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Latest climate models project conditions for the end of this century that

are generally outside of the human experience. These future conditions

affect the resilience and sustainability of ecosystems, alter biogeographic

zones, and impact biodiversity. Deep-time records of paleoclimate provide

insight into the climate system over millions of years and provide examples

of conditions very different from the present day, and in some cases

similar to model projections for the future. In addition, the deep-time

paleoecologic and sedimentologic archives provide insight into how species

and habitats responded to past climate conditions. Thus, paleoclimatology

provides essential context for the scientific understanding of climate change

needed to inform resource management policy decisions. The Pliocene

Epoch (5.3–2.6 Ma) is the most recent deep-time interval with relevance to

future global warming. Analysis of marine sediments using a combination

of paleoecology, biomarkers, and geochemistry indicates a global mean

annual temperature for the Late Pliocene (3.6–2.6 Ma) ∼3◦C warmer than

the preindustrial. However, the inability of state-of-the-art climate models

to capture some key regional features of Pliocene warming implies future

projections using these same models may not span the full range of plausible

future climate conditions. We use the Late Pliocene as one example of a

deep-time interval relevant to management of biodiversity and ecosystems

in a changing world. Pliocene reconstructed sea surface temperatures are

used to drive a marine ecosystem model for the North Atlantic Ocean.

Given that boundary conditions for the Late Pliocene are roughly analogous

to present day, driving the marine ecosystem model with Late Pliocene

paleoenvironmental conditions allows policymakers to consider a future

ocean state and associated fisheries impacts independent of climate models,

informed directly by paleoclimate information.
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Introduction

The most compelling reason to look at deep time climate
settings is that future conditions, based upon the most advanced
Earth System Models, are outside the human experience (IPCC,
2013, 2021; Hayhoe et al., 2017). Instrumental data extend
the climate record back in time by a couple of centuries, and
historical or written records of storms, harvest yields, and
phenological changes, extend back at most several thousand
years for some regions. Deep-time records of paleoclimate
provide insight into the climate system over millions of years,
sampling conditions very different from the present day, and
in some cases comparable to model projections for the future
(Dowsett et al., 2012).

Well-known deep time intervals of global warmth include
the Cretaceous (∼145–66 Ma) (O’Brien et al., 2017), the
Paleocene-Eocene Thermal Maximum or PETM (∼55
Ma)(Zachos et al., 2003), the Miocene Climatic Optimum
or MCO (16.75–14.5 Ma) (Burls et al., 2021), and the Late
Pliocene or mid-Piacenzian Warm Period known as the MPWP
(3.28–3.02 Ma) (Dowsett et al., 2016). The MPWP is particularly
relevant to current and future climate policy for several reasons.
As one looks back in time the first instance of atmospheric CO2

levels comparable to those of the present day (∼400–415 ppm)
occurs approximately 3 million years ago (Ma) within the
Piacenzian Age of the Pliocene Epoch, during the MPWP (de la
Vega et al., 2020; Rae et al., 2021; Figure 1). Unlike the earlier
intervals of global warmth, the relative position of tectonic
plates of the Earth’s lithosphere are essentially unchanged over
the last 3 million years. The MPWP is the most recent deep-time
interval of global warmth, within reach of many methodologies
used for analysis of Holocene environments (Dowsett et al.,
2013b). Reconstructions of paleogeography, ocean temperatures
and global ice volume/distribution have been produced for each
of these past examples of global warmth but only the MPWP has
an integrated and internally consistent reconstruction of land
and sea distribution, topography and bathymetry, sea surface
temperature (SST), and land cover including vegetation, soils,
lakes and land ice, on a global 1◦ latitude by 1◦ longitude scale,
constructed in part for use with climate modeling experiments
(Dowsett et al., 2016).

