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Artifacts and levels of
abstraction
M. Chirimuuta*

Department of Philosophy, University of Edinburgh, Edinburgh, United Kingdom

The purpose of this article is to show how the comparison or analogy with

artifacts (i.e., systems engineered by humans) is foundational for the idea that

complex neuro-cognitive systems are amenable to explanation at distinct

levels, which is a central simplifying strategy for modeling the brain. The

most salient source of analogy is of course the digital computer, but I will

discuss how some more general comparisons with the processes of design

and engineering also play a significant role. I will show how the analogies,

and the subsequent notion of a distinct computational level, have engendered

common ideas about how safely to abstract away from the complexity of

concrete neural systems, yielding explanations of how neural processes give

rise to cognitive functions. I also raise worries about the limitations of these

explanations, due to neglected differences between the human-made devices

and biological organs.
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Introduction

It is worth remembering that the very word organism comes to us via an analogical
transfer from the Greek word for tool (organon), and originally meant the property
of things comprising heterogenous parts that work together in a coordinated way—a
property pretty much captured by the word mechanism today (Cheung, 2006; Illetterati,
2014, p. 89). What this indicates is that even when drawing contrasts between organisms
and machines, organs and artifacts, the concepts we are using to theorize living beings
have originated through a process of comparison with objects that people have made. As
philosopher Martin Heidegger observed, “[p]erhaps it will take a long time to realize that
the idea of organism and of organic is a purely modern, mechanical-technical concept,
so that what grows naturally by itself is interpreted as an artifact that produces itself ”
(quoted in Nunziante, 2020, p. 12).

This special issue invites us to weigh up the claim that all metaphors are false but
some are useful. Incidentally, our notion of the useful, utility, is shaped by concept of
the tool—the tool is the paradigmatic useful thing. This connection is made obvious in
the French language, where the words for tool (outil) and useful (utile) are so similar.
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Thus, we have on the one hand, the root metaphor of the living
being (organism) as a system of tool-like components (organs),
and on the other, the question of whether metaphors gathered
from the making and employment of tools and machines is itself
a useful conceptual tool.

This essay will zoom in on one aspect of the comparison
between immensely complex nervous systems, and relatively
simple information processing machines: the idea that the
brain, like the computer, can be explained at distinct and
somewhat autonomous levels of analysis. I will account for the
utility of this analogy as due to its providing a simplifying
strategy for neuroscientists. The assumption that there is a
“high level” description of the brain which can be modeled
and comprehended in the absence of detailed knowledge of the
“low level” components is motivated by consideration of the
hardware/software distinction in computing. I will illustrate this
strategy via an exposition of David Marr’s well known system
of levels of explanation (section “Marr’s levels of explanation”).
We will then see how the levels framework is motivated by
analogies with machines, primarily computers, but also with the
procedures that people undertake when making devices, here
analyzing the influential ideas of Herbert Simon on hierarchical
complex systems (section “The artifact analogies”). A risk of
reliance on such analogies is that it leads to neglect of differences.
All analogies are imperfect, but sometimes researchers forget
this. The section “Limitations of the analogies” considers
the limitations of the analogy between messy “heterarchical”
biological systems and man-made designs that have a clearly
delineated modularized and leveled structure. To conclude, I ask
whether these limitations can be addressed through comparison
with more life-like machines—as suggested in this special issue
by Bongard and Levin (2021). I argue that their proposal
neglects the problem of opacity that comes with the introduction
of more complex machine models.

Immauel Kant is one philosopher whose account of
biological knowledge recognized that the comparison between
the workings of nature, and processes of engineering was
indispensable to the conceptualization of living beings: both
biology and engineering rely on functional notions, the
understanding of certain processes happening for the sake of
wider system-level goals. At the same time, he warned against
an anthropomorphism that comes with taking this as the
literal, ultimate truth about the natural world. He wrote in the
Critique of the Power of Judgment that, “we picture to ourselves
the possibility of the [biological] object on the analogy of a
causality of this kind—a causality such as we experience in
ourselves—and so regard nature as possessed of a capacity of its
own for acting technically” (Kant, 1790/1952, Part II p.5/§361;
Breitenbach, 2014). But as Illetterati (2014, p. 91) explains,
“these kinds of notions, even if necessary, seem to maintain a
sort of fictional character too: indeed, they have no justification
in things themselves, but neither do they have their origin in
mere human invention. They rather have their justification in

the way subjects necessarily understand living beings.” I think
that this is the right way to interpret machine analogies in
biology, and engineering metaphors more generally: they are
useful precisely because they allow scientists to figure nature in
human terms, which is why they are—strictly speaking—false.

