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Research on the evolution and driving forces of landscape patterns can provide important

support for ecological governance decision-making. However, the heterogeneity of

landscape patterns at the microscale (grain size and extent) and the enforceability of

the zoning scale at the macroscale deserve more attention. The optimal grain size

(30 ×30m) and the extent (500m) for landscape pattern research were obtained by

analyzing the fluctuation of landscape metrics and semivariogram models in this study.

The research area was divided into environmental functional regions (EFRs), which were

defined according to the main ecological functions and protection objectives of each

region. The analysis results of land use and land cover changes (LUCCs) showed that

land use transfer in the past 20 years occurred mainly between woodland and cultivated

land at the county scale, but this was not always the case in EFRs. The results of

the landscape pattern analysis showed that landscape fragmentation, aggregation, and

heterogeneity increased at the county scale during 1999–2020. Moreover, except within

agricultural environmental protection areas (AEP) and living environment guaranteed

areas (LEG), the degree and the speed of landscape damage decreased by 2020, and

the turning point occurred in 2006–2013. The analysis results of geographical detectors

showed that the digital elevation mode (DEM) and GDP were the main driving factors

in most regions. At the county scale, the average explanatory power of the selected

factors increased by 13.27% and 16.16% in 2006–2013 and 2013–2020, respectively.

Furthermore, the study area was divided into three categories according to the intensity of

human disturbance. The areas with high human disturbance need to focus on increasing

land-use intensification and strengthening the development in low-slope hill regions. The

areas of moderate human disturbance need to focus on improving the connectivity

of ecological patches and optimizing industrial structures. Attention should be given

to the monitoring of natural drivers and policy support for ecological governance in
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low human disturbance areas. The methods and findings in this study can provide a

reference for decision-makers to formulate land-use policies, especially for integration

into relevant urban planning, such as the spatial planning of national land that is being

widely implemented in China.

Keywords: land use/cover change, landscape pattern evolution, spatiotemporal characteristics, driving forces,

environmental function regions, granularity and extent

INTRODUCTION

Land provides necessary food and energy for organisms, and
its governance plays a key role in ecological protection and
improvement of the living environment (Chi et al., 2019;
Dadashpoor et al., 2019). Landscape pattern evolution caused
by land use and land cover changes (LUCCs) is one of the
most important factors affecting human wellbeing and ecosystem
services worldwide (Nahuelhual et al., 2014; Wang et al., 2021;
Hebin et al., 2022). Therefore, revealing the law of landscape
pattern evolution has been the focus of research on global
environmental change (Sterling et al., 2013). In recent decades,
LUCCs caused by rapid urbanization and extensive construction
modes have placed great pressure on regional sustainable
development (Li et al., 2010). Under such pressure, the scale,
speed, and degree of landscape pattern changes are also occurring
at unprecedented levels (Gao et al., 2016; Feng et al., 2018). A
quantitative study of the evolution of landscape patterns and their
driving forces is considered to be a necessary process to grasp the
consequences of LUCCs (Fan and Ding, 2016; Ma et al., 2019).

Research on the evolution of landscape patterns increasingly
emphasizes the importance of spatiotemporal scales (Quintero-
Gallego et al., 2018). In recent years, the scale of research has
mainly focused on different administrative scales such as global,
national, provincial, county, and township scales (Amuti and
Luo, 2014; Luo et al., 2020), while several studies elected to
use landscape types such as watersheds, wetlands, agricultural
areas, and grasslands as the research boundary (Enaruvbe and
Atafo, 2019; Xu et al., 2022). In addition, the relevant quantitative
methods of research gradually diversified. Landscape metrics,
spatial correlation, land use prediction models, and the use
of land suitability evaluation models have been widely studied
(Frondoni et al., 2011; Kienast et al., 2015; Peng et al., 2017). In
terms of research content, the analysis of diversity, vulnerability,
and structure of landscape patterns has been the focus (Herold
et al., 2002; Zhang M. et al., 2020; Liu Y. et al., 2021), and
some studies analyzed the causes and future changes in landscape
pattern evolution through natural and socioeconomic factors
such as terrain, vegetation, population, and industry (Abadie
et al., 2018; Hoyos et al., 2018; Jiao et al., 2019; Petersen
et al., 2021). Recently, the scale effect of landscape patterns
and economic development as driving factors have attracted
increasing attention (Fu et al., 2011; Chi et al., 2019; Zhang Q.
et al., 2020). Zhou et al. (2020) studied the characteristics and
driving forces of LUCCs and landscape pattern evolution in rural
China from 1995 to 2015 at different administrative scales. Zhang
et al. (2021a) quantified the homogenization and heterogeneity

of landscape patterns during evolution and analyzed the driving
forces of socioeconomic factors.

