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Participants in the grains industry undertake general surveillance monitoring

of grain crops for early detection of pests and diseases. Evaluating the

adequacy of monitoring to ensure successful early detection relies on

understanding the probability of detection of the relevant exotic crop pests

and diseases. Empirical data on probability of detection is often not available.

Our aim was to both gain a better understanding of how agronomists

undertake visual crop surveillance, and use this insight to help inform

structured expert judgments about the probability of early detection of

various exotic grain pests and diseases. In our study we surveyed agronomists

under a state funded program to identify survey methods used to undertake

visual inspection of grain crops, and their confidence in detecting pests and

diseases using the associated methods. We then elicited expert judgments

on the probabilities of visual detection by agronomists of key exotic pests

and diseases, and compared these estimates with the self-assessments of

confidence made by agronomists. Results showed that agronomists used

a systematic approach to visual crop inspection but that they were not

confident in detecting exotic pests and diseases, with the exception of

pest and diseases that affect leaves. They were most confident in visually

detecting Barley stripe rust and Russian wheat aphid; however, confidence

in detecting the latter was influenced by recent training. Expert judgments on

the ability of agronomists to visually detect exotic pests and diseases early

was in accordance with agronomists’ self-rated confidence of detection but

highlighted uncertainty around the ability of agronomists in detecting non-
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leaf pests and diseases. The outcomes of the study demonstrated the utility of

structured expert elicitation as a cost-effective tool for reducing knowledge

gaps around the sensitivity of general surveillance for early detection, which

in turn improves area freedom estimates.

KEYWORDS

general surveillance, detection probability, biosecurity, expert judgment, grain
agronomists

Introduction

Some pests and diseases pose a significant threat to
biosecurity because of their expected damage to environmental,
economic, and social assets. Early detection surveillance
aims to detect pests and diseases when their populations
are small and geographically confined (Kalaris et al., 2014).
If an incursion or outbreak is detected early, chances of
containment or eradication are high, and long-term costs
to governments and industry and damages to assets can
be minimized (Leung et al., 2002; Magarey et al., 2009;
Anderson et al., 2017; Epanchin-Niell, 2017; Hester and Cacho,
2017). However, surveillance activities cannot detect every
biosecurity threat with absolute certainty, and pre-border and
border activities cannot reduce the risk of incursions to zero.
It is therefore important to quantify detection rates and
probabilities to understand what inferences can reliably be
made from surveillance data. Biosecurity managers are then
able to use detection rates and probabilities to inform optimal
surveillance design and allocation to ongoing monitoring efforts
(Hauser et al., 2015).

Data quality is a critical consideration in judging how
robust the evidence is to support decisions around pest
absence. Data from general surveillance (i.e., obtained through
non-specialist observations) is perceived as less authoritative
and of lower quality than data from targeted surveillance
where visual inspections are done by specialists (Whittle
et al., 2013). The “surveillance continuum” developed by
Hester and Cacho (2017) offers a clear distinction between
four surveillance activities that differ in reporting source and
purpose, and potentially, data quality. At one end, members
of the public report fortuitous sightings of pests and diseases
through passive surveillance. Further along the continuum,
community groups, farmers, orchardists, agronomists, vets
and laboratories participate in more structured approaches–
Citizen science and general surveillance programs–and report
detections that affect their agricultural industry or local
community. At the other end of the continuum, pest and
disease management agencies conduct deliberate, targeted and
coordinated searches as part of active surveillance (Hester and
Cacho, 2017). General and passive surveillance leverage the

expertise of members of the public and industry participants
and can be a powerful and cost-saving tool for the reporting
of new pest incursions (Cacho et al., 2012; Hester and Cacho,
2012; Kalaris et al., 2014), but data quality needs to be
explored. Confidence in active surveillance data is greater,
but the costs of deploying trained field specialists can be
prohibitive on the large scales required for surveillance for
early detection.

Irrespective of the type of surveillance, the sensitivity
of a surveillance system, or the probability of detection,
is integral to the calculation of the likelihood of pest or
disease absence. International and domestic trading partners
require pest status information of a country, or a region
within a country, as assurance that the products they import
meet quarantine standards (PHA, 2013). According to the
International Plant Protection Convention, a “pest free area is
an area in which a specific pest does not occur as demonstrated
by scientific evidence” (IPPC, 2017). The design prevalence
is an important threshold in this context. It determines
at what level of infestation a survey is expected to detect
a pest or disease. Thus, freedom means that a pest or
disease may be present, but at a level that is lower than
the chosen design prevalence (Cameron and Baldock, 1998;
Martin et al., 2007; Hester et al., 2015; Martin, 2017). To
avoid trade restrictions or to gain market access, exporting
countries provide trading partners with evidence of absence
of a pest, referred to as “area freedom” claims. Area freedom,
the statistical quantification of the likelihood of pest absence,
can be calculated using different methods and often has
a complex mix of inputs of quantitative and qualitative
components from a diversity of sources (Kalaris et al., 2014;
Hester et al., 2017) including targeted and general surveillance
(Martin, 2017).

