human emotional health, and
explore the mechanism of urban thermal environment on
emotional health.

The continuous rise of temperature, which concerns people’
emotional health, is one of the major influences of UHI
(Manning and Clayton, 2018). Compared to the comfortable
temperature of 23◦C, with every 1◦C increase in temperature,
the predictable psychological stress rises by 0.2% (Ding et al.,
2016). And people may experience repression, rage, and pain
when the temperature is too high (Vanos et al., 2012). Burke
et al. (2018) discovered that the higher the monthly average
temperature is, the more suppressed words are used on
Twitter. In addition, climate change has exacerbated the social
inequality faced by heat-vulnerable population, especially the
middle-aged and elderly (McMichael, 2017) as they are more
likely to develop mental health problems following natural
disasters (Parker et al., 2016). When body temperature rises,
the temperature of the central nervous system and brain rises
as well, triggering the hypothalamus’s selective cooling system
to lower the brain temperature. However, for the middle-aged
and elderly population, their physical functions and cooling
system are not strong enough, thus being widely considered
sensitive to extremely high temperature (Hames et al., 2016). To
be more specific, heat-vulnerable population includes infants,
children, and middle-aged and elderly people (Bielby, 2019).
But, due to the insufficient cognitive ability of infants and
children, they are not included in this study. Hence, based on
Erikson Stages of Psychosocial Development (40–65 years old
as Middle Adulthood), this study was targeted at middle-aged
and elderly at and over 40 years old. Furthermore, our research
team discovered that the negative emotions induced by thermal
environment are mostly distress, irritability, nervousness, and
hostility, with irritability the most obvious, thus this study
decided on the negative emotion of irritability (Huang et al.,
2020a).

The urban thermal environment is a complex physical
phenomenon, and the influencing factors mainly include spatial
structure features, land-use and land-cover change (LUCC),
landscape pattern, artificial heat release, and wind environment
(Yao et al., 2019; Yue et al., 2019; Xu et al., 2021). Research
shows UHI is positively correlated with road network density
(RND), while negatively correlated with fraction vegetation
coverage (FVC) (Estoque et al., 2017). Moreover, water bodies
are another identified source of reduced thermal load, at
least during the day, due to a high thermic inertia (Liu
and Weng, 2008). The cooling capacity of urban wetland
is positively correlated with the wetland’s area, shape, and
degree, yet negatively correlated with the height and density
of nearby buildings (Xue et al., 2019). Additionally, land
surface temperature (LST) and near-surface temperature are
two important parameters for studying the urban thermal field.
Some scholars used temperature data to analyze the pattern
characteristics of urban temperature field. For example, Shen
et al. (2017) studied the spatiotemporal distribution of UHI
in the center of Shanghai city based on hourly temperature.
Heat island intensity and temperature differ in spatiotemporal
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pattern, maybe because the “thermal hysteresis” of the large
heat capacity of the underlying urban surface makes the change
of heat island intensity lag behind that of temperature (Mao
et al., 2021). Temperature is mainly influenced by each or
the combination of LUCC indicators and human factors (Ren
et al., 2005). Therefore, FAR, BD, RND, and other related
indicators reflecting different human activities, as well as FVC,
NDVI, WSR, MNDWI, and other LUCC-related indicators were
selected in this study.

With the rapid development of urban thermal environment
research, spatial non-stationarity becomes a new trend in
studies on land surface index. Geographically weighted
regression (GWR) algorithm is limited to a single optimal
bandwidth and usually reflects the “average” of the optimal
bandwidth of each process (Oshan et al., 2019). It is not
suitable for changes in the urban thermal field, as different
processes involve different spatial scales. In recent years,
the development of MGWR (Fotheringham et al., 2017)
has broken the limits. However, MGWR is still insufficient
in estimating local parameters. In 2019, Yu et al. (2020)
broke the limits of the MGWR model so that it can
be widely used in empirical research. Shen et al. (2020)
discussed how the MGWR model influences second-hand house
price, and proved that it is helpful to studies on spatial
variation; Chen and Deng (2021) and Li et al. (2021) used
MGWR to analyze how urban landscape and form influence
thermal environment.