However, there are still some aspects neglected in previous
studies that are worthy of scholarly attention. First, although
previous studies covered an abundance of different scales, most of
them used the original resolution of the land use data to analyze
landscape patterns directly and considered the whole research
area as the analysis extent, thus ignoring granularity and extent
effects. Grain size corresponds to the maximum resolution or
pixel size of the research data (Zhang Q. et al., 2020), which refers
to the resolution of land use data in this study. Extent is a smaller
scale used to divide the whole research scale evenly to spatially
display landscape features (Miguet et al., 2016; Moraga et al.,
2019). In this study, the optimal extent can be used to spatialize
the landscape pattern and better reflect spatial heterogeneity
(Asgarian et al., 2015). Changes in grain size and extent can
substantially affect the results of landscape pattern analysis (Luo
et al., 2020). Previous studies that focused on the effect of
granularity and extent mostly considered only one of them (Feng
et al., 2018; Zhang Q. et al., 2020; Li et al., 2021); although
some studies covered both (Zhang et al., 2014; Meng-wen et al.,
2020), few used both in the study of landscape pattern evolution.
Second, quantitative analyses of landscape pattern changes at
the overall research scale alone cannot strongly support spatial
planning and ecological governance. The data must be used in
tandem with ecological spatial planning and landscape pattern
analyses to increase the operability of the research.

Counties are middle-scale landscapes in China and are
comparable to shires in England and counties in America, and
they form themost basic administrative scale for formulating and
implementing land policy (Fan and Ding, 2016). Anji County,
located in Zhejiang province, is a typical mountainous county
in China. The area of mountainous counties covers 74.7% of
the land surface in China and is home to half of its people
(Ying and Fang, 2017; Du et al., 2020). In recent years, the
urbanization rate of mountainous areas in mountain regions has
gradually caught up with or exceeded that of plain areas (Jia et al.,
2020). In addition, the geographic environment of mountainous
areas is relatively fragile, and there are great challenges in
maintaining their ecological functions while the population and
urbanization rates are increasing rapidly. Therefore, there is
a great potential and urgent need to study the evolution and
driving mechanisms of landscape patterns in mountain regions
at the county scale. Owing to the limitation of mountain space
and rapid urbanization, Anji County urgently needs reasonable
land and ecological planning to ensure sustainable development.
However, it is important to conduct research at a scale conducive
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to operational strategies (Saarikoski et al., 2018). Currently,
some studies have combined landscape patterns with urban land
use planning (Liu et al., 2011; Abrantes et al., 2016), which is
usually divided based on administrative boundaries and thus
may damage natural attributes (Simonit and Perrings, 2013). The
environmental functional regions (EFRs)may be a suitable choice
for dividing the research area. The EFRs were defined to clarify
the regional ecological functions and protection objectives,
and their basis of zoning includes natural and administrative
attributes simultaneously (Xie et al., 2012; Liu Y. et al., 2018).
Therefore, using EFRs as the spatial unit in research not only
will quantify the characteristics of landscape patterns but also will
improve the operability of the ecological governance strategies
given in this study.

Using Anji County as the subject, we analyzed the evolution
and driving forces of landscape patterns at the county
and EFR scales. The results can provide a reference for
ecological management in mountainous areas or areas with high
urbanization rates. The highlights and objectives of this study
are as follows: (1) the transfer matrix and change trajectory of
land use were analyzed simultaneously to better understand the
process of LUCCs; (2) bothmicroscale (grain size and extent) and
macroscale (zoning of the study area) effects were considered and
analyzed at multiple temporal scales; and (3) the environmental
functional regions were used to demarcate the research area,
classify it according to the intensity of human activities, and
then give corresponding land management strategies. Together,
when combined with urban planning, these findings will provide
substantial guidance.

MATERIALS AND METHODS

Study Area
Anji County is located in Huzhou city in northern Zhejiang
Province, with an east longitude of 119◦14′−119◦53′, a north
latitude of 30◦23′−30◦53′, and a total area of 1,885.7 km2.
Anji County is a developed area in the Yangtze River Delta,
with a high urbanization rate (61% in 2020 and over 72% is
expected in 2025) and a GDP of 4.871 billion yuan in 2020,
which ranks among the top 3% of counties in China. In terms
of geographic attributes, Anji County is a typical mountainous
area (mountainous and hilly landforms account for 74.6% of
the total area), with high landscape heterogeneity and includes
diversified landscapes. In the stage of rapid urbanization, how
to balance land construction and ecological protection is a key
issue because of the limitation of the mountainous area in
Anji County. Therefore, Anji County planned environmental
functional regions in 2018 to set ecological protection objectives
and environmental access thresholds for development projects in
different regions (Figure 1).

Data Sources
Several datasets were used to support this study. (1) Landsat
7 and 8 remote sensing images including panchromatic bands
with a resolution of 15 × 15m, in 1999, 2006, 2013, and 2020
were obtained from the USGS (https://earthexplorer.usgs.gov).
These remote sensing images were used to interpret land use in

the study area. (2) Digital elevation models (DEM) selected as
one of the driving factors were derived from Geospatial Data
Clouds with a resolution of 30 × 30m (https://www.gscloud.
cn). (3) GDP and population data with a resolution of 1 ×

1 km selected as driving factors (human interference factors)
were obtained from the National Center for Earth Systems
Science Data (http://www.geodata.cn) and the Data Center for
Resources and Environmental Sciences (http://www.resdc.cn).
(4) Night lighting data selected as a driving factor (human
interference factor) with a resolution of 1 × 1 km were obtained
from the NOAA-funded EOG Network (https://eogdata.mines.
edu). (5) Temperature and precipitation selected as driving
factors (natural factors) were obtained from the CRU dataset
(https://sites.uea.ac.uk/cru/), and the delta downscaling method
was adopted to improve the data resolution to 30 × 30m
(Hijmans et al., 2005). (6) Last, administrative boundary and
environmental functional region data were obtained from the
Natural Resources and Planning Bureau of Anji County.