Marr’s levels of explanation

As is well known, Marr’s framework is introduced in the first
chapter of his book, Vision (Marr, 1982, p. 25). The three levels
are:

1. Computational theory
2. Representation and algorithm
3. Hardware implementation

The “top level” computational theory gives an abstract
characterization of the performance of a system in terms of its
generating a mapping of an input to an output. In addition,
characterization at this level shows how that performance is
related to environmental constraints and behavioral goals. Thus,
the first level is to provide a functional characterization in both
senses of the word: explicating a mathematical input-output
mapping, and also illuminating the utility of the performance.
The middle level involves specification of the format for
representation of the inputs and outputs, and of the algorithm
that transforms one into the other. The bottom level describes
how the representations and algorithm are physically realized,
for example in the electronic components of a computer vision
system, or in the neurons of an animal’s retina.

In the next section I will say more about how analogies with
machines motivate this three-level system, and why they are
essential in the interpretation of it. Here we should note that
Marr’s proposal carries on from a discussion of the limitations
of reductionist approaches to explaining the visual system—
attempts to understand how neural activity gives rise to useful
perceptions of the environment by way of careful study of the
anatomy and physiology of neurons. In effect, the reductionist
is restricted to the bottom level of explanation. Marr (1982,
p. 27) describes this approach as equivalent in futility with the
attempt to understand bird flight just through the examination
of feathers. As he asserts in the preamble to the three levels,
“[a]lmost never can a complex system of any kind be understood
as a simple extrapolation from the properties of its elementary
components” (Marr, 1982, p. 19). The basic complaint against
reductionism is that this is a strategy that quickly gets
the investigator overwhelmed with details whose significance
cannot be assessed because she lacks knowledge of the overall
functionality of the system, and therefore has no working
hypothesis about how the elementary components contribute
to global properties and behavior. The shape of the forest is
invisible because there are so very many leaves. The introduction
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of the two additional levels of explanation allows for lines of
investigation that prioritize general questions about the system’s
functionality and operations independently of investigation
into implementational details. The upper two levels are levels
of abstraction away from the concrete, complicated material
system. Ideally, the results of these upper level investigations
provide a map of what to look for in the concrete system, and a
guide to interpreting the material details, even though the levels
are only “loosely related” (Marr, 1982, p. 25).

One of the virtues of Marr’s framework, highlighted by later
researchers, is that it offers this strategy for simplification.1

For example, Ballard (2015, p. 13) writes that it, “opened up
thinking about the brain’s computation in abstract algorithmic
terms while postponing the reconciliation with biological
structures.” Speaking of level schemas more generally, Ballard
emphasizes that, “[b]y telescoping through different levels, we
can parcellate the brain’s enormous complexity into manageable
levels” (2015, p. 18).

The artifact analogies

The general impression given by Marr’s presentation is that
he does not care to set a division between engineered and living
systems, between those that have (computational) functions,
properly speaking, and those for which it is only a heuristic
posit. A striking feature of Marr’s presentation is that in the
first instance it relies exclusively on examples of information
processing machines. Cases from within neuroscience are
mentioned only after a complete account of the three levels has
been given, without there being any comment on this transition.
The primary illustration of the levels comes by way of a cash
register, an adding machine. At the computational level, the task
is to find out “what the device does and why.” (Marr, 1982,
p. 22).2 This means specification of the arithmetical theory of

1 Of course, the details of Marr’s framework have been criticized by
later researchers, such as Love (2021), who argue for a greater number
of levels. Gurney (2009) proposes a four-level framework which is
incidentally more similar to one proposed by Marr in a 1976 technical
report.