While global and regional deep-time paleoclimate
reconstructions are valuable for understanding the dynamics
of the climate system during times warmer than present
day, paleoclimate models have been unable to reproduce the
magnitude of warming documented by proxy methods in the
mid-to-high latitude North Atlantic region during the Late
Pliocene (Dowsett et al., 2012, 2013a, 2019). Our intent is to
show the utility of a Late Pliocene SST reconstruction, based
in large part on paleontological and paleoecological data, as
an end-member driver of a marine ecosystem model. The
outcome of this paleoclimate-derived scenario can provide a
complement to traditional climate model-driven simulations

of future conditions. Climate models have demonstrated
skill in simulating global temperatures (Hausfather et al.,
2020). However, these models are not independent from
one another, ranging from the explicit sharing of code to
general conceptual design (Knutti et al., 2013; Alexander and
Easterbrook, 2015). This lack of independence in the models
has explicit consequences for simulations, with structural
similarities reducing the spread in model output (Boé, 2018)
and contributing to known biases across models (Tian and
Dong, 2020). Paleoclimate data represent an “out of sample”
realization of the Earth’s climate, and therefore can be used
to evaluate and reduce potential model bias (Braconnot et al.,
2012; Zhu et al., 2021), indirectly informing decision-making.
In this example, paleoclimate data from geological archives
and climate model simulations of future climate are used
to drive the same ecological model, expanding the range
of potential outputs beyond multi-model, multi-emissions-
scenario projection ensembles. Here, paleoclimate data more
directly informs decision-making, ensuring policymaking can
be robust to potential biases specific to climate models. This
unique perspective is relevant for framing decisions regarding
management of ecosystems and biodiversity.

The PRISM paleoenvironmental
reconstruction and application to
climate modeling

Over the past quarter century, the U.S. Geological
Survey (USGS) has reconstructed and modeled Late Pliocene
paleoenvironments on a global scale as part of the long-
term Pliocene Research, Interpretation, and Synoptic Mapping
(PRISM) Project. The PRISM reconstruction (Dowsett et al.,
2016) presently includes global scale data sets for surface and
deep ocean conditions (Dowsett et al., 2009), paleogeography
[topography and bathymetry, taking into account mantle
convection and glacial isostatic adjustment (Rowley et al.,
2013)], terrestrial biomes (Salzmann et al., 2008, 2013), soils and
large lakes (Pound et al., 2014), and land ice distribution and
volume (Hill, 2009; Dolan et al., 2012; Koenig et al., 2015). These
data suggest a sea level equivalent change for the mid-Piacenzian
of +24 m without considering changes to the size of the global
ocean in the Pliocene (Dowsett et al., 2016).

Pliocene Research, Interpretation, and Synoptic Mapping
data sets have been used to initiate and verify global paleoclimate
model experiments for more than 25 years (Chandler et al.,
1994, 2013; Sloan et al., 1996; Haywood et al., 2000; Haywood
and Valdes, 2004; Chan et al., 2011; Kamae and Ueda, 2012;
Stepanek and Lohmann, 2012; Yan et al., 2012; Zhang and
Yan, 2012; Zhang et al., 2012; Chandan and Peltier, 2017,
2018; Otto-Bliesner et al., 2017; Chan and Abe-Ouchi, 2020; de
Nooijer et al., 2020; Hopcroft et al., 2020; Baatsen et al., 2021;

Frontiers in Ecology and Evolution 02 frontiersin.org

https://doi.org/10.3389/fevo.2022.972179
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-10-972179 August 9, 2022 Time: 9:33 # 3

Dowsett et al. 10.3389/fevo.2022.972179

FIGURE 1

Paleoclimate as context for future climate change scenarios. CO2 scenarios associated with different socio-economic pathways (Meinshausen
et al., 2020) are shown in color as model projections for future. Mid-Piacenzian Warm Period (MPWP) and Miocene Climatic Optimum (MCO).
Horizontal red dashed line indicates current CO2 of ∼410 ppm. Note breaks in age axis. Zanclean and Piacenzian Ages of the Pliocene Epoch
denoted by Z and P respectively. CO2 data are from Zhang et al. (2013), Pagani et al. (2010), Foster (2008), Hönisch et al. (2009), Badger et al.
(2019), Chalk et al. (2017), Sosdian et al. (2018), Dyez et al. (2018), Martinez-Boti et al. (2015), de la Vega et al. (2020), and Greenop et al. (2014),
and suggest the Earth has not experienced present–day levels of CO2 in 3 million years. Modified after Rae et al. (2021).