Research at the county scale requires higher precision land
use data. Therefore, when interpreting land use, we used the
Gram–Schmiat Spectral Sharpening tool in ENVI software to
fuse the eighth band of remote sensing image into other bands
and to improve the resolution of remote sensing images to 15 ×
15m. Then, the land use was divided into six types, woodland,
cultivated land, construction land, waters, grassland, and unused
land by combining supervised classification and artificial visual
interpretation (Figure 2). In addition, we used high-resolution
Google maps to verify the accuracy of the classification results.
The results showed that the kappa coefficients are all >80%,
which meets the requirements of the research (Xu et al.,
2021). The other data were unified to 15 × 15m by the
resampling method.

Methods and Procedures
The research framework was divided into four parts. First, land
use data were obtained by interpreting remote sensing images.
Then, the land use transfer and changes trajectory at each
scale were analyzed. Third, optimal granularity and extent of
the research were obtained through an analysis of landscape
metrics and the semivariogram model. Fourth, the evolution and
driving forces of the landscape pattern were analyzed at the scale
of the county and the environmental functional regions, and
the corresponding strategies for ecological governance and land
use planning were given according to the research results. The
specific methods are discussed in the following four sections.

Transfer Matrix and Transfer Trajectory of Land Use
We used the Sandkey graph function of Origin 2022 software
to visualize the land use transfer matrix data that can reveal
the direction and quantity of land use transfer (Zhang et al.,
2021a). However, using only the transfer matrix may ignore the
process of LUCCs (Wuyun et al., 2021). Therefore, this study
adds the land use change trajectory (LUCT) analysis to provide a
complete process of LUCCs. The changing process of LUCCs was
represented by codes in LUCT, such as 1,112, 2,223, and 3,224.
Each number represents the land use type of the grid in different
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FIGURE 1 | Location and basic information of the study area. (A) Is the location and environmental function regions of Anji County and (B) is the basic information and

legend explanation of each environmental functional region.

FIGURE 2 | Land use maps for (A) 1999, (B) 2006, (C) 2013, and (D) 2020.

years. The detailed calculation methods used are presented in
Supplementary Section 1.1.

Grain Size Resampling and Evaluation
To select the optimal grain size for landscape pattern analysis, 15
sets of data were resampled at intervals of 10m based on the land
use grid of the study region in 1999. Starting with a 10 × 10m
resolution, the maximum resolution was 150 × 150m. Then, a
stable interval was selected according to the fluctuation of metric
values. The optimum grain sizes were determined according to
the landscape area loss evaluation index of different grain sizes
in this interval. The selection of landscape pattern metrics and
the process of the calculation are listed in Supplementary Table 1

and Supplementary Section 1.2.

Moving Window Method and Semivariogram Model
The moving window method in Fragstats 4.3 can be used to
analyze the landscape pattern metrics at different extents by
moving grid by grid, starting from the upper left corner of
the study area and assigning the values to the central grid
(Chefaoui, 2014; Li et al., 2021). In addition, the semivariogram
model (SVM) in geostatistics was used to determine the optimal
size of the moving window. It can analyze the point-to-point
relationship between landscape metrics and spatial variables and
is widely used in geography and landscape ecology (Trangmar
et al., 1986; Li et al., 2021). The formula is as follows:

λ
(

h
)

=
1

2N
(

k
)

N(h)
∑

i=1

[

X (i) − X
(

i+ h
)]2

, (1)
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where λ(h) represents the semivariance of the value of variable
X at positions i and i+h and N(h) represents the number of
sampling points when the space distance is H. There are two
important variables in the SVM. One is the nugget (Co), which
represents the spatial heterogeneity caused by random samples,
and the other is Still (CO + C), which is the value at which
λ(h) reaches a relatively stable constant from the initial Co value
with increasing sampling point spacing. The ratio of these two
values,RNS (Co/Co+C), was used tomeasure the degree of spatial
heterogeneity under the interference of random factors and can
be used as the basis to determine the size of the moving window
(Qiao and Li, 2006). The calculations were performed by the use
of the Geostatistical Analyst tool in ArcGIS 10.7.

Geographical Detector
As a tool to explore driving forces, a geographical detector
is based on the assumption that, in geographical space, if an
independent variable has an impact on the dependent variable,
then the spatial distribution of the two variables should be similar
(Wang et al., 2010).

According to the needs of this study, the factor detector and
the interaction detector were used to describe the explanatory
power of driving factors and the type of interaction between
factors. Details of the driving factors and types of interaction
between factors are given in Supplementary Tables 2, 3.

q = 1−
1

Nσ 2

L
∑

i=1

Ni σi
2, (2)

where L is the classification of driving factors, and Ni and N are
the number of units in the whole region of class i and the whole
region, respectively. σ 2 and σ 2

i are the variances of class i and the
whole region, respectively. The value of q is between 0 and 1, and
a larger value indicates a stronger driving force.