Probability of detection is difficult to estimate with
confidence because it is influenced by a range of decisions
and factors. For example, the decisions biosecurity managers
make about surveillance effort (number of surveys, survey
time, and area) and human resources (observer experience)
(Bailey et al., 2004; Garrard et al., 2008, 2013; Epanchin-
Niell et al., 2014; Hauser et al., 2015). Abiotic and biotic
factors, such as species traits, site and weather conditions
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and the local abundance of the species are also influential
(Bailey et al., 2004; Garrard et al., 2013; Hauser et al.,
2015). The calculation of the likelihood of absence requires
further inputs, depending on the chosen approach for
estimating it. The null hypothesis approach requires
knowledge of the design prevalence and the amount of
surveillance effort, and the Bayesian approach calls for a
“prior,” the belief a pest or disease is present at a location
(Camac et al., 2019).

Little is known about the visual detection component
of general surveillance systems for early detection of exotic
grain pests and diseases (but see Hammond et al., 2016).
Though detection probability can be estimated using different
approaches, including routine surveillance activities, the most
reliable method for estimating detection probability is direct
experimentation because it reduces the gap between the
perceived and the true efficacy of detection. However, detection
experiments are expensive because they are resource intensive
(Hauser et al., 2015). Under constrained government budgets,
direct experimentation for each target pest and disease may
therefore not always be possible, especially if these threats
have never been detected in an area. When empirical data
are not available, narrow in scope or difficult to acquire,
elicitation of expert opinion can be another source of
data (Gustafson et al., 2013). Structured expert elicitation
protocols can help provide accurate and well-calibrated data
(Hemming et al., 2018b), and can be obtained at much
lower cost than detection experiments. Research also suggests
that judgments of groups outperform those of individuals
(Hemming et al., 2018b). The use of expert opinion is an
established method for gathering knowledge in natural resource
management (Yamada et al., 2003; Runge et al., 2011; Adams-
Hosking et al., 2016) and biosecurity (Wittmann et al., 2014;
Barry et al., 2015).

In this study we aimed to generate improved estimates of
the probability of detection of exotic grain pests and diseases
for a government funded visual surveillance program led by
grain agronomists in Australia. Our study set out to enhance the
current understanding of visual inspection methods applied in
the grains industry in Victoria, and to improve the confidence
of biosecurity managers in using general surveillance data for
area freedom calculations. The approach taken in our study can
easily be transferred to other countries and plant production
industries. We surveyed agronomists to better understand how
they undertake crop health surveillance and to obtain an
estimate of their self-rated confidence in detecting exotic grain
pests and diseases early. Then, using this insight, we conducted
a structured expert elicitation with experts from the grains
industry on the probability of early detection of various exotic
grain pests and diseases by agronomists. We further explore
the uncertainty around the ability of agronomists to detect
different types of pests and diseases and the implications for area
freedom calculations.

Materials and methods

Case study–Crop safe program

Crop Safe is a state funded general surveillance program
in Victoria, Australia, that coordinates collection of crop
health information through a network of 180 industry
grain agronomists, who undertake extensive and repeated
observations of grain crops to provide early warning of
incursions of 15 (since the incursion of Russian wheat aphid
in June 2016 only 14) exotic grain pests and diseases. During
2018, agronomists surveyed 25,276 paddocks of wheat, oats,
barley, canola, field peas, chickpeas, faba beans, lupins, lentils,
vetch, and triticale. Agronomists visited paddocks 4–7 times
a growing season, totaling more than 118,656 individual crop
inspections over an area of 1.9 million hectares (more than
65% of the total area of grain crops in Victoria). Agronomists
access annual workshops designed to familiarize them with
common and exotic pests and diseases of cereal and pulse
crops. On average, 90–100 suspect samples are submitted
to a Crop Safe diagnostic laboratory annually to diagnose
unknown plant disease symptoms or pests. The laboratory
provides a diagnosis and feedback, improving agronomist skills
while ensuring accuracy of the surveillance data. If the Crop
Safe laboratory still suspects and exotic pest has been found,
the sample is submitted to a reference diagnostic laboratory
for verification.