2 To reinforce this point about the primacy of artifacts, note that Marr
does not use the neutral language of “things” or “systems” but refers
specifically to a “device” here. We find this also in the legend for the
summary table: “The three levels at which any machine carrying out
an information-processing task must be understood” (p. 25 emphasis
added). Cf. “the different levels at which an information processing
device must be understood before one can be said to have understood
it completely” (p. 24 emphasis added).
Later in the book, when again summarizing the three levels as applied
to the visual system, it is interesting that the terms “machine” and
“machinery” are still used:
“The human system is a working example of a machine that can make
such descriptions, and as we have seen, one of our aims is to understand
it thoroughly, at all levels: What kind of information does the human
visual system represent, what kind of computations does it perform to
obtain this information, and why? How does it represent this information,
and how are the computations performed and with what algorithms?

addition, as well as an account of the functional role of the
machine for adding up charges in a shop. We learn that the
second level characterization involves showing how numbers
are represented in the device (e.g., Arabic or Roman notation),
and specifying the algorithm used to work out the total bill. The
implementation level involves characterization of the “physical
substrate” which runs the algorithm. A point Marr (1982, p. 24)
emphasizes is that the same algorithm can be realized in very
different materials. This also goes for the relationship between
the top two levels: one and the same computational task can be
achieved by a range of different algorithms. This is why the levels
are only “loosely related” (p. 25)—a discovery at one level cannot
reliably pre-specify what will be found at the level below.

We might speculate that Marr leans on artifacts for purposes
of exposition just because the core concept of each of these
levels comes out especially clearly in cases like the cash register.
But then we ought to wonder why it is that it is harder to
get a grip on how to define these levels in neuroscience, even
though the framework is intended for use there. We can discern
a deeper reason for the primacy of machines in Marr’s exposition
if we consider Dennett’s observation that the three levels actually
schematize the stages taken in the engineering of a complex
information processing system. Dennett (1995, p. 682) writes,

Marr’s obiter dicta [passing words] on methodology gave
compact and influential expression to what were already
reigning assumptions in Artificial Intelligence. If AI is
considered as primarily an engineering discipline, whose
goal is to create intelligent robots or thinking machines,
then it is quite obvious that standard engineering principles
should guide the research activity:

first you try to describe, as generally as possible, the
capacities or competences you want to design,

and then you try to specify, at an abstract level, how you
would implement these capacities,

and then, with these design parameters tentatively or
defeasibly fixed, you proceed to the nitty-gritty of
physical realization.

The point here is that the three levels of explanation are
an expression of three broad steps in the forward engineering
of a machine with some functionality equivalent to a cognitive
capacity in an animal. It is then not surprising that the different

Once these questions have been answered, we can finally ask, How
are these specific representations and algorithms implemented in neural
machinery?” (Marr, 1982, p. 99).
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levels are more easy to illustrate with an example of reverse
engineering some such device.

The issue I am highlighting here is that artifacts are the
foundational cases for Marr’s framework, and the application to
neuroscience occurs via an analogical transfer to brains, systems
which are arguably similar to computing ones. Researchers
habitually think of brains, just like the artifacts, as taking
in inputs (e.g., from sensory organs), implementing some
algorithms, and sending an output (e.g., a motor command).3

The importance of this analogy comes out in Dennett’s
characterization of what his own approach has in common with
that of Marr and cognitive scientist Allen Newell, namely:

stress on being able (in principle) to specify the function
computed . . .. independently of the other levels.

an optimistic assumption of a specific sort of
functionalism: one that presupposes that the concept of
the function of a particular cognitive system or subsystem
can be specified (It is the function which is to be optimally
implemented.)

A willingness to view psychology or cognitive science
as reverse engineering in a rather straightforward way.
Reverse engineering is just what the term implies: the
interpretation of an already existing artifact by an analysis
of the design considerations that must have governed its
creation (Dennett, 1995, p. 683).

Dennett’s articulation of the reverse engineering
methodology, his design stance, comes with strict assumptions

3 E.g., Marcus and Freeman (2015, p. xiii):
“The brain is not a laptop, but presumably it is an information processor
of some kind, taking in inputs from the world and transforming them into
models of the world and instructions to the motor systems that control
our bodies and our voices.”
See Chirimuuta (2021, under contract) on why this practice should be
interpreted as resting on a loose analogy rather than strict functional
similarity between computer and brain.

of optimality and adaptationism in evolved systems that we
need not attribute to the scientific practice. In my view, the
essential point about the reverse engineering methodology is
that it treats the biological object by analogy with a man-made
thing, and in this way attempts to make it intelligible by showing
how it operates according to principles that make sense from
the perspective of a person designing things; in other words, by
treating it as if it were an artifact, the scientist can explain it in
terms of the practical rationality of causal means being used to
produce useful effects.