RESULTS

Spatiotemporal Changes in Land Use
The LUCCs during 1999–2020 at the county scale are shown in
Figure 3A. The results showed that the land use transfer was
mainly between woodland and cultivated land during 1999–2020.
The expansion of construction land was mainly from cultivated
land. This is related to the “grain for green” plan implemented
by the Anji County Government, which advocates converting
cultivated land with a slope of more than 25◦ into woodland
(Feng et al., 2005). In addition, LUCCswere significantly different
at each period on the county scale (Figure 3B). The most obvious
result was that the average annual growth rate of construction
land decreased from 11.24% in 1999–2013 to 2.7% in 2013–
2020 (Figure 3C). This was mainly because development land
was gradually saturated after a long period of rapid expansion
under the limitation of mountain space. In 2013, 73.75% of the
land with an elevation below 50m was occupied by cultivated
land and construction land. Land with a slope of <25◦ is
one of the basic conditions for allowing development (Liu Q.
H. et al., 2018), and such land was occupied by 45.23% of
cultivated land and construction land in 2013. Therefore, in the

context of cultivated land and ecological protection policies, the
available space has been unable to meet the needs of long-term
rapid urban expansion. Furthermore, the decrease in the growth
rate of construction land is also related to the Beautiful Rural
Construction and Rural Revitalization strategy implemented by
Anji County in recent years (Zhang et al., 2021b). These policies
shifted the focus of development from urban areas to rural areas.
Rural development mostly occurs through the transformation of
construction land and the transfer of property rights, rather than
greatly increasing the scale of construction land (Gao et al., 2020).

The analysis of land use transfer in EFRs is seen in Figure 3B.
The results show that only the ERL and EFG were essentially
consistent with the characteristics at the county scale. This was
probably because these two areas are relatively large, covering
most of the county (82.55%). Conversion of cultivated land to
construction land was the most dominant type in LEG, EOA,
AEP, and KEA, which indicates that human development was
mainly concentrated in these areas. This feature is also essentially
consistent with the definition of each environmental functional
region. In addition, land use transfer was also dependent on the
temporal scale in EFRs. For example, the main type of LUCC
in ERL and EFG was cultivated land to woodland in 2013–
2020, which was opposite to the previous two periods. This
may be related to the Woodland Protection and Utilization Plan
promulgated by Anji County in 2008. This plan’s emphasis on
increasing the scale of woodland has led to a larger scope for the
implementation of the “grain for green” plan, especially in areas
with better ecological quality, as these areas are more effective in
protecting woodland.

To study the process of LUCCs inmore detail, the trajectory of
land use change was analyzed in EFRs. The top 10 track codes of
each region were selected for analysis (Table 1). In ERL and EFG,
the main land change trajectory was mainly about the conversion
between woodland and cultivated land, among which 87.85%
of the cultivated land converted from woodland was eventually
restored to woodland. As the increasing population required
more food, the cultivated land converted from woodland was
still partly retained. The trajectory codes of LEG, EOA, and
KEA showed an increase in construction land, derived mainly
from cultivated land, accounting for 75.56, 80.30, and 76.67%
of the three regions, respectively, with most land transferred
during 2006–2013. The government of Anji County increased
the proportion of prohibited construction areas from 19 to 52%
of the county area in 2015. The proportion of cultivated land
occupied by planned construction decreased by 21.54% (Group,
2017). These measures have effectively alleviated the serious
occupation of cultivated land.

Temporal and Spatial Changes of
Landscape Patterns
The calculation results of landscape metrics under different grain
sizes showed that the landscape metrics except for ED (edge
density) have obvious inflection points (Figure 4A). According
to the inflection point, the grid-scale domain of the study area
can be divided into three intervals: 10–60m (number of patches,
NP; patch density, PD; landscape division, DIVISION; Shannon’s
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FIGURE 3 | Land use transfer at county scale (A) and in each environmental function region (B) and proportion of land use types at the county scale and each

environmental function region (C). Those below 1% in (C) are not counted.

diversity, SHDI; and Shannon’s evenness, SHEI), 60–90m (NP),
and 90–140m (LPI, DIVISION, SHDI, and SHEI). In these scale
domains, the value of landscape metrics was relatively stable,
which can effectively reflect the landscape characteristics of the
research area. Considering the loss of information, the optimal
grain size should be selected on the “first scale” (Wu and Hobbs,
2002; Chen et al., 2016), namely, 10–60m in this study. Within
this domain, 30m had the least information loss (Figure 4B);
therefore, it was taken as the most suitable grain size for the
analysis of landscape patterns. Then, according to the studies
by Hu et al. (2021) and Li et al. (2021), some landscape metrics
were selected and calculated using a semivariogram. The results
showed that the RNS values were in a stable state with an extent

between 500 and 700m (Figure 4C). Considering that more
spatial information would be lost in the large size, 500m was
selected as the analysis extent in this study.

At the county scale, the landscape division index (DIVISION)
and the contagion index (CONTAG), the largest patch index
(LPI) and the number of patches (NP), and Shannon’s diversity
index (SHDI) and Shannon’s evenness index (SHEI) were
selected to evaluate the fragmentation, aggregation, and diversity
of the study area, respectively (Zhang et al., 2021a; Zhu et al.,
2021).

The landscape pattern at the county scale seen in Figure 5

indicates that (1) the central urban area has a high degree of
aggregation, (2) the high-aggregation areas in the outer suburbs
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TABLE 1 | Land use change trajectories and their area proportion (%).