Apart from providing early warning assurance, the
information gathered under the Crop Safe program can also
be used to inform area freedom claims (Hammond et al.,
2016; PHA, 2020) at a lesser cost than targeted surveillance.
Calculating the likelihood of pest absence requires knowledge
of the sensitivity of the components of the surveillance system.
Sensitivity means that visual inspection will detect a pest or
disease if it is present in the surveyed unit. The Crop Safe
program is one component of the overall surveillance system
in Victoria for the detection of exotic grain pests and diseases.
From here on, we will refer to the Crop Safe component of
the Victorian surveillance system as “surveillance system”
or “surveillance program.” The probability of agronomists
detecting pest and diseases on visual inspection is an
important factor in the calculation of the sensitivity of
the surveillance system, as the higher the probability of
detection by agronomists, the greater the sensitivity of the
surveillance system (Froessling et al., 2013; Wright et al., 2016).
Specificity, the proportion of truly negative detections, may
be lower for root diseases and stem pests because signs and
symptoms can be similar. However, specificity is assumed to
be perfect in our context, following the reasoning by Martin
et al. (2007), because any false positives detected at visual
inspection would be resolved through follow-up testing in
the laboratory.
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Representation of the surveillance
system as a scenario tree

The surveillance system consists of a sequence of events
that can be depicted by a scenario tree (Figure 1). The tree has
one infection node. It represents the proportion of crops, the
paddocks of farmers or growers participating in the surveillance
program across the region, that are infected, PrCrop. This is the
design prevalence set by the Crop Safe managers. The next event
is detection at visual inspection by a Crop Safe agronomist, at a
probability of PrVis. The unit of inspection is discrete paddocks.
Prior to our study, probability of detection at visual inspection
in the surveillance system was set at 0.6–0.8 based on evidence
from detection experiments with Lupin anthracnose, an exotic
crop disease that affects above-ground plant parts. This estimate
was applied to all other crop pests and diseases surveyed under
Crop Safe. Following visual detection by an agronomist, two
stages of Crop Safe diagnosis follow. First, a sample of affected
crop is sent to a regional laboratory for preliminary testing. The
sample tests positive with a probability of PrLDCC, which is the
sensitivity of the test at that regional laboratory–The probability
that the test result is positive given the pest or disease is present.
If the first laboratory test is positive, the sample is sent to crop
health services for definitive testing. The probability of a positive
result, again, is the sensitivity of the test, depicted as PrLab
in the scenario tree. The sensitivity of the surveillance system
is the product of the conditional probabilities associated with
each positive node. The focus of this study is on the second
node Detected at visual inspection, on the probability of visual
detection by an agronomist in the field.

Online survey

In the first part of this study, we developed an online survey
Qualtrics software (Qualtrics, Provo, UT, USA) to improve
current understanding of methods applied by agronomists for
surveying crop health and of their level of confidence in
early detection of exotic grain pests and diseases. The survey
was anonymous and asked participants about: (i) personal
information (gender, age, and work experience in agronomy),
(ii) inspection approach (including time spent and frequency
of inspections), (iii) confidence in identifying different crop
problems, (iv) triggers for investigating a problem further
in terms of its severity and extent, (v) frequency of using
laboratory diagnostic facilities, (vi) confidence in detecting
exotic pests and diseases in early stages of infestation, (vii)
Crop Safe training for identifying Russian wheat aphids, (viii)
use of specific manuals and awareness of others, and (ix)
their opinion on the surveillance program in general (strengths
and weaknesses). Here, we will only report survey results
related to participant demographics, inspection approaches and
confidence in detecting exotic pests and diseases.

Crop Safe staff distributed a link of the survey to 157
agronomists in the grains industry in June 2016. The survey
remained open for 1 week and offered a non-monetary incentive
to encourage participation. Survey participant responses were
collated and analyzed using the open source software R
Statistical Software [version 3.5.2 (2018-12-20)–“Eggshell Igloo,”
R Core Team, 2018, Vienna, Austria]. For time spent on specific
inspection methods and agronomists’ self-rated confidence of
detection, the mode is used for describing survey results. We
present the mode, the category (in percent of the time), that was
selected most often, and the percentage of respondents that have
selected this category.

Russian wheat aphid incursion and
training

On 9 June 2016, the presence of Russian wheat aphid
was confirmed in South Australia and western Victoria (IPPC,
2016). As a response to this incursion a Crop Safe agronomist
workshop was held in Horsham, Victoria on 10 June 2016 to
train agronomists in the detection of Russian wheat aphid. This
allowed us to include a question about training attendance in
the survey and to divide the responses of survey participants
into two groups depending on whether they had attended the
training course or not. A fifth (20%) of survey participants
attended the training, 4 days before the survey was sent out.

