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Examining paleobotanical
databases: Revisiting trends in
angiosperm folivory and
unlocking the paleoecological
promise of propensity score
matching and specification
curve analysis

Sandra R. Schachat*

Department of Geological Sciences, Stanford University, Stanford, CA, United States

Paleobotany is at a crossroads. Long-term trends in the fossil record of plants,

encompassing their interactions with herbivores andwith the environment, are

of the utmost relevance for predicting global change as pCO2 continues to

rise. Large data compilations with the potential to elucidate those trends are

increasingly easy to assemble and access. However, in contrast to modern

ecology and unlike various other paleontological disciplines, paleobotany

has a limited history of “big data” meta-analyses. Debates about how much

data are needed to address particular questions, and about how to control

for potential confounding variables, have not examined paleobotanical data.

Here I demonstrate the importance of analytical best practices by applying

them to a recent meta-analysis of fossil angiosperms. Two notable analytical

methods discussed here are propensity score matching and specification

curve analysis. The former has been used in the biomedical and behavioral

sciences for decades; the latter is a more recent method of examining

relationships between, and inherent biases among, models. Propensity score

matching allows one to account for potential confounding variables in

observational studies, and more fundamentally, provides a way to quantify

whether it is possible to account for them. Specification curve analysis

provides the opportunity to examine patterns across a variety of schemes

for partitioning data—for example, whether fossil assemblages are binned

temporally by stage, epoch, or period. To my knowledge, neither of these

methods has been used previously in paleontology, however, their use

permits more robust analysis of paleoecological datasets. In the example

provided here, propensity score matching is used to separate latitudinal

trends from di�erences in age, climate, and plant community composition.

Specification curve analysis is used to examine the robustness of apparent
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latitudinal trends to the schema used for assigning fossil assemblages to

latitudinal bins. These analytical methods have the potential to further unlock

the promise of the plant fossil record for elucidating long-term ecological and

evolutionary change.
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statistics, fossil plants, integrity, sampling, herbivory

1. Introduction

Many scientific disciplines have been revolutionized by “big

data,” or “data-intensive science” (Resnik et al., 2017), which

is characterized by “consolidating data from multiple sources”

and “repurposing data” (Clarke, 2016). Paleontology has a long

history of such large-scale analyses: quantitative paleobiology as

a discipline leverages data compilations to search for patterns in

the history of life, such as mass extinctions and biotic response

to climate change (Sepkoski, 2012).

Groundbreaking early studies noted that the structure of the

fossil record—changes in the amount of rock volume through

time, geographic patterns in the incompleteness of the fossil

record, and so forth—are likely to influence, but not necessarily

invalidate, the patterns that emerge when available fossil data

are interpreted at face value (Raup, 1972; Sepkoski et al., 1981).

For decades, quantitative paleontology has been caught in a

cycle in which some authors point out the nonrandomness

and incompleteness of paleontological data and the ubiquity

of potential confounding factors (Close et al., 2020; Raja

et al., 2021) and others point out that methods are available

to account for these phenomena (Wang and Bush, 2008;

Holland, 2017). All the while, a plurality of workers continue

to analyze paleontological data compilations without explicitly

controlling for relevant structure and biases in the rock record.

Paleontologists’ varying levels of concern about structure and

biases of the fossil record are but one manifestation of the larger

debate surrounding appropriate uses of repurposed, “big” data.

Best practices for analyzing paleontological data are well

outlined for studies of marine invertebrates; this is, however,

not the case in paleobotany, even though a quantitative

approach to paleobotany has become increasingly popular

as larger datasets have been compiled and shared (Nowak

et al., 2019; Capel et al., 2021; Romero-Lebrón et al., 2022).

This trend necessitates an exploration of best analytical

practices in the specific context of paleobotany. One key

feature of paleobotanical data compilations is that they often

reflect interactions—with other organisms, such as herbivores

(Labandeira, 2006), or with the environment (Boyce and

Zwieniecki, 2012)—rather than simpler taxic trends, such as

gamma diversity, that are the focus of many studies of marine

invertebrates (Sepkoski et al., 1981; Bush and Bambach, 2015).

In other words, for paleobotany, the fundamental unit of

analysis is typically an individual fossil specimen, rather than

a taxon.

Paleobotanical evidence of trophic and environmental

interactions holds tremendous importance for elucidating future

global change (Crowley and Berner, 2001; Wappler et al., 2012),

and thus, high analytical standards are essential. However,

paleobotany has a short history of “big data” studies, and the

more straightforward taxic questions typically addressed with

marine invertebrate data represent a small fraction of possible

questions addressed through quantitative paleobotanical studies

(Cleal and Cascales-Miñana, 2014). Standards and guidelines

for quantitative paleobotanical research differ from those for

invertebrate paleontology. A number of statistical guides have

been published for paleobotanical studies focusing on one or a

few fossil assemblages (Lamboy and Lesnikowska, 1988; Scott

and Titchener, 1999; Cleal et al., 2021; Pardoe et al., 2021), but

no such guide exists for analyzing large data compilations.

Best analytical practices for “big data” ensure that data

are sufficient to address the questions at hand, and minimize

the probability that arbitrary decisions made by researchers

compromise the integrity and relevance of any findings. Here

I first discuss best practices for paleobotanical “big data” studies,

then demonstrate the relevance of these best practices by

revisiting a recent study by Currano et al. (2021) using power

analysis, propensity score matching, and specification curve

analysis (Benedetto et al., 2018; Simonsohn et al., 2020), as

well as null models of bipartite network metrics (Dormann

et al., 2008) to examine the validity of identified trends in

insect herbivory ranging from the Maastrictian to present (72.1-

0 Ma). Their analyses focus primarily on presence/absence

data for insect damage types (DTs; Labandeira et al., 2007) on

each censused leaf. Here I elaborate upon the original analyses

(Currano et al., 2021) by implementing the abovementioned

analytical best practices.

My discussion of these best practices is based largely on

contributions from Shrout and Rodgers (2018) and Makin and

Orban de Xivry (2019). Because recent research in psychology

has greatly best practices to address the replication crisis

(Nosek et al., 2012; Open Science Collaboration, 2015), I draw

on these advances to guide my discussion on related issues

in paleontology. Comparisons to psychology are particularly

apt when discussing paleontology because both disciplines are

plagued by small sample sizes. For example, meta-analyses of
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latitudinal gradients of insect herbivory in modern ecosystems

tend to have large sample sizes: 728 localities with an average

of 2.6 plant species per locality (Zhang et al., 2016), over 2.5

million leaves from 845 localities (Kozlov et al., 2015), and

so forth. A paleontological study of this topic would ideally

include more leaves and localities than typically seen in studies

of modern ecosystems, because paleontological studies examine

change over time and therefore need to identify spatial trends

across multiple time bins. A recent data compilation (Currano

et al., 2021), however, includes fewer than 80,000 leaves from

fewer than 70 fossil assemblages. Considering the amount of

time and effort required to excavate and prepare fossil leaves,

and then examine them for insect herbivory, tens of thousands

of leaves is a tremendous accomplishment. However, because the

data compilation ultimately contains less than 1 assemblage per

million years, scattered across all continents except Australia,

the clear question is: do the authors have enough data to answer

the paleoecological questions they are asking?

2. A review of accepted best
practices in statistical paleobiology
as applied to paleobotany

In this section I discuss the relevance of analytical

concepts that are already widely-known in the paleontological

literature (Simpson’s paradox, cherry-picking, naïve hypotheses,

underdetermination) to recent statements about trends in insect

folivory on fossil angiosperms. These concepts are outlined

before the Results because they do not lead directly to, or

necessarily require, specific analyses.