ERL EFG AEP LEG EOA KEA

Typea Percentageb Type Percentage Type Percentage Type Percentage Type Percentage Type Percentage

1,141 3.23 1,141 3.40 4,443 5.22 4,433 7.95 4,433 21.98 4,433 10.92

1,411 1.93 1,411 2.28 4,144 4.51 4,333 7.33 4,333 9.09 4,443 7.42

4,441 1.22 4,441 1.95 4,433 3.76 4,443 4.06 4,443 7.30 4,441 4.15

1,441 1.02 1,441 1.32 4,434 3.37 1,141 3.38 1,133 3.92 1,141 3.60

1,114 0.86 1,114 1.27 4,442 2.67 1,144 2.54 4,434 3.35 1,433 3.24

1,444 0.60 1,144 1.15 1,144 2.52 4,434 2.54 1,433 2.70 1,144 2.82

1,222 0.58 1,444 1.05 1,141 2.20 1,133 2.22 4,133 1.78 1,444 2.57

4,222 0.57 4,443 1.02 1,444 1.73 1,433 2.09 1,143 1.58 1,133 2.34

1,113 0.50 4,433 0.87 4,441 1.71 1,444 2.04 1,144 1.48 2,282 2.29

1,144 0.46 4,144 0.61 1,114 1.28 1,143 1.87 1,141 1.43 4,434 2.05

a1- Woodland, 2- Waters, 3- Construction land, 4- Cultivated land, 5-Unused land, 6- Grassland. For example: 1,141 represents the land use trajectory is woodland in 1999 to woodland

in 2006 to cultivated land in 2013 to woodland in 2020.
bThe proportion of the area of the trajectory code to the area of the functional regions.

are relatively scattered, and (3) the areas with severe landscape
fragmentation are mainly in the northern agricultural areas and
central towns. Compared with that in 1999, the landscape pattern
of the central urban was more concentrated in 2020, while the
other areas were more fragmented. The data of DIVISION,
CONTAG, SHDI, and SHEI showed the highest point in 2013,
indicating that the competition between urban expansion and
ecological restoration reached a certain threshold in 2013. It
also shows that the early implementation of the ecological
protection policies had a certain time delay effect in optimizing
the ecological pattern. In addition, the increase in DIVSONG
indicated a gradual increase in landscape segmentation, but the
increase in CONTAG indicated that artificial land was more
concentrated. This weakens the transitional role of the buffer
zone between artificial and ecological lands and further threatens
biological habitats. The changes in LPI and NP showed that
the landscape was continuously fragmented at the county scale.
This indicates that it is difficult to reverse the segmentation of
landscape patches caused by urbanization in the whole region,
although it may be improved locally.

The same landscape metrics were also analyzed in EFGs. As
seen in Figure 6, DIVISION and CONTAG mainly increased
in most of the EFGs during 1999–2006, among which the
DIVISION value in ERL from 1999 to 2006 increased the most,
reaching 33.7%. During 2013–2020, these two metrics mainly
declined, but the CONTAG of KEA and DIVISION of AEP
and LEG continued to increase. This was mainly because urban
expansion mainly occurred in these areas and was difficult to
avoid. The changes in LPI and NP showed that the problem of
landscape fragmentation in some areas improved in 2013–2020,
especially the value of LPI, which increased in most areas. This
indicates that the continuous fragmentation of the landscape at
the county scale is more related to the increase in NP than the
decrease in LPI. Both the SHDI and the SHEI increased in each
region in the early stage, indicating that the area proportion of
different patch types in the landscape gradually became similar
and landscape diversity increased. Furthermore, the SHDI and

SHEI remained high in the AEP and LEG during 2013–2020.
This may be due to the current ecological governance measures
as an early intervention that has not yet reached the threshold for
improved fragmentation.

Effects of Driving Factors on the
Spatiotemporal Evolution of Landscape
Patterns
The geographical detector was used to quantify the explanatory
power of each driving factor on the change in landscape metrics
(Figure 7). More than 80% of the factors have q values <0.01;
therefore, the driving factors passed the correlation test. From
1999 to 2020, the average explanatory power of each driving
factor at the county scale was more than 15%, of which the DEM
(39.10%) and GDP (34.40%) were the most important factors.
In LEG, EFG, and ERL, DEM and GDP also have the largest
explanatory power, both of which were above 30%. This indicates
that both human disturbance and natural conditions have
important effects on landscape pattern changes in mountainous
areas. Population density and temperature were the main drivers
in KEA and EOA. These two areas are located in the central
urban area and the plain area in Anji County, with no obvious
changes in topography and geomorphology, and are also the
main land for urban expansion. Therefore, the driving forces
of the natural environment were not obvious. However, owing
to the urban heat island effect, the temperature and population
density data were positively correlated with the intensity of urban
development; therefore, the explanatory power was strong. In
AEP, the explanatory power of the eight factors was low, and the
highest was the population density, which was 8.06%. This was
the case because the types of agricultural activities were relatively
stable during the study period, and the impact of mechanized
tillage on landscape patterns was less different than that of
manual tillage. In addition, the landform dominated by plains in
the AEP also led to the weak driving force of each factor.