Expert elicitation workshop

The second part of our study involved the use of an expert
panel in an elicitation workshop on 29 June 2016 to quantify
experts’ perception of the probability of early detection of
exotic pests and diseases by agronomists. The panel consisted
of nine experts with a professional background in biosecurity,
such as diagnosticians and other technical experts. The panel
participants were selected based on their active engagement in
entomological and plant pathological field research of broad
acre crops, as well as training of Crop Safe agronomists in pest
and disease identification. At the start of the day, results from
the online survey were introduced to workshop participants,
except for self-rated confidence in detection. The survey results
were shared so that participants gained a better understanding
of what field survey methods agronomists applied. Prior to
the elicitation, participants assigned the fifteen exotic pests and
diseases of interest to the surveillance program to seven groups
(one to four species per group), considering different aspects
of grain morphology, plant life cycle and visual detectability of
infestations (Table 1). This was done to reduce the elicitation
burden on participants, but also allows a more generalized
approach to assessing detectability, i.e., the judgments could be
applied to different pests and diseases, as long as they fall within
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FIGURE 1

Representation of the surveillance system as a scenario tree. In sequence of events, the surveillance system consists of infection node or crop
status (filled diamond), detection nodes where visual inspection and laboratory testing is undertaken (filled circles), and outcome nodes
(triangles). Outcome nodes represent infected/detected crop proportions (filled triangles) and not infected/detected crop proportions (empty
triangles).

TABLE 1 Grouping of 15 key exotic crop pests and diseases.

Pest/Disease
group

Pest/Disease species Broad visual
detectability rating

Rationale for grouping

Leaf pest American serpentine leaf miner;
Maize leafhopper;
Russian wheat aphid;
Turnip moth.

Moderate Symptoms are distinctive during visual inspections.

Stem pest Barley stem gall midge;
European wheat stem sawfly.

Low Internal stem symptoms, visible at late stages of infestation.
Localized scale.

Grain pest Cabbage seedpod weevil. Low Holes in seeds and seed deformity. Requires detailed
examination of seeds. Difficult to detect at early stages.

Root disease Canola verticillium wilt;
Fusarium wilt of canola;
Fusarium wilt of chickpea.

Very low Disease symptoms present below ground and difficult to detect
at early stages of infection. Difficult to distinguish from other
diseases, disease strains or other problems (e.g., drought).

Leaf disease 1 Barley stripe rust;
Lentil rust;
Lupin anthracnose.

High Specifically targeted by agronomists during surveys. Distinctive
symptoms.

Leaf disease 2 Lentil anthracnose Moderate Symptoms could be attributed to Ascochyta blight, easily
detectable in ascochyta-resistant lentil varieties.

Grain disease Karnal bunt Very low Contained within glumes. Bunts are distinctive. Seed-borne.
Difficult to detect in field.

Visual detectability is divided into four broad categories: high, moderate, low, and very low.

the seven groups. Workshop participants decided to exclude
Khapra beetle from the elicitation exercise as it is a post-harvest
pest of stored grain and usually absent from crops.

The same elicitation question “What is the probability of
early detection by Crop Safe agronomists according to effort?”

was applied to the seven groups using a structured elicitation
procedure called the IDEA protocol (Hemming et al., 2018a).
We applied the four-step format of the IDEA protocol for
eliciting quantitative estimates from experts, with uncertainty
(Hanea et al., 2017). During the first part of the elicitation
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process, experts provided their initial individual estimates of
the probability of early detection, basing their judgments on
an incursion level (design prevalence) of 1% of a 100 ha
hypothetical crop. We standardized interval estimates to 80%
confidence levels across all experts using linear extrapolation
(described in detail in Hemming et al., 2018b). This allowed
viewing of credible intervals on a consistent scale and facilitated
comparisons during the following group discussion phase. The
results were de-identified, aggregated and presented to the
group. Facilitators revealed agronomists’ self-rated confidence
in early detection of exotic grain pests and diseases at this stage
to prevent introducing anchoring bias, the tendency to hold
onto a previously considered number when making numerical
estimates (Burgman, 2015). Following a group discussion
based on first round estimates and agronomists’ self-rated
confidence, experts submitted their revised and final individual
estimates.

