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Rapid acquisition of
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genes can help explain
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The punctuated mode of evolution posits that evolution occurs in rare

bursts of rapid evolutionary change followed by long periods of genetic

stability (stasis). The accepted cause for the rapid changes in punctuated

evolution is special ecological circumstances – selection forces brought

about by changes in the environment. This article presents a complementary

explanation for punctuated evolution by the rapid formation of genetic

variants in animals and plants by the acquisition of microorganisms from

the environment into microbiomes and microbial genes into host genomes

by horizontal gene transfer. Several examples of major evolutionary events

driven by microorganisms are discussed, including the formation of the first

eukaryotic cell, the ability of some animals to digest cellulose and other plant

cell-wall complex polysaccharides, dynamics of root system architecture,

and the formation of placental mammals. These changes by cooperation

were quantum leaps in the evolutionary development of complex bilolgical

systems and can contribute to an understanding of themechanisms underlying

punctuated evolution.
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Introduction

The punctuated equilibrium mode of evolution, although first introduced by

Simpson (1944), is generally attributed to the paleontologists Eldredge and Gould

(Eldredge, 1971; Eldredge and Gould, 1972; Gould and Eldredge, 1977). Punctuated

evolution posits genetic stability followed by rare bursts of rapid evolutionary change.

Once a species appears in the fossil record, the population will become stable, showing

little evolutionary change for most of its geological history. This state of little or

no morphological change is called stasis. In contrast, phyletic gradualism is a more

gradual, continuous model of evolution that occurs uniformly by the steady and

slow transformation of whole lineages. Eldredge and Gould argued that the degree

of gradualism, commonly attributed to Charles Darwin (Rhodes, 1983), is virtually

nonexistent in the fossil record and that stasis dominates the history of most fossil
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species. According to Gould and Eldredge (2016), “Phyletic

gradualism was an a priori assertion from the start—it was never

“seen” in the rocks; it expressed the cultural and political biases

of 19th-century liberalism.” More studies that are recent have

provided support for the theory of punctuated evolution (Erwin

and Anstey, 1995; Palmer et al., 2012; Cross et al., 2016; Gemmell

et al., 2019; Schmidt and Wolf, 2021).

What is the accepted explanation for the bursts of rapid

evolutionary change? The most common cause designated to

the rapid changes in punctuated evolution is special ecological

circumstances, which select specific genetic variants in the

population (Rhodes, 1983). For example, when a species

acquires a gene that allows it to exploit some feature of the

changed or changing environment, such as a new environmental

niche, the species may then show rapid changes in other traits as

it adapts to this new niche (Milligan, 1986). Another example is

extreme events, such as volcanism and asteroid impacts, which

can be major drivers of evolutionary change by providing new

niches (Grant et al., 2017).

This article presents complementary mechanisms for

the understanding of punctuated evolution, derived from a

consideration of the role of microorganisms in the evolution

of animals and plants (Margulis, 1999; Margulis and Sagan,

2003; Rosenberg and Zilber-Rosenberg, 2018). Although never

specifically referring to punctuated evolution, the symbiogenesis

theory of Margulis posits that organisms come about primarily

through the merger of separate organisms.

Punctuated evolution driven by
acquisition of microorganisms

One of the most profound evolutionary events was the

formation of the eukaryotic cell by the acquisition of one

bacterium by another. Mitochondria and chloroplasts were

probably formed by the acquisition of Alphaproteobacteria

(Roger et al., 2017) and cyanobacteria (Ponce-Toledo et al.,

2017), respectively. The nucleus of eukaryotic cells was possibly

generated by the acquisition of an Archaea (Williams et al., 2020)

or a virus (Takemura, 2020). Thus, it is generally accepted that

eukaryotes were not formed by the slow process of mutation but,

rather, by endosymbiosis, followed by the gradual conversion of

the endosymbiont into an organelle. After the eukaryotic cell was

formed, the acquisition of bacteria and viruses has continued

to play a fundamental role in the evolution of eukaryotes to

this day. Today, all eukaryotes (plants and animals) are not

individuals but complex systems referred to as holobionts,

composed of the host and myriad microorganisms living on or

in them.

Prokaryotes were on this planet for 2.1 billion years before

there were any animals or plants (Mikhailovsky and Gordon,

2021). During this time, they evolved enormous biochemical

diversity and split into two domains: Bacteria and Archaea.

Mutation and evolution in prokaryotes is much faster than in

eukaryotes because they are haploid single cells, they multiply

rapidly, and they readily exchange genetic information (Pepper,

2014). Animals and plants come into random contact with

billions of microorganisms during their lifetime via air, water,

and through interaction with organic and inorganic surfaces.