2.1. Simpson’s paradox and spurious
correlation due to pooling

Currano et al. (2021) did not separate the fossil assemblages

in their data compilation by age when analyzing the effects of

latitude. However, when data are pooled by a predictor of known

importance (in this case, pooled into a single temporal bin for

geologic age), spurious correlations can arise—i.e., differences in

age may underlie the results of their latitudinal analyses because

age distributions vary among the fossil assemblages of different

latitudinal bins. The danger of pooling data by predictors that

are known to be important (such as age, in this case) is described

by “Simpson’s paradox.”

2.1.1. General relevance

One often thinks of spurious correlations as occurring

due to simple random chance. As Makin and Orban de

Xivry (2019) write, “Spurious correlations can also arise from

clusters, e.g., if the data from two groups are pooled together

FIGURE 1

A paleontological example of Simpson’s paradox, from Wang

and Bush (2008). Cephalopods were slightly more likely to go

extinct at the end-Permian as compared to the end-Ordovician,

and gastropods were much more likely to go extinct. However,

when mollusk classes are pooled together, the end-Permian

event appears no more severe than the end-Ordovician. This is

because cephalopod genera outnumbered gastropod genera at

the end-Ordovician, and gastropod genera outnumbered

cephalopod genera at the end-Permian.

when the two groups differ in those two variables.” Simpson’s

paradox lies at the heart of this problem. In statistical parlance,

Simpson’s paradox is defined as “a phenomenon whereby the

association between a pair of variables (X, Y) reverses sign upon

conditioning of a third variable, Z, regardless of the value taken

by Z” (Pearl, 2014).

Simpson’s paradox was explored by Wang and Bush (2008),

who compared the end-Ordovician and end-Permian extinction

events (Figure 1). Cephalopods are more prone to extinction

than are gastropods. Cephalopod genera outnumbered

gastropod genera at the end-Ordovician but not at the end-

Permian. Therefore, when the pooled extinction rate for

mollusks is calculated for the end-Ordovician and end-Permian

events, the rates appear to be similar for both events; this

result is due to changes in the prevalence of cephalopods and

gastropods throughout the Paleozoic. It is for this reason that

the severity of the end-Ordovician and end-Permian events

should be calculated separately for each mollusk class: pooling

all classes yields a misleading result.

2.1.2. Relevance to angiosperm folivory

The benefit of paleontological data is that they provide a

glimpse into how biological changes have occurred through

time. For example, many studies have examined how latitudinal

biodiversity gradients have changed during timescales of tens

of millions of years (Jablonski et al., 2006; Powell et al.,

2012, 2015; Mondal et al., 2019; Wu et al., 2019; Allen et al.,
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FIGURE 2

The age and latitude of the fossil assemblages included in Currano et al. (2021)’s latitudinal analyses.

2020; Dunne et al., 2021). However, the data under re-study

are insufficient to separate latitudinal and temporal signals:

for example, the compilation contains only one Paleocene

assemblage (Wing et al., 2009), one Oligocene assemblage

(Currano et al., 2011), and one Miocene assemblage (Currano

and Jacobs, 2021) from tropical latitudes (Figure 2). The original

study pooled all latitudinal bins when examining temporal

differences in herbivory, and pooled all temporal bins when

examining latitudinal differences in herbivory.

The canonical studies that established the importance of

angiosperm–herbivore interactions in the fossil record centered

on changes in herbivory across the Cretaceous/Paleogene

boundary (Labandeira et al., 2002) and the Paleocene/Eocene

Thermal Maximum (Wilf et al., 2001), however, this temporal

variability is discarded in the latitudinal analyses of Currano

et al. (2021). Whereas it may be impossible for a paleontological

analysis to be truly complete, the analyses under re-study are

flawed because in each case, at least one widely-recognizedmajor

determinant of insect herbivory for which data are available

(latitude, age) is ignored.

2.2. Cherry-picking

As more and more analytical techniques are devised, it is

not always clear which analysis is most appropriate for any

given biological question. “Cherry-picking” is a term used to

describe the calculation of multiple metrics to address the

same question, and the selective reporting of only a subset of

those metrics.

2.2.1. General relevance

According to Shrout and Rodgers (2018), “more complete

disclosure of nonsignificant as well as statistically significant

findings” is a key step in making research replicable and

transparent. Exhortations to publish negative and non-

significant results are, of course, not new (Dickersin, 1990). In

light of the proliferation of software packages that permit the

calculation of dozens of metrics with a single line of code, such

as the bipartite network analysis discussed below, complete

disclosure of results should be the beginning of a longer process.

To avoid cherry-picking, paleontological studies should first

evaluate whether the complete suite of results—those that are

significant, and those that are not—is best attributed to a true

biological signal, or to a low signal-to-noise ratio caused by

insufficient data. If the suite of results is best attributed to a

true biological signal, the next step is to present a coherent

explanation of why some metrics yield significant results and

others do not.

2.2.2. Relevance to angiosperm folivory

The original meta-analysis includes an example of cherry-

picking that is not suited to specification curve analysis. The

authors state that specialized herbivory is more prevalent at mid-

southern latitudes (Currano et al., 2021, pg. 8). (The conceptual

pitfalls of discerning specialization through damage type data

are too discipline-specific to discuss here). The authors also

state that specialized herbivory became less prevalent from the

Cretaceous into the Paleocene, due to the disproportionate

extinction of specialist herbivores at the end-Cretaceous,

and that specialized herbivory then became more prevalent

during the Eocene as specialist clades of herbivores eventually

rebounded.

If this is indeed the case, any increase in the overall richness

of damage types from the Cretaceous through Paleocene

should be disproportionately attributable to non-specialist

damage types, and any decrease in the overall richness of

damage types from the Cretaceous through Paleocene should
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FIGURE 3

A hypothetical illustration, showing the prevalence of specialist herbivores from the Cretaceous through Eocene according to Currano et al.

(2021). (A) A literal interpretation of the scenario that the original study outlined for specialized herbivory during the Cretaceous, Paleocene, and

Eocene. (B) An alternative scenario that conforms to the proposed trajectory of specialized herbivory through time while incorporating the

potential for the diversity of herbivory to vary within the Paleocene. The timescale used here is from Cohen et al. (2013).

be disproportionately attributable to specialist damage types.

Along these lines, the proportion of damage types at each

assemblage that are specialized should decrease immediately

after the Cretaceous/Paleogene event, and should increase from

the Paleocene into the Eocene (Figure 3).

However, the most straightforward reading of this data

compilation does not support this scenario (Figure 4). Among

all Paleocene assemblages in the compilation, Castle Rock

(Wilf et al., 2006) has the lowest prevalence of specialized

damage, whethermeasured as the richness of specialized damage

types or the percentage of damage types that are specialized

(Figure 4). However, Castle Rock postdates two other fluvial

Paleocene assemblages from the western interior of North

America—Pyramid Butte andMexicanHat—that are temporally

closer to the Cretaceous/Paleogene event and that have much

higher prevalences of specialized damage, however defined. The

Paleocene assemblage in the compilation with the second-lowest

prevalence of specialized damage is Skeleton Coast (Wilf et al.,

2006), which postdates the Cretaceous/Paleogene boundary by

over 6.5 Myr. Moreover, the data compilation includes three

other assemblages from the same formation that are nearly

identical in age—Persites Paradise, Kevin’s Jerky, and Haz-

Mat—all of which have much more specialized herbivory. In

other words, neither of the two assemblages in the compilation

that best exemplify low levels of specialized herbivory in the

aftermath of the Cretaceous/Paleogene event suggest that their

low levels of specialized herbivory were in fact caused by the

Cretaceous/Paleogene event.