Aggregating expert judgments

Quantile aggregation, where the arithmetic mean of experts’
estimates is calculated for the lower, best, and upper estimates
is used frequently in applications of the IDEA protocol. It is a
fast and uncomplicated approach that is easily understood by
participants, but there is indication that the quantile aggregation
method performs poorly when compared to aggregating fitted
distributions (Hemming et al., 2018a). The scaling to 80%
intervals does not correspond to any standard distributional
assumptions. Because estimates of detection probability were
to be used in a scenario tree model (Figure 1) we aggregated
the elicited data using Beta distributions as the underlying
model for probability of detection during visual inspection. Our
approach was to assume that the elicited data from each expert
were summary statistics from a Beta distribution, θk ∼ Beta
(αk, βk), from which we estimated the parameters (αk, βk). The
aggregated expert density can then be estimated as θ′ ∼ Beta(
α′, β′

)
, where αk, βk are the parameters of the k = 1, . . ., K Beta

distributions for experts’ estimates of probability of detection,
and B is the Beta function, and ψ is the digamma function.

α̂′, β̂′ = arg min
α′, β′

K∑
k=1

DKL(θ
′, θk)

= log
(
B(αk, βk)

B(α′, β′)

)
+ (α′ − αk)ψ

(
α′
)
+
(
β′ − βk

)
ψ
(
β′
)
+

(αk − α′ + βk − β′)φ(α′ + β′)

The Kullback–Leibler divergence, DKL (θ′, θk), represents
the amount of information lost by assuming that the
distribution is θk ∼ Beta (αk, βk), when in fact it is
really θ′ Beta

(
α′, β′

)
. We aggregated and plotted expert

judgments in R Statistical Software [version 3.5.2 (2018-
12-20)–“Eggshell Igloo,” R Core Team, 2018, Vienna,
Austria].

Statistical analysis

Statistical differences between aggregated final estimates
of the probability of visual detection were determined by
fitting beta distributions to the data, sampling from the
distributions, and then comparing the samples using the
Two-Sample Kolmogorov–Smirnov Test. Results are presented
in the Supplementary Appendix Table A1. Analysis was
conducted in MATLAB R2021a, The MathWorks, Inc., Natick,
MA, USA.

Results

Out of 157 targeted Crop Safe agronomists, a total of 89
completed the survey with a valid response, resulting in a
participation rate of 57%. Survey respondents were diverse
in age (22–67 years, median 37), and work experience
in agronomy (1–45 years, median 14 years), but not
gender (76% male).

Time spent on specific inspection
methods

The online survey (refer to Supplementarymaterial), asked
agronomists about their approach for inspecting crop health
at a site, including how much time they usually spend on
eight particular inspection methods (Figure 2). Survey results
showed that Crop Safe agronomists invested considerable time
in visually inspecting grain crops and that they applied a
systematic and detailed approach. Most agronomists obtained
an overview of both healthy looking and weak patches in an
area first and closely examined individual plants from good
and bad patches (mode 60–80% of the time, 47% of responses)
or only from weak patches (mode 60–80% of the time, 36%
of responses). They often applied zigzag inspection patterns
(mode 80–100% of the time, 34% of responses), and examined
areas that the farmer has identified to them (mode 60–80%
of the time, 33% of responses). It was not the norm among
agronomists to drive around the perimeter of a paddock (mode
0–20% of the time, 48% of responses) or focus on seemingly bad
patches (mode 0–20% of the time, 36% of responses). Drones
were rarely used at the time of the survey. A high proportion
of respondents (92%), reported that they rarely (0–20% of the
time), examined a crop area by drone first before attending to
problem areas.
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FIGURE 2

Proportion of time spent by agronomists on eight different crop inspection methods. Vertical bars represent the proportion of responses. Bar
gray scaling indicates differences in frequency of method application, ranging from “rarely” to “almost always.”

To provide more context around inspection approach,
the time spent inspecting a 100 ha crop varied from 15 to
30 min and agronomists reportedly visited each site 4–7 times
per growing season.