This manuscript takes the Sixth Ring Road area of
Beijing as the research object, and aims to study the spatial
distribution characteristics and mechanism of the impact
of urban thermal environment on residents’ emotional
health. Using Landsat remote sensing images, meteorological
stations, and emotional health data to establish a theoretical

relationship model between temperature and irritability;
combined with ArcGIS, MATLAB, SPSS and other data
analysis platforms to analyze the temporal and spatial effects
of hourly temperature on irritability in summer from 09:00
to 20:00; based on the MGWR model to explore the spatial
differentiation of residents’ irritability affected by different
thermal environmental factors. It provides a basis for
optimizing the layout of urban green space, improving the
urban thermal environment, and reducing the risk of emotional
health.

The list of acronyms in this paper is shown in Table 1.

Material and methods

Overview of the study area

Beijing (39◦24–41◦36′ N, 115◦42′–117◦24′ E) is located in
the northern part of North China Plain, adjacent to Bohai Bay,
neighboring Liaodong Peninsula in the north and Shandong
Peninsula in the south, belonging to a typical semi-humid
continental monsoon climate in the north temperate zone. At
the end of 2021, the permanent population of Beijing reached
21.886 million. The highly concentrated urbanized buildings,
rapidly expanding special underlying surfaces, and frequent and
intensive human activities in Beijing deteriorated the urban
thermal environment and led to frequent heat waves. During
2011–2021, the average maximum temperature was more than
31◦C, and the maximum temperature more than 35◦C, seriously
affecting the thermal comfort of residents. This study took
the most densely populated area–the area within the Sixth
Ring Road (Dongcheng District, Xicheng District, Chaoyang
District, Haidian District, Fengtai District, Shijingshan District,

TABLE 1 List of acronyms.

Acronyms Description

Intercept The effect of different locations when other independent variables are determined

MGWR Multiscale Geographically Weighted Regression

GWR Geographically Weighted Regression

UHI Urban Heat Island

LST Land Surface Temperature

LUCC Land-Use and Land-Cover Change

LCZ Local Climate Zone

NDVI (Normalized Difference Vegetation Index) Vegetation growth status, abundance, and coverage

FVC (Fraction Vegetation Coverage) Regional vegetation coverage

MNDWI (Modified Normalized Difference Water Index) Coverage of water bodies

WSR (Water Surface Ratio) Regional water coverage

BD (Building Density) Ratio of regional building area to the regional area

FAR (Floor Area Ratio) Ratio of land development intensity, regional building area, and the product of floors to the
regional area

RND (Road Network Density) Road length per square kilometer of an urban built-up area or a certain urban area
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FIGURE 1

Overview of study areas. The map is the official map approved by the China’s Ministry of Natural Resources and Beijing Municipal Planning
Bureau.

etc.) as the study area, covering a total area of 2,257.01 km2

(Figure 1).

Data sources

The data applied in this study include remote sensing
images, meteorological data, and field survey questionnaires.
The remote sensing image data is obtained by using the
Landsat 8 satellite image provided by the United States
Geological Survey (USGS) through the atmospheric correction
method. The imaging time was 10:30 in August 2015, with a
spatial resolution of 30 m, no precipitation on the imaging
day, wind speed lower than 2 m/s, and no cloud coverage.
So, the remote sensing images are high-quality, suitable for
LST retrieval.

The temperature data was obtained from both fixed
and hand-held weather stations. 380 fixed weather stations
in different urban functional areas of Beijing, with little
interference from the surrounding hard pavements, buildings,
and artificial facilities, to guarantee scientific and reliable
results. Meteorological data from the fixed weather stations
was cleaned, to eliminate interference from cloud and rain
and abnormal value, and eventually 183 meteorological stations
were selected. The mobile weather station is aligned with the
survey site. Combined with remote sensing satellite images, field
investigation and related literature review, and according to the
environmental characteristics and usage needs of local climate

cells, 17 places were selected for microclimate measurement and
emotional questionnaire survey.