In lieu of direct evidence, statements about damage type

specialization were based on bipartite network metrics, which

are complex and can be notoriously difficult to interpret

(Blüthgen, 2010). Only three metrics called “connectance,”

“niche overlap” for plants, and the “C-score” for plants were used

to examine damage type specialization during the Cretaceous

through Eocene, with no explanation of the logic in choosing

these metrics to examine change through time. Likewise, the

authors’ discussion of herbivore specialization across latitudinal

bins centers exclusively on “interaction evenness” and “H2
′”

with no explanation of the appropriateness of these metrics for

examining changes across space.

The only reported p-value, a Tukey test (p = 0.0020) for

the Cretaceous, Paleocene, and Eocene, for bipartite network

metrics also suggests cherry-picking. There are five ways to

divide the fossil assemblages into three consecutive epochs1, and

at least eight bipartite network metrics were calculated, meaning

that the reported Tukey test is one of at least 40 that should have

been conducted and compared.

In the original study, the network analysis was run with an

R package that calculates a total of 77 network- and group-level

metrics when runwith its default settings (Dormann et al., 2008).

Supplementary Table S1 of Currano et al. (2021) lists 22 of these

metrics, with no explanation of the criteria for selecting them.

Supplementary Table S4 of Currano et al. (2021) lists the results

of regression analyses involving eight of these 22 metrics—

again, with no explanation of how the authors determined which

metrics merited inclusion in regression analyses. Table 1 of

Currano et al. (2021) lists six of the eight metrics listed in

Supplementary Table S4—again, with no explanation of how the

authors determined which metrics merited inclusion.

Recent ecological studies have typically calculated two

(Eckerter et al., 2022; Rosa et al., 2022), three (D’Bastiani et al.,

2020; Badillo-Montaño et al., 2022; Llaberia-Robledillo et al.,

2022; Sonne et al., 2022; Virgo et al., 2022), four (de Matos

et al., 2022; González-Castro et al., 2022; Kivlin et al., 2022;

Moss and Evans, 2022; Rodríguez-Godínez et al., 2022), or five

(Hetherington et al., 2022; Oliveira et al., 2022; Quinto et al.,

1 Late Cretaceous–Eocene, Paleocene–Oligocene, Eocene–Miocene,

Oligocene–Pliocene, Miocene–Pleistocene.
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FIGURE 4

Specialized and non-specialized herbivory at assemblages in Currano et al. (2021)’s compilation that span the Cretaceous through Eocene. The

percentages in (a) are based on estimates that were calculated after richness was rarefied to 300 leaves; (b,c) show those estimates. Trendlines

for each epoch are in blue.

2022) bipartite network metrics, each of which is associated

with a distinct, clearly articulated biological question. A recent

study that examined ten bipartite network metrics included a

separate biological justification for each (Valido et al., 2019).H2
′

is typically the only bipartite network metric used to evaluate

specialization (Bucharova et al., 2022; da Silva Goldas et al., 2022;

Vinagre-Izquierdo et al., 2022; Virgo et al., 2022). Whereas it is

indeed the case that most bipartite network metrics are related

to the concept of specialization (Fründ et al., 2016), the decision

in the original study to calculate a plethora of metrics for the

sake of quantifying the very same phenomenon (specialization)

is far from accepted practice in ecology. By calculating so many

metrics rather than selecting a few through “a priori choice based

on a research hypothesis” (Webber et al., 2020), the original

authors have engaged in a questionable research practice termed

“metric hacking” (Webber et al., 2020) that is essentially cherry-

picking of bipartite network metrics.

2.3. Null models and naïve hypotheses

The original study reported a significant p-value that

indicates rejection of the null hypothesis of no relationship

between mean annual temperature and the richness of insect

herbivory. The utility of this result is questionable: the

null hypothesis that was rejected does not warrant testing,

as it is biologically unrealistic. Null models and naïve

hypotheses permit more sensible analyses, which can yield more

meaningful results.

2.3.1. General relevance

Ecologists have long been at the forefront of using null

models (Connor and Simberloff, 1986), which are typically called

naïve hypotheses in the psychology literature. The reason to

use null models and naïve hypotheses is simple: “Researchers

should make thoughtful assessments instead of null-hypothesis

significance tests” (Schwab et al., 2011). The “thoughtful

assessment” in question is a naïve, rather than a null, hypothesis.

Here, I treat null models and naïve hypotheses as distinct

concepts, with naïve hypotheses pertaining to the framing of a

research question and null hypotheses pertaining to statistical

procedures used to determine significance. A naïve hypothesis

can be thought of as our baseline expectation of the pattern we

would expect to find across an extended period of geologic time:

for example, intervals of high pCO2 are relatively warm, and

low latitudes are generally warmer than high latitudes. Naïve

hypotheses address a major shortcoming of null hypothesis

significance testing that isn’t discussed particularly often in

the paleontological literature: that even in the absence of

any particular biological signal under consideration, a null

hypothesis of a slope of zero is not a “thoughtful assessment”
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of what one would expect to see. As a cartoon example to

illustrate this point, it would not be productive to test the

null hypothesis that mean annual temperature does not change

with pCO2. It would be more informative to evaluate relevant

empirical data by testing them against the naïve hypothesis

that mean annual temperature increases linearly with increased

pCO2. In paleontology, naïve hypotheses can be generated with

a uniformitarian approach. For any relationship that is well-

established in the modern and is under consideration in deep

time, the relationship seen in the modern can be used as a naïve

hypothesis in paleontological studies.

A null model can be thought of as the relationship we would

expect to see when calculating a particular statistic, especially

if sampling is incomplete—as is often the case in paleontology.

In null hypothesis significance testing, the null hypothesis is

typically that there is no relationship between the variables

of interest: essentially, that nothing happened. When linear

regression is used in null hypothesis significance testing, the

null hypothesis is a slope of zero. One of the most infamous

shortcomings of null hypothesis significance testing is that, with

enough data, nearly any slope can be significantly different from

zero due simply to noise in the dataset; the most straightforward

way to assess whether signal or noise underlies a significant

p-value is to calculate a measure of effect size such as R2 or

Cohen’s d. Many other metrics, such as the abovementioned

bipartite network metrics, can be calculated without any null

hypothesis—much less a null model. However, a null model can

often be calculated separately: for example, to assess whether

sampling is sufficiently complete to satisfy the assumptions

under which a bipartite network metric was intended to be

calculated.

2.3.2. Relevance to angiosperm folivory

The original study used linear regression to examine the

relationship between mean annual temperature (MAT) and

damage type richness. This approach involves null hypothesis

significance testing, with the null hypothesis being a slope of

zero: no change in damage type richness corresponding to a

given change in MAT. Any lack of a relationship between MAT

and damage type richness in an accurate and complete dataset

would be quite shocking in light of the well-established diversity

of herbivorous insects in tropical rainforests (Lewinsohn and

Roslin, 2008).

In other words, a noisy but discernible positive relationship

should have been the naïve hypothesis for the analysis of MAT

and insect damage richness at pooled Maastrichtian through

Cenozoic assemblages. The most reasonable interpretation of

this result is an inability to reject the naïve hypothesis—which

is inevitable, given the highly incomplete spatial and temporal

coverage of the data that are currently available.

2.4. Underdetermination

Many analyses compare two specific scenarios or

hypotheses, neither of which is necessarily correct. A

finding that is consistent with multiple hypotheses is the

result of an “underdetermined” analysis. Most, if not all,

of the potential pitfalls described in this contribution

can be attributed to some form of underdetermination.