We should appreciate that there are two levels of analogy, so
to speak. Superficially, the analogy just holds between certain
organs of living bodies and man-made devices that have a
rough functional equivalence with them—the brain and a
computer, the heart and a pump. But the deeper and more
general point—the one spelled out by Kant—is that there is
an analogy being invoked between the systematic organization
of parts and processes through which organs generate their
functional effects, and the parts and processes set in place
by a human engineer in order for a device to achieve the
desired effect. An artifact is intelligible to the extent that its
operations are the manifestations of the instrumental rationality
through which its human makers have put components
together in order to achieve their goals. A similar kind
of intelligibility is tacitly assumed for the biological object.
This becomes clearer when we consider functional analysis,
which is a general schema for reverse engineering (see
Figure 1).

The link between this reverse engineering methodology
in cognitive and neuroscience, and simplification of the
brain becomes apparent if we focus on the importance of
encapsulation in functional analysis. When a system is described
in this way, the payoff is that at any given level of analysis
the component modules can be treated as black boxes whose
inner workings are either unknown or ignored, since the only
information relevant to the current level of analysis is the input-
output profiles of the modules. Descent to a lower level of

FIGURE 1

Reverse engineering is expressed schematically as performance of a functional analysis (Cummins, 1975, Cummins, 2000). The top level
function of the whole system is decomposed into sub-functions, which can themselves be explained in terms of the interaction of basic
functions. See also Bechtel and Richardson (2010) on the research strategy of functional decomposition, employed for investigating modular,
hierarchical systems.
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analysis involves opening the black boxes and seeing how their
inner workings can be accounted for in terms of the functional
capacities of their components. But for many explanatory
purposes, lower level details can safely be kept out of view, which
is why this methodology offers a handy simplification.

To illustrate this point, I will make use of an example from
computing given by Ballard (2015, p. 14ff.). Most people who
program computers only ever use a high level programming
language such as Python. But the terms of this high level
language are actually black boxes which unpack into more
complicated expressions in a lower level assembly language.
These lower level terms themselves unpack into instructions
in machine code. For a program to be carried out, it needs
to be translated down into lower level languages, “closer to
machine’s architecture.” But this is all done behind the scenes
and the ordinary coder can comfortably stick with description
of the computation in the compact, highest level language. The
point of Ballard’s example here is to argue that there is a tight
analogy between the computer and the brain, which he thinks
can be described similarly in terms of “levels of computational
abstraction.”

Crucially, the abstraction hierarchy is posited to be there
in the brain’s own representations of the extra-cranial world,
not just in those imposed upon it by a scientist. The proposal
is that the brain is a system that, at the top level of control,
ignores its own complexity, like a digital computer where the
execution of a piece of code is indifferent to micro-physical
fluctuations in the electronic hardware. Just as the programmer,
the controller of a computer, can govern the performances of
the machine while ignoring and remaining ignorant of its low-
level languages and physical workings, it is supposed that the
brain systems ultimately responsible for behavior employ an
abstract, high level system of representation that is invariant
to changes in the complex, low-level workings of the brain
and rest of the body. If this assumption holds, there are good
prospects for a relatively simple computational theory that
explains how the brain governs behavior, by way of these high-
level representations.

But why would neuroscientists think that this assumption
does hold, that the analogy between computer and brain
is tight enough? The intelligible organization of systems as
hierarchically arranged, encapsulated modules, or levels of
more or less abstract representations, can be found in artifacts
designed by humans, but its existence in the natural world
should not be taken for granted. As far as I can determine, the
foundational argument in support of this assumption comes
from another analogy put forward by Herbert Simon in the
“Architecture of Complexity” (Simon, 1962, 1969).4 In a tale