The survey dates are July-August, the summer with the
highest temperature in Beijing, to meet the high temperature
requirements for the study. The experiment lasted for 14
days, and the daily maximum temperature was above 33◦C.
The survey was conducted from 08:00 to 17:00 every day,
and the samples were distributed evenly in each time period.
There was no rain or high winds for 1-2 days before the
experiment. A small WS-30 handheld weather station 1.5m
above the ground was used to collect temperature data. The
equipment accuracy is ±0.3◦C for temperature, ±3% for
humidity, and±0.3m/s for wind speed. After the data was stable,
it was automatically recorded every 1min. The samples cover
high temperature, medium temperature and low temperature
areas in the urban area, and the temperature range is 23◦–
50◦. The Positive and Negative Activation Scale (PANAS)
for Chinese people was used in the questionnaire (Huang
et al., 2003; Bao et al., 2020). Blank, incomplete and invalid
questionnaires under the age of 40 were excluded, and 931
valid questionnaires were obtained. Moreover, in order to
minimize the error of data analysis due to the influence of
previous activities or unexpected events experienced by the
subjects, this study initially screened the research subjects
while ensuring the randomness of sampling, excluding those
who are in indoor environment, going out of the car, doing
outdoor strenuous exercise, or staying under shade for a
long time.
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FIGURE 2

Analytical framework.

Data processing

The flow chart of the research method is shown in Figure 2.

Establishing a model of the relationship
between average temperature and irritability in
typical periods

First, according to the time and temperature data recorded
by the handheld weather station and the time and emotion
data collected by the questionnaire, matched temperature data
with emotional data to set up a survey table of temperature
and emotion. Multiple reviews ensure the correctness of the
data. Temperature data collected from the hand-held weather
stations was analyzed by plotting on the GraphPad platform
(see Figure 3). Results show that the sample data covers
25.1–50.5◦C with an excellent overall spatial distribution.
The upper quartile is 42.9◦C, median quartile 39.7◦C, and
lower quartile 35.2◦C. Samples are concentrated during 35.2–
42.9◦C, enough to represent summer days above 35◦C.
A fundamental descriptive analysis suggests that the samples
can be used to study urban heat’s spatiotemporal effects on
residents’ irritability. Thereafter, based on the survey table
of temperature and emotion, the influence degree index
of irritability in each temperature range was obtained by
cross-table analysis of SPSS. Next, smooth the data and
standardize the impact index according to the maximum
value.

The curve fitting toolbox Cftool of MATLAB software was
used to analyze various curve regressions on questionnaire
and temperature data, to establish a theoretical relational
model between instantaneous temperature and irritability,
and selected the most fitted equation as the practical
relational model in this study (see Figure 4). The formula is
as follows:

Ni = 6.1 sin (0.26t + 0.53)+ 0.56 sin (3.28t − 0.74)

+0.43 sin (6.36t + 1.38) (1)

FIGURE 3

Sample temperature distribution.
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FIGURE 4

Relational model between instantaneous temperature and irritability.

where Ni is the irritability value, t is the instantaneous
temperature. SSE: 15.85, R2 = 0.93.

The fixed meteorological stations recorded the temperature
every 30 min. 09:00–20:00 is the period when residents
are intensively exposed to the outdoor environment, and
when high temperature significantly influences their emotions.
Therefore, the temperature data from 09:00 to 20:00 was
extracted to form an hourly temperature table. Since the
temperature field is a spatial variable that changes continuously,
and the temperature captured by stations is an accurate
value of a fixed point, in order to obtain both smooth
and accurate interpolation results, this study used the spline
function method to interpolate the stations, and attained
the hourly temperature from 09:00 to 20:00. Then, hourly
temperature was put into Eq. 1 to get hourly irritability
value.

Finally, based on human body’s reaction to high
temperature (Li et al., 2017), the correlation curve between
instantaneous temperature and irritability, and with the
daily average temperature from 8:00 to 17:00 in the
hourly temperature field data of the fixed meteorological
station as the average temperature in the typical period,
the relationship curve between the average temperature
in the typical period and the irritability was established
(Figure 5) (Formula 2), providing basic conditions for
carrying out urban climate health risk assessment. The
average daily temperature of 27.5◦C calculated from the
observation data of Beijing Meteorological Station was
taken as the threshold temperature for the influence of
high temperature on Irritability, and the impact of high
temperature on Irritability was divided into ten grades
(Table 2) as the standard for evaluating the risk of human

Irritability (Denissen et al., 2008; Qi et al., 2015; Noelke et al.,
2016).