Occasionally, some of these microbes find a niche and, under

appropriate conditions, amplify on or in the host and affect

the phenotype of the holobiont. Unlike mutation, which causes

changes in existing genomes, the acquisition of a microbe

introduces thousands of new genes into the holobiont. This

way, rather than reinventing the wheel, animals and plants

can acquire pre-evolved genetic information in the form of

microbes. It is likely that, after the microbe is acquired,

mutations and selection occur in both the microbe and host to

optimize the interaction.

A major evolutionary event driven by the acquisition of

microbes was the ability of some animals to digest cellulose

and other plant cell-wall-complex polysaccharides. With few

exceptions (Sharma et al., 2016), animal genomes do not

code for the synthesis of cellulose-degrading enzymes. Instead,

animals such as ruminants and termites rely totally on anaerobic

cellulolytic microorganisms that are present in the internal space

of their digestive tract. How did they gain access to these

specialized microbes? It seems likely that at least some of the

cellulose-degrading bacteria in ruminants originated from the

consumption of grass, straw, and foliage that contained these

bacteria on their surfaces (Sari et al., 2017). Gilbert (2020)

discusses the ability of symbionts to promote development

supporting the evolution of herbivory. It has been suggested that

the first ruminant evolved in Southeast Asia about 50 million

years ago from a small forest-dwelling omnivore, and, later,

ruminants evolved from this original taxon (Hackmann and

Spain, 2010).

Following the original acquisition of an anaerobic cellulose-

degrading bacterium by a mammal, and, along the way,

additional ones, there would be a strong selection for optimizing

the interaction between the bacterium and the host, including

changes in the host size, shape, internal organs, and teeth. These

new adaptations helped ruminants leave more descendants and

become one of the most widespread groups of large mammals

they are today. A key point is that the evolution of ruminants

was driven initially by the acquisition of cellulose-degrading

bacteria. Large amounts of cellulose were already available in the

environment as a selective force (Sarkar et al., 2009). The higher

ruminants (Pecorans) are believed to have rapidly evolved in

the Mid-Eocene, giving rise to five distinct extant families:

Antilocapridae, Giraffidae, Moschidae, Cervidae, and Bovidae

(Decker et al., 2009). The acquisition of cellulose-degrading

bacteria made this rapid radiation possible.

Another example of how the acquisition of a microbial

symbiont can lead to rapid evolution is the evolution and

expansion of shallow-water scleractinian corals, following
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the uptake of dinoflagellates roughly 240 million years

ago (Frankowiak et al., 2016). The coral-dinoflagellate

photosymbiosis allowed for growth in a nutrient-poor, low-

productivity marine environment. Isotopic data support the

role of photosymbiosis during the sudden Triassic expansion

of coral reefs (Stanley, 2003). At present, we are living through

a punctuated evolution event in the opposite direction. Global

warming is causing disruption of coral symbioses, loss of coral

reefs, and changed distributions of corals (Loya et al., 2001).

The acquisition of microorganisms not only played a crucial

role in the emergence of chloroplasts, as discussed above but

also in the continuing evolution of plants (Cordovez et al.,

2019). One of the interesting contributions of microbiota to

plants is the synthesis of the hormone auxin, indole-3-acetic

acid. Auxin underpins plant development and growth (Frick and

Strader, 2018). Bacteria and filamentous fungi, attached to roots

in the rhizosphere, synthesize auxin (Wagi and Ahmed, 2019),

which initiates several growth and developmental processes in

plants, such as root hair and tip growth, formation of lateral

roots, and the dynamics of root system architecture (Zamioudis

et al., 2013). These auxin-producing microorganisms were, and

probably still are, the driving force behind the evolution of plant

synapses and other interactive behaviors of higher plants.

In conclusion, this section demonstrated that acquired

beneficial microbes have the potential to be amplified and to

spread rapidly to other holobionts in a manner similar to

pathogen epidemics. This could accelerate the rate of adaptation

and evolution of whole groups of holobionts. Such evolutionary

changes by cooperation sometimes brought about quantum

leaps in the development of biological complex systems. Gilbert

(2019) has recently reviewed some of the literature on evolution

by symbiosis but does not relate them to punctuated evolution.

Punctuated evolution driven by
horizontal gene transfer

Horizontal gene transfer (HGT), also known as lateral gene

transfer, refers to themovement of genetic material, and together

with it genetic information across normal mating barriers,

between more or less distantly related organisms. Thus, it differs

from the standard vertical transmission of genes from parent to

offspring. HGT enables the acquisition of novel traits via non-

Mendelian inheritance of genetic material. HGT is generally

associated with gene transfer between different types of bacteria

and is a well-known and ubiquitous evolutionary mechanism in

prokaryotes (Soucy et al., 2015; Kloub et al., 2021). An average

of 81% of the genes in 181 sequenced prokaryotic genomes has

been subject to HGT during the long history of prokaryotic

evolution (Dagan et al., 2008). It was observed that HGT is more

frequent than mutation in E. coli colonizing the mammalian gut

(Frazão et al., 2019). Most prokaryotes possess different classes

of mobile genetic elements that allow for the acquisition, loss,

or rearrangement of sometimes large regions of their genome.