The results also showed that the driving factors had different
impacts on each landscape pattern metric. In particular, the
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FIGURE 4 | Landscape pattern index (A) and area loss index (B) spatial variation eigenvalues and trends of landscape pattern index under different extent (C).

explanatory power of CONTAG was relatively low. At the
county scale, the average explanatory power of the eight driving
factors to the change in CONTAG was only 3.96% (1999–
2020), and the same situation also appeared in AEP, LEG,
EFG, and ERL. This was mainly due to the relatively low p-
values in this region for the factors we selected; overall, it
passed the significance test. In addition, the smaller change in
CONTAG compared with other metrics was also one of the
reasons why the explanatory power of this factor was not obvious.
Moreover, from the analysis of different periods, the overall
explanatory power of the driving factors kept increasing. At the
county scale, the average explanatory power of driving factors
increased by 13.27 and 16.16% during 2006–2013 and 2013–
2020, respectively. This situation was also common in most
EFRs. Combined with the spatial computing method adopted
by geographical detectors used to analyze this trend, it can be

verified that the degree of human development is expanding. This
also shows that these factors that we selected will still apply in
future studies.

The strength of the interaction between the driving factors
was calculated by the interaction detector at the county scale
(Figure 8). Except for CONTAG, the interaction between drivers
was mainly a bilinear enhancement. The results also show
that there were great differences in the intensity and type
of interaction among EFRs (Supplementary Section 2). Only
EFG and ERL were consistent with the county scale, and the
interaction between factors was mainly bilinear enhancement,
while the remaining four EFRs were predominantly non-linear
enhancement. However, in EOA and KEA, the interaction
of population density, light intensity, and GDP was mainly
a bilinear enhancement. In AEP and LEG, the interaction
of driving factors was mainly a non-linear enhancement,
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FIGURE 5 | Spatial distributions of landscape metrics for the periods 1999–2020. The value in the figure is the average value of each landscape metric.

FIGURE 6 | Heat maps of landscape metrics changes in each environment functional region from 1999 to 2006, 2006 to 2013, and 2013 to 2020; the square sizes in

the figure are the normalized values of landscape metrics of each environmental function zone in 1999, 2006, and 2013; The color in the figure is the rate of change of

landscape metrics. The value of change refers to the average of the landscape pattern metrics of each environmental functional region.

including the CONTAG index, which was different from
that at the county scale. Therefore, in the complex natural-
socioeconomic system in mountainous areas, the interaction
of a series of factors, such as land development, population,
and natural conditions, was the main reason for the change in
landscape pattern.

DISCUSSION

The Microspatials and Macrospatial Scale
Dependence of Landscape Patterns
Our study confirmed that scale dependence exists at both the
macroscale and the microscale levels, which is consistent with
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FIGURE 7 | The q and p-values of driving factors in the county scale and environmental functional regions. q represents the determinant power and p represents the

correlation coefficient.

some previous research reports (Luo et al., 2020; Xu et al., 2020).
First, at the microscale, we found that the original resolution
of the land use data was not the best granularity for landscape

pattern analysis (Figure 4). In this study, the resolution was
changed from 15× 15m to 30× 30m, and the size of the moving
window was determined to be 500m through the semivariogram
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FIGURE 8 | Interaction of driving factors at the county scale.

mode. The overall scale of this study was the county scale;
therefore, the grain size and extent were smaller than those
in large-scale studies. For example, the extent determined by

Li et al. (2021) in the analysis of the main river basins on the
Qinghai Tibet Plateau was 9 km. The optimal scale for analysis
was influenced by the overall scale, data accuracy, and regional
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characteristics of the research region (Ding et al., 2016). Second,
at the macroscale level, we found that using EFRs as a research
scale can better explain landscape pattern evolution and its
driving forces than using the county scale alone (Figures 6–8
and Supplementary Figures 1–6). This suggests that improving
the overall research scale to be more detailed can better guide
practice, the conclusion of which is consistent with those of
several previous studies. However, most studies are based on
administrative boundaries, river basins, or their buffer zones as
the basis of scale segmentation (Xu et al., 2020, 2022; Nie et al.,
2021). Ecological governance policies at a small scale require
a comprehensive consideration of many factors, such as urban
planning, the natural environment, and ecological protection
planning (Mallinis et al., 2014; Luo et al., 2020). Therefore, it is
necessary to consider both natural and managerial attributes for
policies to be implemented at an operational scale.

In addition, scale dependence has different effects on each
landscape pattern metric. According to Figures 7, 8 and
Supplementary Figures 2–6, we observed the different features
of landscape patternmetrics at the county scale and the EFR scale.
Moreover, PD, ND, and ED show a single downward trend with
the change in grain size, which was different from the dynamic
patterns of the other metrics (Figure 4). Most previous studies
focusing on the scale effect of landscape patterns considered
dividing the study area using regular shapes rather than using a
more scientific basis. Although some studies combined the buffer
zone and watershed (Xu et al., 2020; Zhong et al., 2022), a few
studies combined regional ecology and development planning.
This study not only emphasizes the scale effect of landscape
patterns on themicroscale but also divides the study area by using
EFRs on the macro scale.