γ = 0.2104x− 4.9294 (2)

where γ is the average irritability value, and is the average
temperature in the typical period. R2 = 0.93, with good goodness
of fit.

Constructing the multiscale geographically
weighted regression model

First, based on the Landsat8 satellite image, LST was
retrieved. This manuscript used the atmospheric correction
method, with the influence of the atmosphere on the surface
radiation excluded from the total amount of thermal radiation
received by the satellite sensor, to obtain the surface brightness
temperature value, and then the surface brightness temperature
was converted into the corresponding LST (Yue and Liu, 2018).

The summer temperature field data measured by fixed
meteorological stations were collected to form the hourly
temperature data table of the station. The average hourly
temperature from 8:00 to 17:00 every day was taken as the
average temperature in typical periods, and regression analysis
was performed on LST, NDVI, and the average temperature in
typical periods, to formulate the linear regression equation of
them (Eq. 3):

Ta = 0.45Tl + 1.45N + 15.73 (3)

where Ta is the typical period average temperature, Tl is the land
surface temperature (LST), and Nis the NDVI. R2 = 0.58.

Second, in order to obtain the average irritability value
(dependent variable), the inversion of Beijing’s 2015 summer
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TABLE 2 Standard of evaluating risk of irritability.

Influence level Instantaneous irritability value Temperature/◦C Details

Level 1 ≤0.2 <30 Comfortable

Level 2 0.2–0.6 30–31 Emotionally stable

Level 3 0.6–1.0 31–32 Fidgety

Level 4 1.0–1.5 32–33 Restless and irritable

Level 5 1.5–2.0 33–34 Panic with more negative emotions

Level 6 2.0–2.4 34–35 Irritable, agitated, and highly alert

Level 7 2.4–3.0 35–36 Painful and less energetic

Level 8 3.0–3.5 36–36.5 Persistently angry, inclined to be hostile

Level 9 3.5–4.5 36.5–37 Hostile, anxious, and nervous

Level 10 >4.5 >37 Intensively angry with brief behavioral outbursts

FIGURE 5

Relational model between average temperature and average
irritability value in typical periods.

LST and NDVI are substituted into Formula 3 to obtain the
average temperature in the corresponding typical period, and
then the average temperature in the typical period is substituted
into Formula 2 to obtain the corresponding average irritability
value.

Further, via the ENVI software, the Landsat8 remote
sensing images were preprocessed by radiometric calibration,
atmospheric correction, and geometric correction, and NDVI
(Tan et al., 2004) and MNDWI (Xu, 2006) were calculated, to
exclude the parts where NDVI and MNDWI < 0, and obtain
FVC and WSR. All the land-use indicators in the study area were
counted, to attain BD, FAR, and RND to get the independent
variables. Then, all factors were projected uniformly to ensure
data consistency. Finally, the MGWR model was constructed. In
the study area, based on the 1 km grid scale, 2,000 sample points
were created, and variables were extracted to the sample points;
1,577 valid sample data were obtained after removing outliers.
Independent variables, dependent variable, and intercept were
imported to MGWR, and the quadratic kernel function of
classical GWR and AICc was still utilized as the standard
for choosing the kernel function and bandwidth. As a result,

valid parameters: 1,577, covariates: 8, and iterations: 74. When
the difference in parameter estimation of subsequent iterations
converges to the specified threshold, the iteration is terminated,
and the convergence threshold is 1.0e–05. The model formula is
as follows (Formula 4):

yi =

k∑
j=1

βbwj (µi, νi) xij + εi (4)

where yi is the average irritability value of sample point i, βbwj
denotes the regression coefficients of different variables j at
different bandwidth levels, xij is the observed value of variable
j at location i, (µi, νi) denotes the geographical coordinates of
variable i, and εi is the stochastic error term.

Results

Analysis of the spatiotemporal
influence of high temperature on
irritability

According to the risk evaluation standard of irritability, the
spatial pattern of the impact of high temperature on irritability
in the Sixth Ring Road area of Beijing in the summer of 2015 was
evaluated (Figure 6).