4 It is interesting that Marr (1982, p. 102) also makes the connection
between evolvability, intelligibility, and modular organization:
“This observation [of isolated visual processing] . . .. is fundamental to
our approach, for it enables us to begin separating the visual process

of two watchmakers, Simon describes how the production of a
complex system (a watch) is much more likely to be successful
if the production process occurs in stages, where sub-processes
in the production result in stable sub-components of the system
that are assembled together at a later stage. Simon then draws
an analogy between human manufacture and the evolution of
complex life forms. His point is that the likelihood of evolution
producing organisms of any complexity is vanishingly small
unless it is the case that it comes about via the evolution of
intermediate, self-standing forms that become the components
of more complex organisms. Hence, he argues, it must be the
case that evolved, as well as manufactured complex systems are
composed, hierarchically, of relatively independent sub-systems.
In these near decomposable complex systems, there is only a
weak frequency and strength of interaction horizontally between
the subsystems at any one level, and vertically across the levels
of organization. This means that the subsystems—the modular
components—can usefully be studied in isolation from the rest
of the system, and that the system can be studied at higher
levels of organization (which we can here equate to larger scales)
without attention to most of the lower level (i.e., small scale)
details. The optimistic upshot is that evolved complex systems
are scientifically intelligible through decomposition into levels
and components, and that this is an alternative to intractable
reductionist methodologies.5

Reductionist methodologies can be successful for relatively
simple systems. The task of the research is to acquire
sufficient information about the elementary components, and
their interaction, to yield an explanation of the behavior
of the whole system. This is a “flat,” as opposed to multi-
level, approach. Once there is enough complexity that the
amount of information about elementary components and the
interactions that can feasibly be dealt with (in models or
theory) is much less than what is required for explanation of
the system’s behavior, then a multi-level approach is needed.
The common virtue of all of the multi-level approaches
discussed above—from Marr, Ballard, and Simon—is that they
offer a guide for how to abstract away from low-level details
and how to set about work on top-down explanations when

into pieces that can be understood individually. Computer scientists call
the separate pieces of a process its modules, and the idea that a large
computation can be split up and implemented as a collection of parts
that are as nearly independent of one another as the overall task allows,
is so important that I was moved to elevate it to a principle, the principle
of modular design. This principle is important because if a process is not
designed in this way, a small change in one place has consequences
in many other places. As a result, the process as a whole is extremely
difficult to debug or to improve, whether by a human designer or in
the course of natural evolution, because a small change to improve
one part has to be accompanied by many simultaneous, compensatory
changes elsewhere. The principle of modular design does not forbid
weak interactions between different modules in a task, but it does insist
that the overall organization must, to a first approximation, be modular.”

5 See Bechtel and Richardson (2010) for further discussion of methods
for investigating near decomposable systems.
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bottom-up, reductionist approaches are intractable, even if
possible in principle. These three scientists are all advocates
of computational explanations of how the brain gives rise to
cognition, and this kind of explanation is favored because, they
argue, it does not require that much attention be paid to the
details of neurophysiology which would otherwise threaten an
overwhelming complexity.

An additional feature of computational explanations is
that they assert an equivalence between organic and artificial
systems, so long as they are computing the same functions. This
is known in philosophy as multiple-realization. A mechanical
cash register, an electronic calculator, and a human brain
region, can all be said to be doing the same computation
when adding up a particular sum, even though the physical
substrates are so different. The benefit of this for neuroscientific
research is that it justifies the substitution of actual neural
tissue with relatively simple computational models, such as
artificial neural networks (ANNs), as objects of investigation.
A goal of various neuro-computational research projects has
been to create models of brain areas in silico that will
yield confirmatory or disconfirmatory evidence for theories
of cognition and pathology, where traditional experimental
approaches are untenable because it is not possible to
make the required interventions on actual neurons. Even
though large ANNs are themselves rather complicated and
hard to interpret, they are at least more accessible to
(simulated) experimental interventions, such as lessoning of
individual nodes.

Aside from the specifics of computational explanation
(explanation via analogy between brains and computers), one
of the general implications of the artifact analogy is that the
nervous system is composed of relatively encapsulated working
parts (modules) or functional components. This also supports
the “black-boxing” of neural details. As Haugeland (1978, p. 221)
relates,

if neurons are to be functional components in a
physiological system, then some specific few of their
countless physical, chemical, and biological interactions
must encapsulate all that is relevant to understanding
whatever ability of that system is being explained.

One way to think about the importance of neuron
doctrines in the history of the discipline—theories that posit
individual neurons as the basic anatomical and functional
units of the nervous system—is that they facilitate this
simplifying strategy, even while departing from many of
the observable results on the significance of sub-neuronal
and non-neuronal structures and interactions.6 Moreover, we

6 See Bullock et al. (2005) and Cao (2014) on the empirical inadequacy
of the neuron doctrine. Barlow (1972) is a great example of its role in
explanatory simplification.

should note also that this black-boxing can be employed to
achieve abstract representations of functional components other
than individual neurons (e.g., Hawkins et al., 2017 model of
cortical columns).