Temporal Dependence of Landscape
Pattern Evolution and Its Driving Forces
For the study of landscape pattern evolution with long time
series, if the analysis focuses only on the changes between the
first and last years, the process of landscape evolution will be
neglected. This study divided the span of research time into
three stages: 1999–2006, 2006–2013, and 2013–2020. The results
showed that the characteristics of landscape pattern evolution
and its driving forces were different in each period. In the first
two time intervals, the six landscape pattern metrics increased by
14.03 and 17.67% on average at the county scale, respectively, but
decreased by 3.81% in the third time interval. Among the EFRs,
except for the EOA, the explanatory power of the driving factors
increased overall during 1999–2020. However, this was not the
case for population density. Among the 42 q-values calculated
for population density, 57.14% of the maximum value was in the
second period. The dominant drivers also changed over time. For
example, in LEG, GDP was not the main driving factor in the
first stage but had a more significant explanatory power in the
later period.

The importance of the spatial scale effect of landscape patterns
to the process of analysis has been proven in previous studies
(Fan et al., 2017; Xu et al., 2020). However, few studies focused
on both spatial and temporal scale effects. Although some studies

analyzed land use change trajectory, driving forces were not
considered (Wuyun et al., 2021). Studies on temporal scale
dependence mainly focused on forest research, and research
results could obtain the driving factors in different periods
and effectively guide the implementation of afforestation plans
(Yackulic et al., 2011; Calaboni et al., 2018; Luo et al., 2020).
This study focused on the temporal and spatial dependence of
landscape pattern changes and their driving forces. In addition,
both microspatial and macrospatial scale effects were considered.

In addition to the eight driving factors quantified by us,
the policy factor was also an important driving force of
landscape pattern changes in Anji County. In the first time
interval (1999–2006), Anji County began to implement the
grain-for-green plan in 1999, which promoted more cultivated
land to woodland, and the impact of this plan continues
today. The “Two Mountains Theory” proposed in 2005 had
an important impact on the changes in landscape patterns
in the second and third stages, which emphasized ecological
governance and sustainable development. Under the guidance
of this development concept, the implementation of major
ecological governance and industrial structure optimization has
effectively reduced the damage to the environment caused
by regional construction. The achievement transformation of
this development concept can be reflected in the analysis of
landscape pattern metrics from 2013 to 2020 (Figures 5, 6),
which also indicates that there is a certain time delay in the
representation of the effect of environmental governance on
landscape pattern metrics. In 2012 and 2018, Anji County took
the lead in implementing the strategies of rural construction
and rural revitalization in China and made a long-term plan
for the county’s rural industries, environmental governance, and
construction. These policies are an important driving factor
in past and future landscape changes. They will promote the
rationality of land use structure and function in the whole region
and are of great significance to the sustainable use of resources
(Long et al., 2019). Although these policies are difficult to spatially
grade and quantify at the county scale, they also affect landscape
patterns through natural and human activities to a certain extent.
For example, the main impact of the “grain for green” plan was
on land with a slope >25◦ (Zhou et al., 2020).

Zoning Management Based on
Environmental Functional Regions
Through quantitative analysis on different temporal and
spatial scales, this study revealed the complex process of
landscape pattern evolution and its driving factors. According to
fragmentation, aggregation, and diversity, important landscape
metrics were selected for analysis. In addition, the county scale
was divided according to the boundaries of the EFRs, and
zoning studies were conducted. We divided the EFRs into three
categories according to the intensity of human activities and
provided suggestions on protection, planning, and construction,
as follows:

(1) AEP and LEG (high-intensity human activities): These two
regions help to focus on protecting the living environment
and improving land use intensification and to pilot a
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new model of land development. These two regions are
densely populated and are important areas for the output
and input of ecological services, respectively. From the
analysis of landscape metrics, the fragmentation degree
of AEP gradually increased; therefore, it is necessary to
improve agricultural intensification, land consolidation, and
production efficiency to balance ecological land use and
food yield. Both patch numbers and diversity indices are
increasing in LEG, indicating a growing tension between
urban expansion and the compact mountain space of Anji
County. The integrated development of low-slope hills piloted
in many regions can effectively balance this contradiction
(Peng et al., 2018). The potential area of low-slope hills for
agriculture and construction development in Anji County
was 6,500 hm2, accounting for 15.78% of the total amount
of existing cultivated and construction land. Therefore, the
implementation of this strategy not only can protect the
cultivated land in plain areas but also can provide space for
urban expansion.

(2) EOA and KEA (moderate-intensity human activities): These
two regions coordinate the development intensity and the
environmental carrying capacity. These areas still have a
certain environmental carrying capacity, which can carry
out appropriate high-quality industrial development or urban
construction. In addition, the overall landscape ecological
pattern has improved under the strategy of industrial structure
optimization and adjustment in recent years. However, some
measures still need to be taken to solve the problem of
aggregation between landscapes. The impact of construction
land aggregation on ecological functions can be reduced
by enhancing connectivity between ecological patches, the
complexity of patch boundaries, or supplementing stepping
stones between construction land areas (Shi et al., 2017; Liu
W. et al., 2021). The driving force analysis of these regions
shows that both natural and artificial factors are important.
Therefore, urban expansion and construction should continue
to coordinate the environmental capacity and take the tertiary
industry as the main new development project. In addition,
unorganized development can be prevented by formulating
policies on optimizing the type of industrial development and
controlling the boundary between ecological protection and
construction intensity.