Transposons, plasmids, genomic islands, and viruses, including

bacteriophages, mediate HGT. One of the best-studied examples

of HGT in bacteria is the evolution of antibiotic resistance

(Maclean and San Millan, 2019). I would like to suggest that

HGT could play a vital role in the genetic adaptation that is

suggested to occur during punctuated evolution as a result of

environmental changes. This can be achieved first by HGT

between microorganisms within holobionts and, second, by

HGT between these microorganisms and their host.

HGT between bacteria that are part of plant, animal, and

human holobionts can bring about evolutionary change. For

example, the ability of Far East Asian people to break down agar

(an abundant ingredient in their diet since antiquity) originated

from HGT between bacteria in their gut. Agar-decomposing

genes, present in a marine bacterium, were transferred to a

human gut bacterium, Bacteroides plebeius, by HGT as a result

of eating food that contained raw seaweed (Hehemann et al.,

2010). Although HGT usually occurs between bacteria in the

same ecological niche, apparently the marine bacterium was

present in the gut long enough to have some of its genes

transferred to the resident gut bacterium. These genes code

for the porphyranases that degrade the polysaccharide agarose

of agar (Li et al., 2014). Westerners lack these enzymes and,

therefore, cannot digest agar. The bacteria with the transferred

genes spread throughout the Far East Asian population by

vertical and horizontal transmission (Hehemann et al., 2012;

Porter and Martens, 2017). This is an interesting example of a

very fast, but minor, metabolic evolutionary change that could

not be observed in fossil records.

The recent availability of a large number of high-quality

sequences of fungus, plant, and animal genomes has led to the

conclusion that HGT in these organisms has beenmore frequent

events than observed previously (Li et al., 2018). It should

be noted that the observable HGT events are probably only

those occurring relatively late in evolutionary time scales since

early ones are already masked by many genetic mutation events

(Nielsen et al., 2014). Sixty sequenced fungal genomes contained

713 horizontally transferred genes from bacteria (Naranjo-Ortiz

and Gabaldón, 2020). Invertebrate genomes contain numerous

bacterial, fungal, and viral genes (reviewed by Drezen et al.,

2017). For example, the genomes of 12 Drosophila species

showed, on average, 40 foreign genes that had been horizontally

transferred from bacteria and fungi (Crisp et al., 2015). When

the Drosophila species were placed on a phylogenetic tree, there

was a correspondence between the number of HGT events and

the length of each branch, suggesting that HGT has occurred

throughout Drosophila evolution and is likely to be ongoing

(Serrato-Capuchina and Matute, 2018).

The evolutionary significance of HGT in plants has been

reviewed by Wickell and Li (2020). Analysis of the 13.7-

megabase genome of the extremophile red alga Galdieria

sulphuraria indicated that 5% of its protein-coding genes were
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acquired by HGT from bacteria and archaea (Schönknecht et al.,

2013). Genomic data have uncovered that 57 gene families

in the moss Physcomitrella patens genome were derived from

prokaryotes, fungi, or viruses by HGT (Yue et al., 2012). Many of

these genes are involved in essential or plant-specific activities,

such as xylem formation, plant defense, nitrogen recycling,

and the biosynthesis of starch, polyamines, hormones, and

glutathione. Clearly, HGT has played an important role in the

direction and the rate of evolution in plants (Ma et al., 2022).

Horizontally transferred genes can also be found in

vertebrates (Dunning Hotopp, 2018). It was estimated that the

human genome contains 1,467 HGT regions, involving 642

known genes (Huang et al., 2017). However, it is not clear

when these HGT events took place. In one study, Crisp et al.

(2015) reported that 145 human genes, which are not present in

other primates, were probably attributed to HGT. The majority

of the 145 genes identified in the study came from bacteria,

but some originated from viruses and yeasts. Popov et al.

(2019) have suggested that viruses and intracellular microbial

pathogens were the modes of acquisition of bacterial genes into

the human genome.

A major event in the evolution of mammals, the formation

of placental mammals, which includes humans, was driven by

the acquisition of the gene coding for the protein syncytin from

a retrovirus by HGT (Dupressoir et al., 2012). It is assumed

that the ancestor of placental mammals was solitary, seasonally

breeding, insectivorous, and likely nocturnal (Wu et al., 2017).