Limitations of the analogies

I have argued that the dominant multi-level approaches
in neuroscience rest on the assertion of there being a close
similarity between the multi-level organization of artifacts
such as computers, and the brain, an evolved organ whose
organizational “plan” is far less well characterized than that
of the machine, and remains a matter of controversy. This
prompts consideration of the difficulties that the multi-level
approach faces, to the extent that the claim for similarity can
be challenged. If the comparison between brain and computer
is at best a loose analogy, in which the dissimilarities between
the two are of equal importance or even outnumber the
similarities, then the leveled approach might sometimes be a
hindrance in the project of explaining how brain activity gives
rise to cognition.

The first concern to bring up here is that the case for
encapsulation in the nervous system is fairly weak. This was
pointed out decades ago by Haugeland, in the passage following
on from the one quoted above:

[encapsulation] is not at all guaranteed by the fact that
cell membranes provide an anatomically conspicuous
gerrymandering of the brain. More important, however,
even if neurons were components in some system, that
still would not guarantee the possibility of “building
back up.” Not every contiguous collection of components
constitutes a single component in a higher level system;
consolidation into a single higher component requires a
further encapsulation of what’s relevant into a few specific
abilities and interactions—usually different in kind from
those of any of the smaller components. Thus the tuner,
pre-amp and power amp of a radio have very narrowly
specified abilities and interactions, compared to those of
some arbitrary connected collection of resistors, capacitors,
and transistors. The bare existence of functionally organized
neurons would not guarantee that such higher level
consolidations were possible. Moreover, this failure of a
guarantee would occur again and again at every level on
every dimension. There is no way to know whether these
explanatory consolidations from below are possible, without
already knowing whether the corresponding systematic
explanations and reductions from above are possible—
which is the original circularity (Haugeland, 1978, p. 221).

It is interesting that Haugeland focuses on the possibility
of a strong disanalogy between the organization of the nervous
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system, and that of a human-designed artifact, a radio. Whereas
it is a feature of the design of a radio that higher level sub-
components (the tuner, pre-amp and power amp) are made
up of careful arrangements of lower level sub-components
(resistors, capacitors, and transistors), and themselves have
narrowly specified capacities and input-output profiles, it should
not be assumed that collections of neurons consolidate into
higher level sub-components in this way, and that explanations
of the neural basis of cognition can safely be restricted to the
higher levels. I will now discuss two reasons to be skeptical that
the analogy holds. The first relates to the potential importance
of low-level activity, the second brings up the difference between
hierarchical, designed systems and evolved ones.

It is an open possibility that cognition is the product of
dense interactions across a number of levels or scales, and
is not restricted to a high level of computational abstraction,
as hypothesized by Ballard. The cognitive properties of the
brain may be enmeshed in its material details, in a way not
congenial to Marr’s vision of a there being computational and
algorithmic/representation levels that are only loosely related to
the implementational one. A reason to give credence to these
possibilities comes from consideration of the fact that biological
signaling, a general feature of living cells, is the omnipresent
background to neuronal functionality. The low level details
of neuronal activity can themselves be characterized as doing
information processing, and are not merely the hardware
implementors of the system’s global computations, or bits of
infrastructure keeping the system running. This is an argument
put forward by Godfrey-Smith (2016, p. 503):

This coarse-grained cognitive profile is part of what a
living system has, but it also has fine-grained functional
properties—a host of micro-computational activities in each
cell, signal-like interactions between cells, self-maintenance
and control of boundaries, and so on. Those finer-grained
features are not merely ways of realizing the cognitive profile
of the system. They matter in ways that can independently
be identified as cognitively important.

The point is that in an electronic computer there is a clean
separation of the properties of the physical components that
are there holding the device together, and the ones involved
specifically in information processing. This is how the machine
has been designed. Whereas in the brain this is not the case—
it is not clear cut which entities within the brain, and which of
their properties, are responsible for information processing, and
which are the infrastructural background.7 In addition to the

7 For example, glial cells—the very numerous kinds of brain cells that
do not generate action potentials—were long thought to be providing
metabolic support, but not involved in cognition. This does not appear
to be the case, but the challenge of integrating glia into computational
theory is immense (Kastanenka et al., 2019).