Han et al., 2021; Feng et al., 2022; Lohmann et al., 2022).
A brief history of the synergy between PRISM and paleoclimate
modeling can be found in Haywood et al. (2016) and Haywood
et al. (2021).

Pliocene Research, Interpretation, and Synoptic Mapping
SST estimates are based upon a combination of proxy
methods including paleoecologic analyses of faunal assemblages,
geochemical, and biomarker analyses. Planktonic foraminifer
assemblages are analyzed using either factor analytic transfer
functions (Imbrie and Kipp, 1971) or modern analogue
techniques (Hutson, 1980). The factor analytic transfer function
method relates modern faunal census data to physical
oceanographic parameters to derive equations that are then
used on fossil assemblages to make quantitative SST estimates.
The modern analog technique quantifies faunal changes within
deep-sea cores in terms of modern oceanographic conditions
using a measure of faunal dissimilarity, to directly compare
downcore (fossil) samples to each reference sample in a
modern oceanographic database. In some regions of the Pacific
and Southern Oceans, SST reconstructions are based upon
biogeography of diatom assemblages. Temperature estimates in
shallow-water regions are often reconstructed using isotopic
analyses of mollusks and quantitative analysis of ostracod
assemblages. Independent estimates of SST are obtained
for some localities using Mg:Ca ratios in shallow-dwelling

planktonic foraminifer shells and the unsaturation index of
alkenones (ketones synthesized by haptophyte algae living near
the ocean surface) found in raw sediment, both of which have
been calibrated to present day SST (Cronin, 1988; Gladenkov
et al., 1991; Barron, 1992, 1996; Allmon et al., 1996; Cronin and
Dowsett, 1996; Dowsett et al., 2013a,b; Johnson et al., 2017, 2019;
Robinson et al., 2018).

These global SST data were produced to gain a better
understanding of the dynamics of the Pliocene climate system,
for use in driving atmospheric general circulation models, and
as verification of SST produced by more sophisticated coupled
ocean-atmosphere model experiments. The paleoecological
information from PRISM has also been used in several studies
(Yasuhara et al., 2012; Saupe et al., 2014, 2015) to investigate
ecological and evolutionary responses of the fossil and extant
marine fauna to climate change over the last 3 million years.

The Pliocene North Atlantic monthly mean SST fields used
here were derived from the PRISM3 reconstruction (Dowsett
et al., 2010; Dowsett, 2022). The data are presented on a 2◦

latitude × 2◦ longitude grid for each month. Reconstructed
SST suggests a northward displacement of the North Atlantic
gyre and associated Gulf Stream–North Atlantic Drift current,
which transfers warm water to the north. The Pliocene Model
Intercomparison Project, Phase 2 (PlioMIP2) ensemble of
climate models (Haywood et al., 2020) shows broad agreement
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FIGURE 2

Conceptual framework for application of paleoclimate data to conservation management. (A) A high greenhouse gas emissions trajectory
(RCP8.5) is used to drive a climate model (IPSL-CM5A-LR) to produce future SSTs. These climate model-derived SSTs are in turn used to drive a
marine ecosystem model (see text for description) which provides information on potential socio-ecological impacts of future climate. (B) The
Late Pliocene PRISM3 multiproxy SST reconstruction is used to drive the same marine ecological model, providing an alternative scenario for
socioecological impacts of a potential future climate. Hatched pattern in northeast North Atlantic in panel (B) is a region where paleoclimate
models tend to exhibit lower SST than those estimated by multiple proxies. (C) Example of relative biomass changes in the North Atlantic
produced by the marine ecosystem model. IPSL climate model-derived (left) and PRISM proxy-driven (right) simulations. The columns represent
selected functional groups: small pelagics; large benthopelagics; large phytoplankton; and small phytoplankton. The rows from top to bottom
comprise the four model subregions: Polar-Subpolar (PSP); Mid-Atlantic (MAT); Mediterranean (MED); and Tropical-Subtropical (TST).

with the PRISM SST reconstruction on a global scale, except for
a region in the mid-to-high latitude northeastern North Atlantic
where model temperatures are cooler than those reconstructed
by proxy methods (Figure 2).