Agronomists’ self-rated confidence of
detection for each pest or disease

Self-rated confidence of detection among respondents
varied with each crop pest and disease (Figure 3). Crop Safe
agronomists were most confident in detecting Barley stripe
rust and Russian wheat aphid (mode 90–100% of the time–
highly confident, 46 and 41% of responses, respectively). Crop
agronomists rated their confidence of detection as very low
(mode 0% of the time–not at all confident) for most of the pests
and diseases, including Maize leafhopper (67% of responses),
American serpentine leaf miner (65% of responses), Cabbage
seedpod weevil (62% of responses), European wheat stem
sawfly (62% of responses), Barley stem gall midge (55% of

responses), Canola verticillium wilt (52% of responses), Khapra
beetle (51% of responses), Turnip moth (47% of responses),
Fusarium wilt of chickpea (38% of responses), Karnal bunt
(33% of responses), Lentil anthracnose (33% of responses), and
Fusarium wilt of canola (32% of responses). Lentil rust and
Lupin anthracnose had a balanced distribution of responses
(Figure 3). Agronomists who had undertaken the Russian wheat
aphid training were more confident in detecting this particular
pest. More specifically, 57% of training participants were “highly
confident” in identifying Russian wheat aphid compared to 38%
of agronomists who had not attended the training.

We found no relationship between field experience and
confidence in detection (data not shown). This was probably due
to the high level of field experience among survey respondents.
Most respondents had more than 5 years (30 out of 73 valid
responses for this question), and more than 15 years (34 out
of 73 valid responses) of field experience. Nine respondents
indicated that they had less than 5 years of field experience
and sixteen did not answer this question or provided an
invalid response.
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FIGURE 3

Crop Safe agronomists’ self-rated confidence of detection of exotic pests and diseases at visual inspection. Vertical bars represent the
proportion of responses. Bar gray scaling indicates differences in self-rated confidence of detection, ranging from “not at all confident” to
“highly confident.”

Agronomists’ self-rated confidence of
detection for each pest/disease group

Self-rated confidence in visually detecting pests and diseases
was low (mode 0% of the time–not at all confident ranging from
35 to 59% of responses, Figure 4) across the seven pest/disease
groups, with one exception. Overall, self-rated confidence of
detection was greater for pests and diseases that affect leaves.
Agronomists were most confident in detecting diseases in
the leaf disease 1 group (mode 90–100% of the time, 25%
of responses). The groups leaf disease 2 and leaf pest had
marginally better ratings than the other pest/disease groups.
Agronomists were least confident in detecting grain and stem
pests (mode 0% of the time–not at all confident, 57 and 59% of
responses, respectively).

Estimation of visual probability of
detection by experts

The aggregated 80% intervals for the probability of visual
detection during inspection (Figure 5) showed that experts rated

the detectability of leaf diseases (group 1 and 2) and pests as
higher (best guesses 0.76, 0.37, and 0.57 after discussion) than
that of grain pests and diseases (best guesses 0.25 and 0.30),
root diseases (best guess 0.32), and stem pests (best guess 0.30).
Pairwise comparisons showed that estimates for leaf diseases
and pests were significantly higher (null hypothesis rejected
95–100% of the time, Supplementary Appendix Table A1),
than those of the other groups, with a less pronounced result
for the comparison between leaf disease 2 and root diseases
(null hypothesis rejected 68% of the time). These results are
consistent with the broad detectability ratings (Table 1), which
were based on the ease of visual detection and considered
characteristics such as visual distinctiveness, which part of the
plant is affected and the stage of infestation or infection at which
symptoms occur. Results are also consistent with agronomists’
self-rated confidence.

Representation of expert opinion using Beta distributions
showed that individual experts rated detectability of pests and
diseases differently and with varying degrees of confidence
(Figure 6). There was greater uncertainty among experts about
the probability of visual detection by agronomists of grain
diseases, stem pests, and Lentil anthracnose (leaf disease 2
group). While experts’ opinions were more aligned for other
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FIGURE 4

Crop Safe agronomists’ self-rated confidence of detection of exotic pests and diseases at visual inspection. Pests and diseases are divided into
seven groups. Vertical bars represent the proportion of responses. Bar gray scaling indicates differences in self-rated confidence of detection,
ranging from “not at all confident” to “highly confident.”

pest and disease groups, some of those groups included outliers.
For example, one expert estimated the probability of detection
of leaf pests to be very low (0.16) while the aggregated group
estimate showed that most experts were fairly confident (0.63)
that agronomists would detect leaf pests at visual inspection.
Similarly, group estimates of detection probability of pests and
diseases in the leaf disease 1 group were high (0.82) with a
number of confident experts (high and narrow peaks). Two
experts, however, estimated the probability of detection to be
much lower (0.50 and 0.65).