“coarse-grained” computations that might be attributed on the
basis of the whole animal’s psychology and behavior, Godfrey-
Smith argues that there are a countless number of “micro-
computational activities” in cells, which are not unrelated to
global cognition. If in the brain metabolism, cell-maintenance,
and global (i.e., person-level) cognitive functions are enmeshed
together, then low level material details about neural tissue,
such as the specific chemical structures of the many kinds of
neurotransmitter, and the thousands of proteins expressed at
synapses (Grant, 2018), probably do matter to the explanation
of cognition. They cannot be safely discounted with the same
confidence as merited in aeronautics, when air is treated as a
continuous fluid and molecular details are left unrepresented.8

We saw that Herbert Simon gives an in principle argument
for the existence of hierarchical organization in complex
living systems which would, if accepted, justify the exclusion
of low level details for the purposes of most explanations
of whole system behavior. However, the strict analogy this
argument supposes, between human manufacture and the
processes of evolution, calls for scrutiny. Bechtel and Bich
(2021) argue that hierarchical control structures, with their
neat pyramidal arrangement of superordinate and subordinate
levels, are less likely to evolve than heterarchical systems,
which have a more haphazard arrangement of horizontal and
vertical interconnections, meaning that one component of the
system is open to significant influence from components at
other levels (they are not just “loosely related”), and there
is no top-level locus of control, as posited by Ballard (2015,
p. 242) in his comparison between control in robots and
humans. The reason for the hypothesized predominance of
heterarchical systems is that evolution is not like a smooth,
linear, process of design and manufacture, but is full of processes
comparable with those engineers would call “tinkering” and
“kludging.”9 A common occurrence in evolution is that a
trait that is adaptive because serving one function is co-
opted for another, and so it is not obvious what the function
of the trait is in the subsequent system. Co-option and
functional multi-tasking are reasons why evolved systems have
the heterarchical character of interactions ranging across levels.
Generally speaking, to the extent that evolution is “inelegant”
and divergent from the designs that would be considered
rational and perhaps optimal by a human engineer, there is
an obstacle to understanding organic systems through reverse
engineering. This is a point made by Kitcher (1988) in relation

8 Lillicrap and Kording (2019) also argue against the comparison
between coarse-graining methods in physics and computational
explanation in neuroscience.

9 We should note here that Ballard’s representation of software
systems as neat and pyramidal is itself an idealization, since large
programs like Microsoft Word are themselves the result of years of
tinkering and kludging of previous versions of the code.
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to Marr’s levels, and is reiterated by these biologists more
recently:

deep degeneracy at all levels is an integral part of biology,
where machineries10 are developed through evolution to
cope with a multiplicity of functions, and are therefore
not necessarily optimized to the problem that we choose
to reverse engineer. Viewed in this way, our limitation in
reverse engineering a biological system might reflect our
misconception of what a design principle in biology is.
There are good reasons to believe that this conclusion is
generally applicable to reverse engineering in a wide range
of biological systems (Marom et al., 2009, p. 3).

Of course, Dennett is aware that the strong assumption
of optimality cannot be expected to hold in many cases,
but he would advocate for it as a first approximation: the
initial prediction is that the evolved system conforms to the
expectation based on optimality considerations, and then we
look for divergences from this prediction. In this way, reverse
engineering retains its heuristic value for biology.

However, we might become less sanguine about the value
of this strategy as a heuristic, the more we attend to the
worry that cases of conformity to the predictions based on
human design considerations are likely to be rare—the first
approximation is likely to be just too wide off the mark.
On signaling networks in living cells, Moss (2012) points to
research findings of everything “cross-talking” to everything
else. Such networks are nowhere near the ideal of a hierarchical
and near decomposable system. Application of a neat, leveled
explanatory framework would only be Procrustean. Both Moss
(2012) and Nicholson (2019, p. 115) point to a problem with the
wiring diagrams commonly used to represent such networks,
based on an analogy with electronic networks, because they
lead researchers to underestimate the dynamic nature of
these signaling pathways, in comparison with a fixed circuit
structure.11 There is a felt need for better analogies, but perhaps
they will not be available for the very reason that human
engineered systems—at least when they are intelligible enough
to usefully serve as analogies—are too fundamentally different
from the evolved ones.