During 09:00–20:00, the irritability level first increased then
decreased. From 09:00 to 15:00, irritability rocketed; from 15:00
to 20:00, irritability declined slowly. Irritability peaked at Level 8
at 15:00. The influence pattern showed a trend of “aggregation-
fragmentation-aggregation”.

During 09:00–12:00 (A–C), water supply for plant
transpiration decreased, drastically heating up the green
area (Gill et al., 2007). High-level patches shifted from being
scattered to a large matrix. After that, the temperature in urban
and suburban areas continued to rise, temperature difference
between urban areas and suburbs dwindled, urban cooling
slowed down, a large number of artificial heat sources gathered
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FIGURE 6

Evolution of spatiotemporal pattern of urban heat island (UHI)’s influence on irritability from 09:00 to 20:00.

TABLE 3 The correlation of thermal environmental factors influences irritability.

Variables FVC NDVI WSR MNDWI FAR BD RND

Indicator –0.410** –0.496** –0.427** –0.007 0.402** 0.397** 0.344**

**, Significant correlation at the 0.01 level (two-tailed).

in the city center, and the irritability level increased toward
the city center.

12:00–17:00 (D–I) is the high-temperature period. The
temperature gradually rose, irritability rose to Level 8, and

high temperature’s influence on irritability became highly
fragmented. After 14 o’clock, the increment of land surface
heat storage dwindled, and at 15 o’clock, the heat continued to
spread, and the cooling rate of green space and water bodies
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accelerated. Large parks, especially Beijing Olympic Park, the
Old Summer Palace, Fragrant Hills Park, and Century Forest
Park, as well as large water systems in the north and south of the
Sixth Ring Road cooled the surrounding areas by releasing latent
heat and reducing the energy available for sensible heat (Peng
et al., 2012), forming up large Level 1–3 patches, covering an
area of about 579.88 km2. At 16 o’clock, the cooling effect of the
wedge-shaped green space around the city was the most obvious,
and the irritability level decreased toward the city center along
with the wedge-shaped green space.

During 17:00–20:00 (J–L), the temperature dropped, wind
speed increased, and the intensity of human activities gradually
decreased. Low-impact areas spread from the outskirts to the
city center. The main reason is that the lower atmospheric
layer of the city was under low pressure, while that of the
suburbs under high pressure, pushing cold air flows into
the city. At the same time, on the urban boundary layer,
the cooling capacity was mainly attributed to the increased
roughness of green surface which improved convection
efficiency (Gunawardena et al., 2017).

Analysis of influence mechanism of
high temperature on irritability

Correlation between regression coefficient and
irritability

Results of correlation test using SPSS software show that
(see Table 3): Except for MNDWI, all the other variables are
significantly correlated with irritability at 0.01 level (two-tailed);
The most significantly correlated one is NDVI—correlation
coefficient around 0.5, followed by FVC and FAR—correlation
coefficient above 0.4; FVC and NDVI are significantly negatively
correlated with irritability, able to alleviate irritability; FAR,
BD, and RND are significantly positively correlated with
irritability—correlation coefficient above 0.3, indicating that
the thermal environment effect of artificial surface is the
main reason for intensified irritability. The correlation between
MNDWI and irritability is not significant. Previous studies
showed that MNDWI is negatively correlated with heat island
in spring, summer, and autumn, and significantly negatively
correlated in summer, indicating that increasing WSR alleviates
heat island in summer (Chen and Deng, 2021).

TABLE 4 Comparison of regression model results.

Model index MGWR GWR

The goodness of fit R2 0.879 0.875

AICc 1747.222 1876.036

Residual sum of squares 190.774 197.379

Number of valid parameters 251.884 277.827

Comparison of model accuracy
In this study, the precision results of classical GWR

and MGWR models were compared. According to Table 4,
the goodness of fit R2 of MGWR is 0.879, higher than
that of GWR, and the AICc is lower than that of GWR.
Hence compared with classical GWR, MGWR produces
more precise results. In addition, the number of effective
parameters and the sum of residual squares of MGWR
are both smaller than those of GWR, indicating that
MGWR produces a more precise regression result with
fewer parameters. In terms of the regression coefficient,
all variables of MGWR are significant. Meanwhile, GWR
cannot reflect the different functions of variables, resulting
in a lot of noise and errors in the regression coefficient,
causing instability (only intercept is the significant variable).
Therefore, MGWR is superior to GWR in this study,
more suitable for analyzing spatial heterogeneity of the
thermal environment.