(3) EFG and ERL (low-intensity human activity): These two
regions focus on elastic protection. These areas have the
lowest development intensity and the highest degree of
protection. Woodland and cultivated land are dominant
in these regions. Under the ecological protection policy
of Anji County, the landscape pattern gradually improved
overall, but the fragmentation of patches was still increasing
in EFG. Since EFG accounts for 64.67% of the total
area of the county and is not a no-construction zone,
appropriate development activities are inevitable. However,
as EFG is an important ecological functional guaranteed
area, environmentally friendly projects should be selected
for development and construction. In addition, owing to the
relatively low intensity of human activities, natural factors
were the main driving factors in these regions. Therefore,

the monitoring of temperature, precipitation, and geological
disasters is particularly important. In addition, owing to the
large area, the main problems were financial and policy issues.
Ecological protection policies usually put great economic
pressure on producers. For example, the cost of forest farm
protection and management is usually borne by producers
rather than the government. Therefore, ecological protection
should establish a more flexible financial system that can be
supported by the government and private enterprises to ensure
the wider implementation of ecological governance policies.

Limitations and Prospects
This study analyzed landscape pattern evolution and its driving
forces at an optimal grain size and extent, coupled with
multiple spatial and temporal scales. Based on this method,
the microscale and macroscale effects can be considered
simultaneously; therefore, the scientificity and operability of the
research are significantly improved. Theoretically, this method
can also be applied to other types of landscape spatial analysis,
such as ecological sensitivity assessment, landscape vulnerability
analysis, and dynamic evolution of ecological risks. In terms of
combining with urban planning, the environmental functional
regions used in this study can also be replaced by other
planning, such as urban green space system planning, ecological
protection area planning, and the spatial planning of national
land. Moreover, our research method is also suitable for large-
scale research, but it is necessary to find a more manageable scale
to combine with the overall research scale.

However, our research still has some uncertainties and
limitations. First, we analyzed only part of the landscape metrics
in a single year to determine the optimal grain size and extent.
If we analyzed more metrics in multiple years, this may cause
some uncertainty. Therefore, the method to determine the
optimal scale still needs further evaluation. Second, different time
intervals may cause uncertainty in the analysis of LUCCs and
landscape pattern changes (Wang et al., 2016). Future research
can set different time intervals to find possible new features. In
addition, we considered the most natural and artificial driving
factors, but there may be information redundancy between
these factors, which is difficult to remove with the geographic
detector. Therefore, combining spatial principal component
analysis (SPCA) may be a potential solution to this problem,
but more factor data must be selected for spatial analysis (Dai
et al., 2021). Finally, we used the resampling method to unify
the resolution of different data, which may also introduce some
uncertainty into the results.

CONCLUSION

Microscale and macroscale effects play an important role in
the study of the spatiotemporal evolution of landscape patterns.
Research on the microscale can increase the accuracy and
reliability of the analysis, while segmentation on the macroscale
can increase the implementation of policies guided by the
research. In addition, evolutionary processes can be better
understood by focusing on the heterogeneity of landscape
patterns at the temporal scale. First, we analyzed LUCCs at
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multiple scales by using the transfer matrix and the transfer
trajectory of land use to master their detailed process. Second,
we considered grain size and extent effects at the micro-level
in this study. Third, the study area was divided by using
environmental functional regions (EFRs) at the macro scale.
Then, the study period was divided into three time intervals
to examine temporal scale effects. In addition, EFRs were
divided into three categories that were based on the intensity of
human activities. In addition, the corresponding land planning
and ecological governance strategies were given according to
the landscape pattern characteristics and future developmental
needs in different types of regions. The main conclusions are
as follows:

(1) Land use transfer in the past 20 years mainly occurred
between woodland and cultivated land at the county scale,
but this was not always the case in the EFRs. Conversion of
cultivated land to construction land was the most dominant
type in LEG, EOA, AEP, and KEA.

(2) The optimal grain size (30 × 30m) and extent (500m) for
landscape pattern research were obtained by analyzing the
fluctuation of landscape metrics and semivariogram models.

(3) At the county scale, in the first two time intervals (1999–2006
and 2006–2013), except for CONTAG, the landscape pattern
was gradually fragmented and homogenized. In the third time
interval (2013–2020), the landscape metrics showed that the
ecological environment was significantly improved, except
for the CONTAG metric. This shows that the environmental
characterization of the CONTAG metric had a time lag. In
addition, except for AEP and LEG, the degree and speed of
landscape damage decreased by 2020, and the turning point
was in the second period (2006–2013).

(4) According to detection by the geographical detector,
elevation (DEM) and GDP were the most critical driving
factors at the county scale and in LEG, EFG, and ERL.
Population density and temperature were the main drivers in
AEP, KEA, and EOA.

(5) EFRs were divided into three groups according to the
intensity of human activities. In AEP and LEG, with

high-intensity human interference, the landscape pattern
was gradually fragmented; therefore, the degree of land
use intensification should be enhanced and low-slope
hills should be developed in pilot projects. In EOA
and KEA, with a moderate intensity of human activities,
attention should be given to reducing environmental damage
caused by cluster development and optimizing industrial
structure. In EFG and ERL with low human activity
intensity, it is necessary to focus on monitoring the
natural driving factors and improving the implementation
quality of ecological governance by combining land planning
and policymaking.
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