The original function of syncytin in such an ancestor was to

allow retroviruses to fuse host cells so that they could move

from one cell to another. Now, syncytin is necessary for the

development of the placental syncytium, an essential part of the

mother-fetus barrier. Endogenous retroviruses have been shown

to be involved in placentation in various mammalian species

Nakaya and Miyazawa, 2015; Hao et al., 2020, demonstrating

that this event occurred a number of times during evolution.

Moreover, recent molecular dating estimates for placental

mammals echo fossil inferences for an explosive diversification

about 76 million years ago (Halliday et al., 2015; Phillips and

Fruciano, 2018). These data are consistent with the punctuated

theory of evolution.

Discussion

Evolution depends both on a selective force and variants

in the population that can benefit from this selected force.

With regard to punctuated evolution, the rare bursts of

rapid evolutionary change are generally attributed to extreme

environmental events, such as large changes in temperature,

and mass extinctions caused by volcanism or asteroid impact

(Marshall, 2015; Grant et al., 2017). These extreme events set

up strong selection pressures on organisms and are analogs

of the dramatic changes documented in the fossil record.

When an organism acquires a genetic variation that allows

it to exploit some feature of the changed environment–

a new environmental niche–the species may then show

rapid changes in other traits as it adapts to this new

niche (Milligan and Wood, 1986).

This article presents data demonstrating that the rate

of formation of variants in the population can also help

explain punctuated evolution. According to neo-Darwinian

theory, formulated in the 1940s, genetic variation is ultimately

generated by mutation (Hershberg, 2015; Ibraimov, 2020).

However, evolving a novel function by mutation is a very

slow process. For example, it was reported that laboratory

adaptive evolution of E. coli to grow on a novel substrate,

1,2-propanediol, took ∼700 generations (Lee and Palsson,

2010), and the ability to grow on citrate required ∼31,000

generations (Lenski, 2017). One would expect that evolution by

mutation in animals and plants would be much slower than in

bacteria (Weller and Wu, 2015).

Acquisition of microorganisms from the environment and

horizontal gene transfer bring forth underappreciated rapid

modes of genetic variation (Zilber-Rosenberg and Rosenberg,

2021). Rather than “reinvent the wheel,” holobionts have the

ability to acquire genes and clusters of genes in a single step that

initially evolved in microorganisms. If the acquisition provides

a selective advantage to the holobiont, then it will multiply

in the population by vertical and horizontal transfer and lead

to the evolution of new species. Furthermore, changes in the

composition of the microbiome have been shown to drive

speciation in Nasonia wasps (Brucker and Bordenstein, 2013)

and two house mice subspecies (Wang et al., 2015).

What is often not appreciated is that acquisition of

microbiota can not only affect the metabolism of animals and

plants but also their morphology. Examples include the hindgut

of termites (Brune, 2014), rumen (Jami and Mizrahi, 2012),

the squid eye organ (Nyholm and McFall-Ngai, 2004), and the

nodule of legumes (Velázquez et al., 2017), In each of these

examples, the morphology of the holobiont has undergone an

evolutionary change while optimizing the interaction of the host

with its microbiota for the benefit of the holobiont.

Cooperation is a fundamental property of all biological

systems, from genes and cells to animals and societies.

Evolutionary history can be viewed as a series of major

transitions in which replicating units came together and formed

new, more complex levels of biological organization (West

et al., 2015). As examples, in this article, I discussed how

eukaryotic cells were formed from the union of archaea and

eubacteria, the formation of ruminants by the acquisition of

cellulose-decomposing bacteria, the emergence of coral reefs by

acquiring endosymbiotic algae, and the evolution of placental

mammals by acquiring a viral gene. All of these examples

would be expected to give rise to rapid evolution (punctuated

evolution), even if they might not be observed directly in

the fossil record.
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In conclusion, the evidence described in this paper

that the acquisition of microorganisms and microbial

genes played an important role in the rapid evolution

of animals and plants may contribute to a better

understanding of the mechanisms underlying punctuated

evolution. Finally, it should be noted that there are other

mechanisms that have been suggested to play a role

in punctuated evolution, including (i) regulatory gene

evolution (Davidson, 2006; Tomoyasu et al., 2009), (ii)

developmental plasticity wherein genes follow phenotypes

(West-Eberhard, 2005; Standen et al., 2014), and (iii) stress-

induced activation of cryptic genetic pathways (Love and

Wagner, 2022). These mechanisms clearly contribute to

specific examples of punctuated evolution. However, the

major evolutionary events discussed in this article, the

formation of eukaryotes, the ability of some animals to

digest cellulose, and the formation of placental mammals

are more readily understood by the acquisition of microbes

and microbial genes.
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