Scale analysis of regression coefficient
Results of model processing (see Table 5) show that

classical GWR can only reflect the mean value of the
function of each variable, while MGWR can directly reflect
the different functions of each variable. The best-fitting
bandwidth of each variable is (sorted from the largest to the
smallest) VC, RND, MNDWI, FAR, WSR, NDVI, BD, and
intercept. The bandwidths of different variables are significantly
different:

1. Intercept, BD, and NDVI are close in bandwidth: 43,
49, and 77, respectively, far smaller than other variables,
accounting for about 2.9, 2.9, and 4.9% of the total sample
size, and covering 78, 78, and 130.7 km2 of the study
area, close to the street scale. When exceeding the function
range, the regression coefficient alters dramatically. It
proves that the thermal environment is very sensitive to
the growth of vegetation and the distribution of buildings

TABLE 5 Comparison of bandwidth of classical geographically
weighted regression (GWR) and multiscale geographically weighted
regression (MGWR).

Variable MGWR bandwidth GWR bandwidth

Intercept 43 101

MNDWI 404 101

NDVI 77 101

VC 1576 101

WSR 148 101

FAR 231 101

BD 49 101

RND 1574 101
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FIGURE 7

Risk pattern of irritability in the Sixth Ring Road in 2015.

on streets, so it is more effective to control the BD than to
improve the cooling effect of greening (Han et al., 2016);

2. WSR and FAR are basically the same in bandwidth:148
and 231. This study selected a scale similar to the
community scale in China’s administrative division—
different communities have large spatial heterogeneity
between WSR and land development intensity. The
function scale of MNDWI is 404, accounting for 25.6%
of the total sample size, with great spatial heterogeneity.
After exceeding the function range, the fitting effect
changes considerably.

3. The bandwidths of FVC and RND are close to the total
sample size, almost equal to that of global variables—stable
in spatial influence without spatial heterogeneity.

Compared with the classical GWR, MGWR produces more
accurate and actual regression results, revealing the spatial scale
of driving factors, and directly affecting the spatial distribution
of emotional health risk patterns.

Analysis of spatial pattern of irritability risk and
regression coefficients

Due to the different heterogeneity and scale of different
influencing factors, that is, within a certain range, the effect
size is similar, but beyond this range, the effect size is
significantly different. From Figure 7, it can be seen that the
risk pattern of irritability in Beijing in 2015 had an obvious
circle structure, which was expressed as follows: the center was
high, the periphery was low, the southwest was high, and the
northeast was low. The high-risk areas were mainly located
in the city center, the West Fourth Ring Road, and along
the expressway. Descriptive statistics of each coefficient are
shown in Table 6. The degree of influence on irritability is
WSR> NDVI> BD>MNDWI> RND> intercept> FVC>
FAR. In particular, intercept, NDVI, BD, and FAR showed
great difference in the spatial distribution of influence (see
Figure 8).

Intercept

As shown in Figure 8A, the positive influence area is mainly
concentrated in the southwestern part between the Second and
Fifth Ring Roads, basically overlapping with the area of high
irritability value. The intercept value ranges from –0.716 to
1.188, with an average value of 0.116, indicating that when
the irritability value ranges from –0.716 to 1.188 per kilometer
within the Sixth Ring Road, the influence of intercept on
irritability is significantly different.

Normalized difference vegetation index

The negative ratio reaches 96.1%, critical in alleviating
the thermal environment. The coefficient ranges from –0.572
to 0.284, with an average value of –0.254 and a standard
deviation of 0.13, indicating that as NDVI increases by every
unit, the average irritability value decreases by 0.254, and
the area with the strongest negative effect can be reduced
by 0.572. As shown in Figure 8B, the positive influence
areas of NDVI are scattered in Haidian District and the
boundary of the Eastern Fifth Ring Road. In contrast, the
negative influence areas are scattered everywhere as a large
mitigation matrix.