Here I present an instance in which the output of

a regression model was misinterpreted (the authors

incorrectly extrapolated the direction and strength of

an effect from a significant p-value), and I discuss how

this misinterpretation fits within the broadening scope

of underdetermination.

2.4.1. General relevance

“Underdetermination” describes the phenomenon in which

two competing hypotheses or theories have the “same empirical

consequences” and are thus “empirically equivalent” (Kukla,

1996). In other words, when evaluating mutually exclusive

hypotheses X, Y, and Z, the available facts may be consistent

with hypotheses X and Z but not Y. Thus, the difference

between hypotheses X and Z is underdetermined. A study that

compares hypotheses X and Y may overstate the relevance or

explanatory power of hypothesis X by neglecting to consider

hypothesis Z.

In paleontology, facies change across a suspected

extinction boundary is perhaps the archetypal case of

underdetermination. Perturbations to the Earth system

can cause both extinction and facies change. When this occurs,

the difference between extinction or facies change as the

cause of an observed loss of biodiversity, is underdetermined.

Many authors have suggested that facies change partially or

wholly obscures the true magnitude of extinction events,

particularly at local levels and on short timescales (Hallam,

2002; Twitchett, 2006; Chen et al., 2009; Lucas and Tanner,

2015).

A recent contribution (Fletcher, 2021) notes that the

concept of underdetermination also encompasses the fidelity

with which a sample represents the population from which

it was drawn. Consider a study that compares hypotheses J

and K, finding support only for hypothesis K. It may be the

case that hypothesis K holds no more explanatory power than

hypothesis J, and the empirical support for hypothesis K is

simply a result of the structure of the fossil record (Holland,

2017) or of biases in the dataset (Raja et al., 2021). Various

methodological contributions have shown that it is possible

to account for the structure of the fossil record when testing

paleontological hypotheses (Wagner and Marcot, 2013; Woolley

et al., 2022), but paleontology has not yet reached a point where

all studies account for such structure and bias when interpreting

analytical results.
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FIGURE 5

The relationship of damage type (DT) diversity at each assemblage in Currano et al. (2021)’s compilation, rarefied to 300 leaves (y-axis), to mean

annual temperature (left) (A–D) and Shannon’s diversity index for host plants at each assemblage (right) (E–H). The color scheme is the “bright”

qualitative color scheme from Paul Tol’s notes (https://personal.sron.nl/~pault/).

2.4.2. Relevance to angiosperm folivory

When discussing which latitudinal bin shows the strongest

relationship (lowest p-value) between two variables, the original

authors write, “[t]he relationship between MAT [mean annual

temperature] and richness of mining DTs [damage types]...peaks

in the low latitudes.... Our results may indicate that in deep

time, low latitudes were an evolutionary museum and/or cradle

of leaf miner biodiversity” (Currano et al., 2021, pg. 13). The

terms “cradle” and “museum” (Stebbins, 1974) are used to

describe why diversity in the tropics is so high (Jablonski, 1993;

Chown and Gaston, 2000)—i.e., for “low latitudes [to be] an

evolutionary museum and/or cradle of leaf miner biodiversity,”

low-latitude leaf miners (or their damage types) must be

very diverse.

A comparison of low-latitude mine richness with other

parts of the world, however, contradicts the statement in the

original study about low latitudes as a museum or cradle of

leaf miner biodiversity (Figure 5). Leaf mining damage type
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richness is unusually low in the tropics according to the data

compilation (Figure 5). Therefore, this use of the terms “cradle”

and “museum” contradicts their accepted meaning.

When assessing the two competing hypotheses that leaf

mining damage richness is lower at low latitudes, versus

higher at low latitudes, a significance test that yields a p-

value is underdetermined. A significant p-value denotes that

the relationship (slope) between low-latitude leaf mine richness

and mean annual temperature differs from the slope for other

latitudinal bins. This significant p-value does not necessarily

demonstrate that leaf mining damage richness is, on average,

any different at low latitudes than in other latitudinal bins. The

significant p-value most certainly does not indicate that leaf

mining damage richness is greater at low latitudes. Whereas, the

significance test itself is underdetermined, simple scatterplots

are not (Figure 5).

3. Methods

All analyses were conducted in R (R Development Core

Team, 2021).

3.1. Power analysis and propensity score
matching

I conducted power analysis and propensity score matching

with data from Currano et al. (2021)’s supplemental file

“Herbivory metrics by site.csv.” I calculated Cohen’s d using

the cohen.d function in the effsize package (Torchiano,

2020). I calculated propensity scores with a logit model using

the base-R function glm. I then matched mid-southern and

mid-northern assemblages according to their propensity score

with the MatchIt package (Ho et al., 2011) using the “nearest”

method. I conducted this procedure twice. First, I included age,

Shannon’s diversity index, Pielou’s J, rarefied plant richness,

mean annual temperature, and mean annual precipitation as

covariates. With these covariates I was able to include four mid-

southern and 26 mid-northern assemblages. Second, I excluded

mean annual temperature andmean annual precipitation so that

I was able to include all nine mid-southern assemblages in the

analysis, as well as 42 mid-northern assemblages. I calculated

standardized mean differences of each covariate between the

matchedmid-southern andmid-northern assemblages using the

smd function in the MBESS package (Kelley, 2007).

3.2. Specification curve analysis

3.2.1. Data and binning

Specification curve analysis can be used to evaluate the

finding in the original study of increased damage type richness

at mid-southern latitudes. I used the four response variables

from their latitudinal analysis: richness of all damage types, of

specialized damage types, of mine damage types, and of gall

damage types, when rarefied to 300 leaves. I used their two

covariates: MAT, and Shannon’s diversity index for the plant

community at each assemblage. [Shannon’s diversity index is

a measure of richness and evenness in a community; higher

values denotemore diverse communities (Shannon, 1948)]. I ran

specification curve analysis both with and without the outlier

Hindon Maar assemblage (see Appendix for more detail) for all

specifications that include Shannon’s diversity index as a fixed

effect. For the random effect, I used latitudinal bins derived from

a variety of methods: Currano et al. (2021)’s binning scheme;

bins with boundaries at the astronomically notable latitudes of

the Arctic Circle, the Tropic of Cancer, the Tropic of Capricorn,

and the Antarctic Circle, which are suggested by Currano et al.

(2021)’s method which bounds the low-latitude bin near the

Tropics; the ten-degree bins used in various paleontological

studies (Jablonski et al., 2006; Powell et al., 2012, 2015; Mondal

et al., 2019; Wu et al., 2019; Dunne et al., 2021); the twenty-

degree bins used various paleontological studies (Mondal et al.,

2019; Wu et al., 2019; Allen et al., 2020); and binning schemes

generated with k-means, with three to seven bins.

The k-means procedure was implemented as follows. The

base-R function kmeans was used with the default settings.

For each number of bins (3–7), the k-means procedure was

iterated ten times. Each unique binning arrangement was

used in the specification curve analysis. For example, the “5

bins, #2” predictor variable in Figure 10 represents the second

unique binning arrangement that was derived from the k-means

procedure with five bins, and so forth.

This analysis requires data from Seymour Island and

King George Island. I discuss these two assemblages, and the

extraction of relevant data, in the Appendix.

3.2.2. Calculating p-values and e�ect sizes for
mixed-e�ects models

Calculating p-values for mixed effects models

is a notoriously perilous endeavor (Luke, 2017).