A somewhat controversial view on what is distinctive
about natural systems, such that the assumption of near
decomposability does not hold, is that they show emergence,

10 It is interesting that these scientist use the term “machineries” to
refer to biological processes, even when their aim is to draw attention to
the limitations of reverse engineering.

11 “Perhaps the most significant barrier to appreciating the dynamic,
heterogeneous aspect of signaling complexes is the lack of a good
analogy from our daily experience. This contributes to a second related
problem, our inability to depict such interactions diagrammatically.
Indeed, the typical “cartoon” of signaling pathways, with their reassuring
arrows and limited number of states could be the real villain” (Mayer et al.,
2009, p. 6, quoted in Moss, 2012, p. 170).

meaning that higher level structures impose downward
causation on their component parts (Green, 2018). On this
view, living systems do have leveled architectures, though
radically different from the ones found in artifacts for which the
assumption of near decomposability does hold. It is interesting
to note that there are new frameworks for engineering, which
allow for machines to assemble themselves rather than be
constructed according to a transparent, rational plan. It has been
argued that some of these artifacts are not modular and near
decomposable, and that they may show emergence (see section
“Conclusion”).

To summarize, my considerations about the difference
between living systems and artifacts, boil down to
a concern about oversimplification. By making the
assumption that living systems such as the nervous system
have distinct levels of organization (without downward
causation), and using this to justify leveled frameworks
in neuroscientific explanation, the density and complexity
of brain interactions are most likely being vastly under-
estimated. Perhaps this does not matter for a range of
predictive and technical purposes, but it does undermine more
ambitious claims of level-based theories to be unlocking the
riddles of information processing in the brain. Potochnik
(2021, p. 24) states the general worry in a compelling
way:

our adherence to the levels concept in the face of the
systematic problems plaguing it amounts to a failure to
recognize structure we’re imposing on the world, to instead
mistake this as structure we are reading off the world.
Attachment to the concept of levels of organization has,
I think, contributed to underestimation of the complexity
and variability of our world, including the significance of
causal interaction across scales. This has also inhibited
our ability to see limitations to our heuristic and to
imagine other contrasting heuristics, heuristics that may
bear more in common with what our world turns out to
actually be like.

The prospect of alternative heuristics is the loaded question.
Better notions of levels may yet arise from multi-scale modeling
in systems biology. But it could well be that the over-
simplifications imposed by artifact analogies and traditional
level frameworks are indispensable for making such complex
biological systems intelligible to human scientists, given our
finite cognitive capacities. In which case, there may be no overall
improvement in the heuristics, because any attempts to get
closer to the actual complexity of the targets result in a loss
of tractability and intelligibility. In which case researchers can,
without condemnation, settle for the heuristics that they have,
but they should uncouple advocacy of their modest explanatory
utility from any stronger claims about brains being computers
or organisms being machines.
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Conclusion

In this special issue, Bongard and Levin (2021) argue,
against Nicholson (2019), that twenty first century machines,
such as deep convolutional neural networks (DCNN’s), do not
have the rigid, modular qualities that, according to Nicholson,
make them misleading as models for biological systems. What
Bongard and Levin do not consider is that the utility of
the analogies is likely to decline once reference is made to
self-organizing devices like DCNN’s, which do not have the
intelligibility of simpler, explicitly designed machines. While the
analogy between organisms and machines may become tighter,
with the development of machines that are more life-like—
that are not modular, and which lack a clear hardware/software
division—the motivation for drawing the analogies in the first
place may evaporate. For, I have argued in this essay that
the payoff of thinking about brains in terms of machine-
based comparisons is that it aids explanation by framing
the biological object in terms of transparent principles of
human-led design. Self-organizing machines lack this attractive
transparency. That machines would 1 day become inscrutable
was a situation long ago envisaged by one of the first
proponents of artificial intelligence and artificial life, John von
Neumann:

At the Hixon Symposium, finding himself taxed by
the neurophysiologists . . . for not stressing enough the
difference between natural and artificial automata, he
replied that this distinction would grow weaker over time.
Soon, he prophesied, the builders of automata would find
themselves as helpless before their creations as we ourselves
feel in the presence of complex natural phenomena (Dupuy,
2009, p. 142).

That said, we should not be tempted to conclude that self-
organizing, twenty first century machines are absolutely life-
like. The problem is that given our relative ignorance about
how they work, in comparison with classical machines, we risk
also being left in the dark about all the ways they too are
not like organisms.
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