TABLE 6 Results of multiscale geographically weighted regression (MGWR) model operations.

Variable Average value Standard deviation Minimum value Median Maximum value

Intercept 0.116 0.464 –0.716 0.071 1.188

MNDWI 0.185 0.070 0.053 0.182 0.316

NDVI –0.254 0.130 –0.572 –0.263 0.284

VC 0.085 0.002 0.083 0.085 0.089

WSR –0.349 0.092 –0.559 –0.341 –0.056

FAR 0.073 0.116 –0.123 0.084 0.304

BD 0.241 0.231 –0.296 0.193 1.340

RND –0.132 0.006 –0.141 –0.133 –0.121
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FIGURE 8

Spatial patterns of coefficients in the MGWR.

Building density

There is a circle structure similar to the irritability risk map.
The value ranges from –0.296 to 1.340, with an average value of
0.241, a standard deviation of 0.231, and a positive ratio of 87.5.

BD has an overall positive effect on irritability, and the area with
the most substantial positive impact can increase the irritability
value by 1.340 per unit. As shown in Figure 8C, the negative
influence area is radially distributed between the Fourth and
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FIGURE 9

Irritability curve over time.

Fifth Ring Roads, with weak thermal effect; The positive value
areas are mainly distributed in the south of Haidian District,
north of Fengtai District, Dongcheng District, Xicheng District,
and Shijingshan District, with dense building layout, large floor
area, and strong thermal effect.

Floor area ratio

Floor area ratio yields a significant influence on irritability in
the city and the outskirts, showing a trend of spreading outward
from the center. The coefficient value ranges from –0.123 to
0.304, with an average value of 0.073. As shown in Figure 8D,
the negative influence area of FAR is mainly concentrated in
the city center, probably because of the large shadow area and
low ground heat.

Discussion

First, different from other scholars’ researches that focus
on exploring the relationship between temperature and the
morbidity and mortality of residents’ physical or psychological
diseases (Petitti et al., 2016; Ebi et al., 2021; Yang et al.,
2021), this study focuses on the emotional health of the
general population, especially the middle-aged and elderly,
in an innovative way. The quantitative relationship between
temperature and irritability was established, and based on
this, the impact of urban high temperature on irritability
was divided into 10 grades. Using the established irritability
risk evaluation criteria, this manuscript analyzed the temporal
and spatial pattern of irritable emotions in Beijing from
09:00 to 20:00 in summer. Consistent with the inverted “U-
shaped” relationship between temperature and mental health
(Mullins and White, 2019), there is a similar relationship
between irritability and time (Figure 9). The difference
is that this relationship further reflects the tolerance of
the human body to high temperature in the environment
and the time law of the emotional regulation mechanism,

which provides an idea for further research on the impact
of high temperature and human emotional health in the
future. However, the impact of high temperature on human
emotional health is the combined result of many factors.
This manuscript ignored the influence of the subjects’ own
mental health level, education level, family status, economic
status, race, etc., (Abbasi et al., 2019; Chang and Kajackaite,
2019) on their emotional status, as well as the interference
of other environmental factors such as humidity and wind
speed, resulting in biases in the validity and accuracy of
the data.

Second, this manuscript also used MGWR to analyze
the mechanism of high temperature on irritability, which
is more conducive to the regulation of surface indicators
in local high temperature areas and effectively reduces the
risk of emotional health. Although they are not the same
as the indicators selected for the thermal environment
correlation research in recent years, they have obtained similar
research results (Chen and Deng, 2021; Li et al., 2021).
Yet, this paper only revealed the differential effect of a
single land use type on temperature and irritability, but
lacked the analysis of the joint effect of multiple land use
types, and the effects of non-land-use type-related indicators
such as regional climate, socio-demographics, local plant
characteristics, albedo, and other environmental conditions
were also ignored. For the analysis results, the increase
of NDVI, WSR, and RND can alleviate irritability, but
according to Li et al. (2011), the interspacing of urban
green into other land use types seems to have a greater
effect on mitigating the UHI effect than a large green area
itself. Comparably, Dugord et al. (2014) found that forested
green areas contribute better to thermal reduction when
patches are more complex in shape and more distributed
in space. Moreover, urban microclimate has prominent
scale characteristics. MNDWI, NDVI, and other indicators
would be quickly captured by satellite thermal sensors
in a smaller spatial resolution, while the influence of
human living, transportation, and commercial activities on
the temperature field is difficult to be captured accurately
(Huang et al., 2020b). The small sample size used for
the MGWR model operation limits the statistical power, so
that the analysis on the influence mechanism of thermal
environment on irritability is imperfect, and open street maps
and points of interest should be included in the future
(Chen et al., 2022).