The authors of lme4, perhaps the most popular R

package for mixed-effects models, intentionally omitted

from this package the option to calculate p-values

(Bates et al., 2014). However, they did write, “we

have provided a help page to guide users in finding

appropriate methods” for calculating p-values (Bates et al.,

2014).

R2 values, however, are much more straightforward to

calculate for mixed-effects models (Nakagawa and Schielzeth,

2013; Johnson, 2014; Nakagawa et al., 2017). R2 is one of

the most common measures of effect size (Ferguson, 2009),

taking the form of R2GLMM for mixed-effects models. This

measure of effect size also permits amoremeaningful assessment
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of latitudinal patterns. I calculated R2GLMM to generate a

value that I term R21. I then lumped the mid-southern

assemblages in with the mid-northern assemblages, re-ran the

model, and calculated a value that I term R20. This value

represents the effect size for the null hypothesis that the mid-

southern assemblages have similar richnesses of insect damage

to those seen in the mid-northern assemblages. I subtracted

R20 from R21 to calculate an effect size corresponding to the

contention of higher richness of insect damage at mid-southern

latitudes than seen at mid-northern latitudes. An advantage

of using the differences in R2 values to evaluate latitudinal

trends is that this method can accommodate heightened

herbivory at mid-southern latitudes whether this results from

a different slope for the relationship between herbivory and

MAT/Shannon’s diversity index, or a similar slope with a

higher intercept. (As Makin and Orban de Xivry, 2019 wrote,

“Researchers should compare groups directly when they want to

contrast them.” The R2GLMM values calculated here constitute

a direct comparison of the mid-southern and mid-northern

latitudinal bins).

The mixed-effects models were calculated using the same

formulas as the original analysis of this data compilation

(Currano et al., 2021), with the lmer function in the lme4

package (Bates et al., 2014). R2GLMM was calculated with the

r.squaredGLMM function in the MuMIn package (Barton,

2009).

Of course, adding another parameter to a model without

penalizing the R2 value for potential overparameterization will

quite often yield a higher R2 value, due to true latitudinal

differences or simple noise in the data. For this reason, the

significance of an effect size needs to be tested against a null

hypothesis. The authors of specification curve analysis suggest

iteratively, randomly shuffling all values of the response variable

to generate a null distribution of effect sizes; significant effect

sizes are those for which the original effect size lies beyond

the 2.5th to 97.5th percentile of the effect sizes generated

with shuffled values (Simonsohn et al., 2020). I followed this

suggested procedure by randomly shuffling the values of the

response variable and iterating this procedure 1,000 times for

each specification. I then used the 2.5th to 97.5th percentiles

of each distribution to generate the 95% confidence interval

illustrated in Figure 10.

The procedure for calculating R2GLMM involves comparing

the full model to a null model. For this reason, values of R2GLMM

can be negative.

3.3. Bipartite networks

I used null models to evaluate the five bipartite network

metrics mentioned by the original study regarding temporal

and latitudinal trends: connectance, niche overlap (for plants),

the C-score (for plants), interaction evenness, and H2
′. Data

were downloaded from https://github.com/anshuman21111/

resampling-fossil-leaves/tree/main/Data_processed_localities.

All analyses were performed with the bipartite package

(Dormann et al., 2008). For each assemblage, I repeated the

following procedure 1,000 times. I first subsampled data from

each assemblage down to 300 leaves, to reproduce the original

methods (“empirical subsampled dataset”). I generated 1,000

null datasets using the nullmodel function with the r2d

option. I then calculated the above network metrics for the

empirical subsampled dataset and the null datasets. I calculated

a Z-score following the procedure outlined by Dormann et al.

(2008). I converted Z-scores to p-values using the pnorm

function in R with the option lower.tail=FALSE. For the

Castle Rock assemblage, the dataset was often too sparse for

the calculation of bipartite network metrics after it had been

subsampled down to 300 leaves. For this reason, Castle Rock is

not included in Figure 11.

4. Results and discussion

4.1. Propensity score matching

When a dataset is not complete enough to explicitly include

all relevant predictors in a regression analysis, propensity

score matching can be used to avoid the pitfalls described

by Simpson’s paradox. When a dataset is too incomplete for

a multiple regression analysis or propensity score matching,

further analyses are inadvisable. Propensity score matching can

be used to directly quantify whether the data compilation is

sufficiently complete for the analyses presented.

4.1.1. General relevance

Simpson’s paradox highlights the need to account for all

relevant covariates in all analyses. This can be achieved with

various forms of multiple regression or mixed-effects models

when sufficient data are available. A randomized experiment

with a control group and a treatment group can be designed

so that values for relevant covariates are as similar as possible

among the two groups. When experiments are impossible,

as is the case for studies that examine changes in deep

time, propensity score matching can be used to generate a

balanced distribution of relevant covariates, as would be seen in

experimental data.

With propensity score matching, a logit or probit model

is used to estimate the relationship between each covariate

and the probability that an observation (a patient in the case

of medical science, or an assemblage or taxon in the case of

paleontology) belongs to the control or treatment group. (In

paleontology, analogs for the control and treatment group can

be assemblages in lacustrine vs. fluvial settings, genera that

did or did not go extinct across a geologic boundary, and so

forth). This model can then be used to assign each subject
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with a probability of belonging to the treatment group: the

“propensity score.” Subjects in the control and treatment groups

are then matched according to the similarity of their propensity

scores. The matching process nearly always involves discarding

unmatched subjects (subsampling) or duplicating some data

points (resampling) so that all subjects retained in the final

dataset are matched.

Two simple methods are typically used to ensure that the

matching process is sufficient to eliminate potential bias caused

by the covariates. First, the values for each covariate can be

plotted against each subject’s propensity score for the control

and treatment group. The similarity of the lines of best fit

for the two groups indicates the efficacy of the procedure.

Second is a comparison of the standardized mean difference for

the two groups. When the matching process is successful, the

standardized mean difference is below 0.1.

4.1.2. Relevance to angiosperm folivory

If the data compilation included assemblages spanning

all possible combinations of mean annual temperature, mean

annual precipitation, geologic age, host plant richness, and host

plant evenness within both the mid-southern and mid-northern

latitudinal bins, a regression or mixed-effects model would be

sufficient to disentangle the influence of latitude from these

covariates. But in actuality, the assemblages in the mid-southern

latitudinal bin span only a fraction of the range of mean annual

temperature, mean annual precipitation, geologic age, host plant

richness, and host plant evenness seen in the mid-northern

latitudinal bin (Figures 6A–F).

Simple visual inspection shows that the matched mid-

southern and mid-northern assemblages often have very

different propensity scores (Figures 6G,H). When covariate

values are plotted against propensity scores, the lines of best fit

usually do not overlap (Figure 7). Standardizedmean differences

confirm these discrepancies, yielding values above the target

of 0.1 in eight out of ten cases (Figure 7). The lesson from

this exercise is simple: the assemblages in the mid-southern

and mid-northern latitudinal bin are so different in terms

of age, Shannon’s diversity index, Pielou’s J, plant richness,

temperature, and precipitation, that it is not possible to eliminate

potential bias from these covariates when comparing latitudinal

trends. Even if we set aside the dubiousness of identifying

latitudinal trends for the entire Maastrichtian–Cenozoic with

only nine mid-southern assemblages, the potential confounding

variables are too discrepant for any findings about latitude to

be convincing.

4.2. Power analysis

Currano et al. (2021) reported heightened richness

of insect damage types in their mid-southern latitudinal

bin, with a very large effect size. However, at small sample

sizes, large effect sizes are a hallmark of spurious, false-

positive results. This issue can be addressed with power

analysis, which quantifies the probability of correctly

rejecting the null hypothesis for a given effect size and

sample size.