Marine ecosystem modeling

Ecological modeling stretches back to the foundations of
ecology as a discipline. Modeling in some respects is the very
genesis of ecology as a discipline separate from its foundations
in economic philosophy. By the 18th century, awareness of the
dependence of populations on environmental constraints had
risen to the level of formal (if simplistic) dynamical modeling.
These arguments are most famously exemplified by, if not
exclusive to, Malthus’s writings (Turchin, 2001) on potential
exponential growth in the absence of limiting environmental
factors. Not long after, the logistic function model, again
explicitly created in the context of considering environmental
influences on population models, was introduced by Verhulst
and Quetelet (Bacaër, 2011). From these origins, dynamic
population modeling has grown increasingly sophisticated,

incorporating key ecological interactions such as predator–prey
dynamics (Wangersky, 1978) and trophic energy flows through
ecosystems (Libralato et al., 2014).

Against the same socio-political background that Malthus
was developing his version of a population growth model
focused on change over time, others were establishing a
means to estimate a current population based on incomplete
observations. Laplace developed a ratio estimator to attempt
a census of France contemporaneously to Malthus’ writings,
though it is now recognized that this concept had been used
even earlier, e.g., Graunt’s foundational investigations into the
mortality statistics of 17th century London (Connor, 2022).
Despite these earlier works, credit for the advent of population
ratio estimators in ecology has traditionally been given to
Danish fisheries scientist C.G. Johannes Petersen for his work
estimating plaice (fish) abundance (Goudie and Goudie, 2007).

Dynamical modeling of population changes and statistical
models for estimating population size not only formed
the basis of ecology as a discipline but continue to play
central roles in ecology in the context of conservation and
resource management, providing the methodological basis for
much of today’s fisheries science and marine ecology. In

Frontiers in Ecology and Evolution 04 frontiersin.org

https://doi.org/10.3389/fevo.2022.972179
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-10-972179 August 9, 2022 Time: 9:33 # 5

Dowsett et al. 10.3389/fevo.2022.972179

addition to these foundational modeling tools, conservation and
resource management research is increasingly complemented by
awareness of the interconnectedness of extant populations and
ecosystems as well as the sheer scale and number of stressors
(Halpern et al., 2008; Borja, 2014).

With global-scale stressors like overharvesting and climate
change increasingly taking center stage (Cury et al., 2008;
Halpern et al., 2008), management and conservation efforts
have begun incorporating future climate projections into
policy consideration. Habitat and species distribution models
incorporate contemporary environmental observations as well
as snapshots from future climate projections to inform
policymakers (Cheung et al., 2009; Assis et al., 2018).
The Fisheries and Marine Ecosystem Model Intercomparison
Project (Fish-MIP) is an example of ecological modeling
adopting a standardized model-intercomparison framework
and comparing results driven by future climate model
projections across ecological models to inform management and
conservation (Warszawski et al., 2014; Tittensor et al., 2018).

This marine ecological model intercomparison framework
allows decision-makers to explore the structural uncertainty
associated with decisions and tradeoffs in the design of the
ecological models used. Moreover, the Fish-MIP framework is
designed so that these ecological models can be driven using the
diverse archive of climate model projections from the Coupled
Model Intercomparison Project (Taylor et al., 2012), not only
informing decision-makers as to how ecosystems respond to
different future emissions scenarios, but also to the structural
uncertainty inherent to differences between climate models, and
to how these differences may or may not interact with the
structural uncertainty arising from the ecological modeling side.
Jacobs (2015) further expanded upon this idea by incorporating
paleoclimate data as an addition to, and comparison against, the
climate model projection data suggested for Fish-MIP.