Discussion

The self-rated confidence of Crop Safe agronomists in
the probability of visually detecting exotic crop pests and
diseases early was generally low. Not surprisingly, confidence in
detection was highest for pests and diseases that affect leaves.
Signs and symptoms on leaves are more visible and easier to
detect than belowground symptoms caused by root diseases

such as Fusarium wilt of canola and chickpea, caused by a
fungus that infects plants through the root system. Agronomists
were most confident in detecting Barley stripe rust, a fungal
leaf disease that develops distinct yellow stripes of rust pustules
between the veins of leaves (PHA, 2019a). Agronomists were
also highly confident in detecting Russian wheat aphid, a
small soft bodied insect with a distinct double structure at
the rear that feeds mostly on wheat and barley (PHA, 2019b).
A recent incursion of Russian wheat aphid allowed us to
compare confidence ratings of agronomists who had attended
emergency response training with ratings of agronomists who
had not attended. Survey participants who attended the training
were clearly more confident than participants who did not
attend, demonstrating that targeted, face-to-face training of
agronomists was effective in increasing their confidence in early
detection. In contrast, some methods of information transfer,
such as fact sheets, other reading material and information
booths at local field days appear to be less effective (Wright et al.,
2016). Training courses can increase the probability of detection
and reporting of pests and diseases, but they often do not reach
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FIGURE 5

Aggregated 80% intervals for the probability of detection of exotic pests and diseases during visual inspection. Pests and diseases are divided
into seven groups. Best estimates (means), with 80% upper and lower credible intervals, are shown for the first and second round of expert
elicitation. Black circles represent best estimates before discussion (initial estimates) and gray circles represent best estimates after discussion
(final estimates).

relevant end users. For instance, in the Western Australian
grains industry, agricultural consultants reported that they had
not attended any training to improve their knowledge of high
priority pests and diseases (Hammond et al., 2016).

Surveys of the Australian and Western Australian grains
industries covered four of the pests and diseases included
in our survey. Both these studies asked participants to self-
rate the likelihood of detection and/or to correctly identify
symptoms associated with crop pests and diseases (Hammond
et al., 2016; Wright et al., 2016). The findings were similar,
in that respondents in both surveys had more confidence in
detecting plant diseases (Barley stripe rust and Karnal bunt)
than insect pests (Khapra beetle and Russian wheat aphid).
Our survey, however, revealed that Crop Safe agronomists
were much more confident in detecting Barley stripe rust and
Russian wheat aphid than Khapra beetle and Karnal bunt.
In contrast to Hammond et al. (2016), who reported low
confidence in the likelihood of detection by growers, agricultural
consultants, and government staff (mode 0–10% likelihood),
Victorian agronomists were highly confident in detecting

Russian wheat aphid, including many of the respondents
who had not attended the Crop Safe training workshop. The
high confidence reported by agronomists may have been an
effect of the incursion of this pest in South Australia and
western Victoria shortly before our survey was sent out.
Incursions usually trigger communication activities such as the
dissemination of information material on pest identification and
early detection.

When pests and diseases are exotic to an area, they have
never been detected there, or, they have been absent for a
long time. A consequence of no previous history of observed
detections is that no empirical data on detection probability
is available. Eliciting expert judgments can mitigate gaps in
knowledge, especially when applying a structured elicitation
protocol, which improves transparency, accountability and
quality of these judgments (Hemming et al., 2018b). The elicited
probability estimates of visual detection, by pest/disease group,
were consistent with both the broad detectability ratings given
by participants before the expert elicitation and the self-rated
confidence by Crop Safe agronomists. Experts also estimated
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FIGURE 6

Probability density functions of the aggregated Beta distributions, showing the probability of detection during visual inspection for each
pest/disease grouping as estimated by the experts. Thin lines represent individual experts’ estimates and bold lines represent aggregated
densities by minimizing Kullback–Leibler divergence.

a greater probability of detecting pests and diseases that affect
leaves than the probability of detecting those that affect roots,
stems, and grains.

Crop Safe managers have replaced their previous estimates
of probability of detection at visual inspection for all 14
exotic pests and diseases with the results from this study,
but our results also indicate potential areas where Crop Safe
managers could direct future efforts to improve confidence
in the sensitivity of the surveillance system. Experts were in
strong agreement with each other and with agronomists about
early visual detection of leaf pests and diseases, confirming the
use of agronomists as a cost effective and reliable method to
survey crop health in relation to leaf pests and diseases. Experts
were, however, uncertain about detection probability of non-leaf
pests and diseases.