4.2.1. General relevance

According to Shrout and Rodgers (2018), “One historically

important QRP [questionable research practice] is to carry

out studies with inadequate statistical power to test interesting

effects.” Power analysis is a common practice in many

fields. Before collecting any data, researchers can use power

analysis to estimate the necessary sample size to correctly

reject their null hypothesis. The target sample size will

depend on the effect size—a metric for the magnitude

of the signal relative to the variance in the data. Effect

size is often quantified with Cohen’s d (Cohen, 1977).

Cohen’s d has a minimum value of 0 and is typically no

larger than 1, with 0.2 signifying a small effect size, 0.5

signifying an intermediate effect size, and 0.8 signifying a large

effect size.

The practice of conducting a power analysis before collecting

data is plagued by the difficulty of estimating the relevant effect

size in advance (Shrout and Rodgers, 2018). This problem will

surely afflict paleontological studies that subsample existing

collections. For example, if 50,000 Cretaceous and 50,000

Paleogene bivalves from the same basin are available for

a study of changes in the frequency of drilling predation

across the Cretaceous/Paleogene boundary, power analysis

can be used to estimate the number of bivalves from each

period that should be examined. If the difference in drilling

predation from the Cretaceous to the Paleogene is large (d

= 0.8), a dataset with 170 shells from each period will have

a statistical power of 100%. However, if the difference in

drilling predation from the Cretaceous to the Paleogene is

rather small (d = 0.2), the statistical power of this sampling

regime will be only 45%—i.e., an insignificant result due to

insufficient sampling is a likely outcome. (All values of d

discussed here assume a significance level of α = 0.05.

Statistical power is reported as either a proportion ranging

from 0 to 1 or a percentage ranging form 0 to 100%. Here, I

report power as a percentage to make it easier to distinguish

from d).

Small sample sizes are common in behavioral and

biomedical sciences, due to the difficulty of recruiting human

subjects, and in paleontology, due to the incompleteness of

the fossil record among other factors. Power analysis can be

conducted after data are collected as a “sanity check” to evaluate

whether the data are sufficient to detect a signal with a realistic

effect size. Whereas nearly all paleontological datasets are

incomplete, power analysis provides an opportunity to ascertain
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FIGURE 6

The distribution of various covariates for Currano et al. (2021)’s mid-northern and mid-southern latitudinal bins (A–F), and the results of

propensity score matching for these bins (G,H).

which biological questions can and cannot be responsibly

addressed with a given dataset.

Power analysis is also a helpful exercise in cases where

biases in a dataset, rather than the biological signal of interest,

may underlie any significant results. Methods such as linear

regression and mixed-effects models assume by default that

data are random and representative. In paleontology, this

is rarely the case. Individual fossil assemblages are selected

for study, non-randomly, by authors who are interested in

specific phenomena such as refugia from the environmental

crisis at the end-Cretaceous. When many such studies

are brought together into a data compilation, the hope

is that the non-random motivations that underlie data

collection will offset each other, as was seen with errors in

paleobiological databases (Adrain and Westrop, 2000), such

that the relevant data are quasirandom and representative

in the aggregate. However, the preservation of fossils is not

temporally or geographically random (Holland, 2017) and

major geographic biases exist in paleontological datasets (Raja

et al., 2021). An analysis of nearly 400,000 occurrences of

marine animal fossils found that the geographic structure of

the fossil record and biases within the scientific community

obscure biological phenomena of interest (Close et al.,

2020).

Frontiers in Ecology andEvolution 12 frontiersin.org

https://doi.org/10.3389/fevo.2022.951547
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Schachat 10.3389/fevo.2022.951547

FIGURE 7

The relationship between propensity score and various covariates for Currano et al. (2021)’s mid-northern and mid-southern latitudinal bins with

loess smoothed lines of best fit. The standardized mean di�erence (smd) among the two latitudinal bins is listed for each comparison.

Although the geographical nonrandomness in aggregated

paleontological data may not constitute “noise” in a strict sense,

it most certainly does not constitute the signal of interest in

a typical paleontological study. Thus, naïve and unquestioning

acceptance of findings generated with a paleontological data

compilation risks “over-interpretation of noise” (Munafò et al.,

2017).

In summary, power analysis is most relevant to moderate

effect sizes in moderately complete datasets, and to large effect

sizes in small datasets. To detect a true signal of interest with

a small-to-moderate effect size, more data may be needed than

are typically collected. Conversely, when a large effect size is

observed in a small dataset, this is often an artifact of bias

or statistical noise rather than a true reflection of the signal

of interest.

4.2.2. Relevance to angiosperm folivory

Currano et al. (2021) state, “the mid-S [mid-southern;

60◦S–23◦27’S] latitudes stand out as a hotspot for insect

damage diversity, particularly when compared with the mid-N

[mid-northern; 23◦27’N–60◦N] and high latitudes.” The data

compilation that underlies this statement includes 42 fossil floras

from mid-northern latitudes and nine floras from mid-southern

latitudes. Power analysis shows that if the effect size (d) of the

difference in herbivory among mid-northern and mid-southern

latitudes is 0.5—a moderate effect size, according to Cohen—the

power to correctly reject the null hypothesis is merely 27%. At

the observed sample sizes, dmust reach 0.73 for statistical power

to reach 50%.

Cohen’s d for the difference in the richness of herbivory

among assemblages of the mid-southern and mid-northern
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latitudinal bins in the data compilation is 1.49 (95% CI: 0.70–

2.29): a startlingly large effect size. And this is where power

analysis, and the calculation of Cohen’s d, is perhaps most useful

to paleontologists. With the small sample sizes often seen in

paleontological studies, an effect size must be rather large to

be detectable—perhaps so large that it is better attributed to a

sampling artifact than to the biological phenomenon of interest.

Because the power to correctly reject a null hypothesis for the

data compilation is only 27% with a moderate effect size, there is

good reason to suspect that any apparent significant relationship

is a sampling artifact.

In the psychology literature, Vul et al. (2009) note that

the reliability of a measure limits the detectable strength of

a correlation. In other words, any correlation that may exist

between high richness of insect herbivory on fossil leaves

and location in the mid-southern (vs. mid-northern) latitudes

will be obscured, to a certain extent, by other biological

differences. These may include latitudinal differences within

each latitudinal bin, such as differences in richness at 11◦N vs.

19◦N within a bin that spans 10◦N–20◦N; varying diversities of

the plant communities in question; differences in temperature,

precipitation, and the interaction of these two climatic variables;

differences in soil type; the age of each fossil assemblage, and

the insect guilds that had and had not yet diversified; differences

in the life histories of the plant taxa in each assemblage; and

so forth. Some of these factors, such as latitudinal differences

within each bin, can be accounted for whenmodeling differences

in the richness of insect herbivory among latitudinal bins.

Other factors, such as the maximum annual temperature for

each plant community, are uncertain and thus decrease the

reliability of observed differences among latitudinal bins. The

many unconstrained possible covariates with the potential to

obscure differences among latitudinal bins suggest that an effect

size of 1.49 may be unachievable for this analysis in the absence

of a spurious correlation.

How, then, to reconcile the negligible-to-moderate effect

size that one would expect due to the many biological and

environmental differences that cannot be accounted for in the

data compilation, with the very large effect size that the authors

found? The first published study in the mid-southern latitudinal

bin focused exclusively on the early Eocene of Patagonia, and

suggested that Patagonia may have provided refugia from the

environmental stress that swept much of the world during

the end-Cretaceous event (Wilf et al., 2005). A subsequent

study, from the same lab group, focused on the Paleocene of

Patagonia: a time and place where the refugium theory could

be more directly evaluated (Donovan et al., 2018). Indeed, the

study of Donovan et al. (2018) supports the refugia theory.