A regional marine ecosystem model was created specifically
to interrogate potential impacts the proxy-model disagreement
regarding North Atlantic Pliocene SST might have on future
fisheries, a sector with high commercial, cultural, and political
salience across local to international scales. This model used
the Global Ocean model (Christensen et al., 2015) as a
starting point. The 2015 version of the Global Ocean model
consisted of 52 representative functional groups and was
calibrated and validated using globally aggregated fish landings
and environmental conditions. Practically, this meant model
values in any given area were simply fractional/proportional
to global values. To examine spatial differences in response to
different drivers, the North Atlantic region was divided into
four subregions based upon climatic/oceanographic similarity
(Polar-Subpolar, Mid-Atlantic, Mediterranean, and Tropical-
Subtropical), and functional group environmental preferences
for each subregion were re-calibrated against historical catch as
well as environmental data over the period 1950–2012 (Stock
et al., 2014; Zeller et al., 2016).

The North Atlantic marine ecosystem model was then
driven by climate model-derived future SST, in this case
the Institute Pierre-Simon Laplace Climate Modelling Center’s
IPSL-CM5A-LR under a high greenhouse gas emissions
trajectory (RCP8.5). For comparison, the marine ecosystem
model was also driven by PRISM3 paleontologically derived
SSTs (Figure 2). While the overall warming from RCP8.5
(Meinshausen et al., 2020) would be significantly larger than
Pliocene warming (relative to preindustrial conditions) if the
climate model were allowed to fully equilibrate, during a
transient simulation such as that performed in Jacobs (2015), the
magnitude of globally-averaged change is comparable, allowing
the spatial patterns rather than overall amounts of change to
drive potential differences.

Discussion

As both the paleoclimate- and climate model-derived
scenarios reflected large scale warming of the region of
interest, there were broad commonalities across both. For
example, colder region-based functional groups saw declines
in both habitat extent and relative abundance, and the
habitat extent of warmer region-based groups shifted poleward
as temperatures previously experienced only in the tropics
occurred at higher latitudes.

However, the distinct spatial patterns of change also
produced some interesting differences. While both climate
model- and PRISM-derived scenarios showed some northward
expansion of the upper habitat extent for small pelagic
tropical groups, overall habitat extent shrank in the model-
derived scenario but extent increased in the PRISM-derived
scenario, including an increase off the mid-Atlantic coast of
the United States due to a simulated increase in available
phytoplankton that did not occur in the climate model scenario.
Both scenarios showed declines in large benthopelagic relative
abundance in colder regions, however the PRISM simulation
supported a higher overall relative abundance for this group
(and ultimately a lower overall decline) despite a greater overall
warming anomaly relative to the climate model scenario. One of
the areas of greatest climate model and proxy SST mismatches
for the MPWP, the Denmark Strait between Greenland and
Iceland, also showed an increase in phytoplankton and small
pelagic fish moving poleward in this area in the PRISM-derived
that did not occur in the climate model-driven scenario.

Comparing the ecological model results from both the
PRISM paleoclimate-derived and climate model-derived output
can assist policymakers in understanding where commercial
fishing and conservation strategies, previously based on
expectations from climate model output alone, may be robust
to additional information provided by paleoclimate. Conversely
it may identify strategies that need to be revisited to address this
new line of evidence.
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As indicated above, while the discord between paleoclimate
models and SST proxies is improving (Haywood et al., 2020;
Lohmann et al., 2022) the degree of warming shown by proxy
methods in the mid-to-high latitude North Atlantic is not
captured by all models. We have shown how a deep–time
reconstruction of Pliocene surface temperature, based upon
paleoecological data, can be used to drive an ecosystem model
as a complement to general circulation model temperature
projections. This can potentially help policymakers avoid
locking in resources that might mismatch the real-world
changes we see with future warming. We suggest that this is a
powerful tool for understanding the full range of potential future
socio-ecological impacts when making decisions regarding
conservation management and assessing biodiversity risk.
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