Conclusion

Based on the summer high-temperature measurement
and emotional health survey in Beijing, ArcGIS, MATLAB,
GraphPad and other platforms were used for data processing
to construct a relationship model between temperature and
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irritability, and to evaluate the time-space relationship between
hourly temperature in summer and residents’ irritability; the
differential action scale and spatial action characteristics of
high temperature driving factors on irritability risk were
analyzed through the MGWR model. The conclusions are
as follows:

1. During 09:00–20:00 in summer, irritability level increased
then decreased. From 09:00 to 15:00, irritability value
rocketed; From 15:00 to 20:00, irritability value declined
slowly. Irritability reached the peak of Level 8 at
15:00. The influence pattern of high temperature on
irritability showed a trend of “aggregation-fragmentation-
aggregation”.

2. Irritability is very sensitive to intercept and BD, with high
spatial heterogeneity, close to the street scale. VC and RND
are global variables without spatial heterogeneity. Other
variables all have spatial heterogeneity (sorted by scale:
NDVI<WSR< FAR<MNDWI).

3. The risk pattern of irritability in Beijing in 2015 had an
obvious circle structure, which was expressed as follows:
the center was high, the periphery was low, the southwest
was high, and the northeast was low. The high-risk
areas were mainly located in the city center, the West
Fourth Ring Road, and along the expressway. NDVI, WSR,
and RND have a negative impact on irritability, while
intercept, MNDWI, VC, FAR, and BD have a positive effect
on irritability. The degree of influence on irritability is
WSR>NDVI> BD>MNDWI>RND> intercept>VC
> FAR.

4. Compared with GWR, MGWR can avoid the noise
and error caused by single-scale research methods, and
can get more precise regression results with fewer
parameters. It can be used for spatial analysis on a
refined scale, serving as an excellent fitting model to study
urban thermal environment, and providing a method
for studying the spatial variation characteristics of other
driving forces.

5. In future construction, green space and water bodies
should be planned and laid out in areas with more land
use types and more complex patches; building density and
floor area ratio in high-risk areas of irritability should
be controlled to maintain the cooling capacity of the
water body, and at the same time, the density of the
road network should be appropriately added to maximize
the reduction of heat, to reduce the risk of emotional
health.

Current research suggests that high temperatures in
the context of global heating pose significant risks to
the emotional health of the general population, and the
magnitude of future risks will depend largely on planning
and mitigation measures. Existing mental health resources

are mostly concentrated on people with mental illnesses.
For the general population and vulnerable groups with
multiple physical comorbidities, it is suggested to identify
areas where temperature-related emotional health risks are
particularly increased, and clinically improve physical health
may relieve heat stress. In the future, we will combine the
regional changes of negative emotional risk in different
years and the degree and scale of the effects of more high
temperature drivers on emotional health risk to conduct
regional emotional health risk assessment, providing reference
for formulating regional planning and design strategies to
reduce emotional health risk. Furthermore, temperature
in different urban functional areas differs greatly—the
average temperature difference between the center and the
surrounding areas of Beijing can reach 268.6◦C (Zhang
et al., 2002). The complexity of the internal structure
of human settlements should also be considered. To be
specific, the local climate zone (LCZ) divides a city into built
environment and natural environment, thus generating a
classification system suitable for studying the thermal field
changes in human settlements (Stewart and Oke, 2012;
Yang et al., 2020). Therefore, this study will combine LCZ,
crowd characteristics, and emotional health in the future,
to make clear of how different climate layouts influence
emotional health.
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