These two studies (Wilf et al., 2005; Donovan et al., 2018)

account for eight of the nine mid-southern-latitude assemblages

in the data compilation. The inclusion of assemblages that

have been identified as key to resolving outstanding biological

questions of major interest, within an analysis that is best

conducted with randomly selected assemblages, is one way

to produce a large but spurious effect that is independent of

the biological phenomenon in question (latitudinal differences

in the richness of insect herbivory throughout the entire

Maastrichtian–Cenozoic).

In light of the abovementioned findings of geographic

biases in paleontological data (Close et al., 2020; Raja et al.,

2021), extreme caution is warranted when analyzing small data

compilations such as that described here. If the authors were

interested in latitudinal patterns only in the wake of the end-

Cretaceous event, their analysis serves no purpose because

the conclusion about Patagonia as a refugium from the end-

Cretaceous bolide impact was already noted by the workers who

collected the original data (Wilf et al., 2005; Donovan et al.,

2018). However, the authors intended for the conclusions of

their latitudinal analyses to hold for the entire Maastrichtian–

Cenozoic, as demonstrated by statements given without any

caveats such as “the mid southern hemisphere (60◦S to 23◦27’S)

stands out as having frequent and diverse damage” and “themid-

S latitudes stand out as a hotspot for insect damage diversity.”

The identification of ostensible latitudinal trends during the past

70 Myr from a compilation that includes only one mid-southern

assemblage from the past 50 Myr requires a tremendous leap

of faith.

Currano et al. (2021)’s latitudinal analysis illustrates why

moderate-to-large effect sizes should be scrutinized for potential

geographic, temporal, and other biases before being interpreted

at face value—particularly when sample sizes are small, as this

can increase the prevalence of false-positive results. As Makin

and Orban de Xivry (2019) wrote, “With small sample sizes,

the effect size of these false positives is large, giving rise to the

significance fallacy: ‘If the effect size is that big with a small

sample, it can only be true.”’

4.3. Specification curve analysis

Currano et al. (2021) found a strong effect of latitude after

drawing a unique series of boundaries among latitudinal bins.

This raises the question of whether a similarly strong effect

would be observed with a more conventional binning scheme.

This issue can be addressed with specification curve analysis,

which quantifies the extent to which researchers’ arbitrary

decisions underlie analytical results.

4.3.1. General relevance

For many years, researchers were encouraged to conduct

only one analysis per research question. Consider, for example,

an analysis that examines temporal trends in how average bivalve

body size has changed from one time interval to the next. This

analysis requires the researcher to choose a temporal binning

scheme. In the example illustrated here (Figure 8), bivalve
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FIGURE 8

A cartoon example of numerous, equally justifiable schemes for temporal binning of paleontological data. Each dot represents a fossil

assemblage and is color-coded by the number of fossils measured therein: darker dots denote more fossils measured (a higher sample size). a–i

were binned with k-means: a–c have six bins, d–f have five, and g–i have four. j–l were binned in 20-Myr increments. m–o were binned in

10-Myr increments. p–r were binned by geologic epoch. Binning schemes a,d,g,j,m, and p include all assemblages. Binning schemes b,e,h,k,n,

and q exclude the nine assemblages with the lowest sample sizes. Binning schemes c,f,i,l,o, and r exclude the 18 assemblages with the lowest

sample sizes.

body size has been measured from 50 fossil assemblages over

the last 100 Myr. The number of specimens measured varies

markedly among assemblages. The assemblages can be binned

using a clustering algorithm such as k-means (Figure 8a–i),

using 20-Myr bins (Figure 8j–l), using 10-Myr bins (Figure 8m–

o), or according to geologic epochs (Figure 8p–r). All fossil

assemblages can be included in the analysis (Figure 8a,d,g,j,m,p),

or the assemblages with low numbers of specimens measured

can be excluded from the analysis (Figure 8b,e,h,k,n,q), or the

assemblages with low-to-intermediate numbers of specimens

measured can be excluded from the analysis (Figure 8c,f,i,l,o,r).

These 18 temporal binning schemes seem more or less

equally justifiable.

Until recently, the prevailing wisdom was that only one

of these 18 binning schemes should be chosen. If none seem

especially appropriate, one should be chosen more or less at

random. The reason to perform only one analysis per research

question—i.e., to use only one temporal binning scheme—is to

avoid “cherry-picking.” The worry is that, if the analysis is run

with all 18 binning schemes and seventeen of these do not yield

a statistically significant result, the one scheme that did yield a

significant result quite possibly did so due to random chance.

The researchers who conducted the analyses would have an

incentive to cherry-pick the significant result as the only result

worth reporting.

When a priori decisions are made to avoid the possibility

of cherry-picking, the optimal choices are rarely clear. In the

above example, it is not clear which temporal binning scheme

should be used. Fortunately, a new statistical tool obviates the

need to make these a priori decisions. “Specification curve

analysis” addresses the problem of arbitrary statistical choices

by re-analyzing data under all justifiable specifications—i.e.,

all justifiable combinations of predictor variables, response

variables, covariates, and criteria for the inclusion of outliers—to

determine whether significant results are robust to slight changes

in these specifications (Simonsohn et al., 2020).

Specification curve analysis allows researchers to evaluate

the robustness of their results to slight changes in specifications;

all specifications are considered simultaneously. A pattern

in the data is well-supported if, for example, 195 of 200

specifications yield significant results. On the other hand, if only

15 of 200 specifications yield significant results, the finding is

not well-supported.

Of note, specification curve analysis addresses a different

issue than corrections for multiple comparisons such as the

Bonferroni correction. Corrections formultiple comparisons are

intended to be used on independent tests, each of which uses

different data. Specification curve analysis, in contrast, is to be

used on tests that are not independent and that use similar or

identical data.
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FIGURE 9

A cautionary tale about binning herbivory data: a comparison of

the amount of leaf area lost to insect herbivory at tropical

northern and tropical southern latitudes in modern ecosystems,

from the compilation of Zhang et al. (2016). The perceived

di�erence in herbivory at tropical northern vs. tropical southern

latitudes depends greatly on whether bins extend five (a) or ten

(b) degrees from the equator.

4.3.2. Relevance to angiosperm folivory

A brief glance at a far more complete data compilation than

that analyzed here, pertaining to insect herbivory in modern

ecosystems, highlights the sensitivity of latitudinal patterns to

the binning method used. The compilation of Zhang et al.

(2016) contains measurements of the proportion of leaf area

removed by insect herbivores at 728 modern sites, with an

average of 2.6 plant species per site. When comparing the

proportion of herbivorized leaf area per species between a

tropical-northern latitudinal bin from 0 to 5◦N and a tropical-

southern bin from 0 to 5◦S, the difference is stark: an average

of 6.06% of leaf area is herbivorized in the tropical-northern

bin and an average of 12.95% of leaf area is herbivorized

in the tropical-southern bin (Figure 9a). Cohen’s d for this

comparison is quite large: 1.02 (95% CI: 0.68–1.36). However,

if we expand the latitudinal bins slightly so that the tropical-

northern bin ranges from 0 to 10◦N and the tropical-southern

bin ranges from 0 to 10◦S, the difference between hemispheres

all but disappears. An average of 10.08% of leaf area is

herbivorized in the tropical-northern bin and an average of

10.10% of leaf area is herbivorized in the tropical-southern bin

(Figure 9b). Cohen’s d for this comparison is negligible: 0.00

(95% CI: –0.22 to 0.22).