To further reduce the uncertainty around visual detectability
of pests and diseases that affect roots, stems and grains,
biosecurity managers have different options. They can invest in
direct detection experiments in the field, in targeted training
or active surveillance. Direct detection experiments cannot be
conducted easily with pests and diseases that are absent in all
of Australia but could be conducted using pests and diseases
that are similar to their exotic counterparts. In the case of
Russian wheat aphid, which was detected in South Australia
and Victoria a short time prior to our study, direct field
detection experiments could be developed to better estimate
the probability of visual detection. This would be useful
information for surveillance initiatives in other Australian
jurisdictions where no infestation of Russian wheat aphid has
been detected to date. Targeted training increased the confidence
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of agronomists in detecting Russian wheat aphid early and
could be used to reduce the uncertainties of detecting pest and
diseases affecting roots, stems, and grains. However, training
may not improve visual detection probability for diseases that
affect roots because they are usually difficult to detect at early
stages of infection and above ground symptoms can be confused
with those that are responses to physiological stresses such
as drought (Jiménez-Díaz et al., 2015). Active surveillance,
a more formal and structured approach, could increase the
probability of detection through an increased surveillance effort.
In the case of pests and diseases that are hard to detect
visually, a more targeted surveillance strategy would have to
be supported by bespoke sampling protocols and diagnostic
resources.

Overlaying individual estimates of the probability of
detection with the aggregated group estimate showed that
expert opinion varied depending on the pest/disease group.
For example, the leaf pest group had a difference of 0.47
between the aggregated group estimate and one individual’s
estimate. This difference is distinct and exemplifies the risk
of relying on the judgment of a single person that may
be considered the most credentialed expert. We can use
this example to illustrate the consequences of relying on
a single expert. The probability of visual detection of leaf
pests is an input into the calculation of the sensitivity of
the surveillance system for this group of pests as depicted
in the scenario tree representation of the surveillance system
(Figure 1). Because of the positive relationship between the
variables, a greater probability of detection will result in
a greater sensitivity of the surveillance system (Froessling
et al., 2013; Wright et al., 2016). Decision makers use
the sensitivity of a surveillance system for estimating the
probability that a pest or disease is absent, because they
are interested in quantitative evidence of absence for trade
negotiations. Two fundamental approaches are available: the
likelihood of pest absence can be inferred from confidence
of detection (Null hypothesis testing) or it can be explicitly
estimated using the Bayes’ theorem (see Martin et al.,
2007; Camac et al., 2019). To illustrate, using the Bayes
approach, an underestimated sensitivity of the surveillance
system, based on poor judgment of a single expert, would
result in a less favorable posterior estimate of probability of
freedom. Overestimating the sensitivity of the surveillance
system, on the other hand, inflates the posterior estimate
of probability of freedom. Empirical evidence shows that
aggregated judgments of a group of individuals outperform
judgments of individuals (Surowiecki, 2004; Budescu and Chen,
2015; Hemming et al., 2018b).

Looking at the use of technology for crop inspections, the
online survey revealed that respondent agronomists applied a
systematic and detailed approach to visual inspection of crop
health. But at the time of the survey, they were not using
drones regularly to examine wider crop areas. The efficacy

of drones in monitoring crop health has been demonstrated
elsewhere (e.g., Stehr, 2015; Puri et al., 2017; Mogili and Deepak,
2018). Veroustraete (2015), for example, reported that the
main application of drones in agriculture is for crop health
inspections using sensors that can detect visible light and
near-infrared wavelengths. Low uptake of this new technology
may partly be due to strict regulations around the use of
drones that only permit holders of specific licenses to operate
them outside the visual line of sight (CASA, 2018). Another
limitation on the use of drones is that they are not suitable
for detecting the early stages of infection of diseases that affect
plant roots. This limitation also holds true for remote sensing
technologies carried on satellites. However, high-resolution
multispectral satellite imagery can be useful in detecting some
plant pests and diseases (Raza et al., 2020). If the grains
industry in Victoria would adopt the use of drones or satellite
imagery as a routine method for monitoring crop health in the
future, the probability of detection for crop pests and diseases
might change, as well as the way how surveillance is done
in general.

Conclusion

This study combined a comprehensive survey of Crop
Safe agronomists, who undertake general surveillance for early
detection of exotic grain pests and diseases, with an elicitation
expert workshop to compare agronomists’ self-rated confidence
in detecting pests and diseases with the perception of detection
probability in the grains industry. Our work improves the
current understanding of visual inspection methods applied in
the grains industry in Victoria. It also provides quantitative
estimates of visual detection probabilities that biosecurity
managers have adopted in their estimates of pest status of exotic
grain pests and diseases.

The structured IDEA protocol applied in this study proved
effective and practical in reducing an important knowledge gap
around the sensitivity of the surveillance program. It was a cost-
effective alternative to resource intensive detection experiments
which cannot be conducted easily with pests and diseases that
are absent in Australia.
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