The task of binning fossil assemblages by latitude highlights

the utility of specification curve analysis. There are many

different ways to bin plant assemblages: with ten-degree bins,

from 0◦ to 10◦S and so forth; with twenty-degree bins, from

10◦N to 10◦S and so forth; with a clustering algorithm such as

k-means that assigns each assemblage to one of a predetermined

number of bins in a way that minimizes within-bin variance

and maximizes between-bin variance; or by drawing boundaries

between bins at often-discussed latitudes, such as the Tropic of

Capricorn (23◦26’S) and the Antarctic Circle (66◦34’S), that are

distinguished by their astronomical—rather than biological—

significance. These binning methods may not be equally

ecologically and statistically defensible, but they each at least

possess a veneer of impartiality. Returning to the analysis under

re-study, their mid-southern bin stretches from 60◦S to 23◦27’S.

60◦ is a very round number of no astronomical significance,

whereas 23◦27’ holds great astronomical significance but is

certainly not a round number. Currano et al. (2021) do not

explain why they chose this unique binning method, nor do they

provide any citations to support its use.

Specification curve analysis shows that merely 32 of

the 204 specifications, or 16%, find a difference in effect

sizes that could be consistent with significantly higher

richness of insect damage at mid-southern latitudes than at

mid-northern latitudes (Figure 10). In contrast, 93 of the

specifications, or 46%, yield an effect size below zero. (The

possibility of a negative effect size for mixed-effects models

is discussed in the Appendix. An effect size below zero

indicates that the relationship between insect damage richness

and either Shannon’s diversity index or MAT is so similar

at mid-southern and mid-northern latitudes that treating

these two latitudinal bins as separate categories constitutes

model overparameterization).
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FIGURE 10

Specification curve analysis of the ostensible heightened richness of insect damage types at mid-southern latitudes. The dark gray rectangles in

the upper panel denote the 95% confidence interval for each specification. Blue squares denote specifications for which the e�ect size is greater

than predicted by the 95% confidence interval. Red circles denote specifications for which the e�ect size is less than zero. Damage type (DT)

richness was estimated after rarefying each assemblage to 300 leaves. The method for calculating e�ect size is explained in the Appendix.

For all binning schemes other than that of Currano et al.

(2021), between one and three comparisons (out of twelve) yield

an effect size that could be consistent with significantly higher

richness of insect damage at mid-southern latitudes (Figure 10).

For the binning scheme used by Currano et al. (2021), this

number increases to four.

In other words, the previously reported finding of

meaningfully higher richness of insect damage at mid-southern

latitudes is not supported by the majority of specifications.

Evidence against this claim, in the form of an effect size below

zero, is approximately three times as prevalent as potential

evidence in its favor.

4.4. Null models of bipartite network
metrics

As discussed above (in the “Cherry-picking” section),

Currano et al. (2021) reported spatial and temporal trends

in herbivore specialization based upon the results of bipartite
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FIGURE 11

The results of null model comparisons for the bipartite network metrics that underlie (Currano et al., 2021)’s conclusions about trends through

time and across latitudes.

network analysis. However, bipartite network metrics are

very sensitive to sampling incompleteness (Blüthgen, 2010).

This issue can be addressed with null models, which are

recommended by ecologists at the forefront of bipartite network

analysis (Dormann et al., 2008).

4.4.1. General relevance

Ecologists have typically used two methods for determining

whether sampling is sufficient: subsampling and null models

(Blüthgen et al., 2008; Dormann et al., 2009; Fründ et al.,

2016). Null models can be used to quantify support for each
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bipartite networkmetric; a different null hypothesis corresponds

to each bipartite network metric. With null models, the values

in an empirical dataset are shuffled in a process that is repeated

many times, and bipartite network metrics are calculated for

each shuffled dataset. The distribution of these values (their

mean and standard deviation) are then compared to the

value calculated from the empirical dataset. When the latter

is sufficiently different from the former, the null hypothesis

is rejected. Failure to reject the null hypothesis can signify

that the ecological pattern in question (e.g., specialization)

is absent, or that sampling is insufficient to detect it. Null

models of bipartite network metrics are extremely common

in neontological analyses of trophic interactions among plants

and herbivorous insects, and they provide a safeguard against

over-interpretation of incomplete datasets.

4.4.2. Relevance to angiosperm folivory

The original authors implored all of their colleagues to only

conduct quantitative analyses of fossil assemblages in which at

least 1,000 leaves had been censused (Currano et al., 2021, page

4), but themselves conducted analyses of assemblages with as

few as 300 leaves. Despite analyzing assemblages with only 30%

as many leaves as they state everyone else needs, the authors

presented no sensitivity analyses of whether the examined

assemblages with barely 300 leaves—or those with over 1,000

leaves, for that matter—were sufficiently well-sampled to meet

the assumptions of the various analyses presented.

As a first pass at evaluating whether the threshold of 300

leaves per assemblage is sufficient to reliably estimate bipartite

network metrics, I calculated Z-scores using null models. I

repeated this process for each of 1,000 subsampling iterations

for the five bipartite network metrics that the authors discussed

(connectance, niche overlap for plants, C-score for plants,

interaction evenness, and H2
′), for each assemblage examined

in the analysis under re-study. The details of this procedure are

outlined in the Appendix.

The conclusion of decreased specialization during the

Paleocene, as compared to the Cretaceous and Eocene, is

based upon the bipartite network metrics of connectance, niche

overlap (for plants), and the C-score (for plants). However,

for connectance, an average of only 36% of iterations yield a

significant p-value for Cretaceous and Eocene assemblages—

which is barely higher than the average of 32% for Paleocene

assemblages (Figure 11). For niche overlap for plants, an

average of only 29% of iterations yield a significant p-value for

Cretaceous and Eocene assemblages: not much higher than the

average of 24% for Paleocene assemblages (Figure 11). And for

the C-score for plants, an average of only 16% of iterations yield

a significant p-value for Cretaceous and Eocene assemblages, not

much higher than the average of 12% for Paleocene assemblages

(Figure 11).

Along similar lines, the conclusion about increased

specialization at mid-southern latitudes is based upon the

bipartite network metrics of interaction evenness and H2
′. For

interaction evenness, an average of only 30% of iterations yield

a significant p-value for mid-southern latitude assemblages

(Figure 11). For H2
′, an average of only 29% of iterations yield

a significant p-value for mid-southern latitude assemblages

(Figure 11). For all other latitudinal bins, these average values

are much higher, at 47%! The use of null models completely

upends the conclusions that the original authors drew from

these bipartite network metrics.

In other words, cherry picking—the selective use of bipartite

network metrics, rather than direct richness estimates, to

quantify changes in specialization—is not the only problem with

the reported conclusions about specialized herbivory through

time and across latitude. Null models show that the cherry-

picked metrics very weakly support the ostensibly heightened

specialization of herbivory during the Cretaceous and Eocene,

and do not support the ostensibly heightened specialization of

herbivory at mid-southern latitudes.
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Appendix

The outlier Hindon Maar assemblage

Currano et al. (2021) found the Hindon Maar assemblage

to be an outlier for damage type diversity. They excluded

Hindon Maar from their boxplots, Tukey tests, and nonmetric

multidimensional scaling plot, but included this assemblage in

their latitudinal analysis. They provided no explanation of why

they included Hindon Maar in some procedures but not others.

There is no MAT estimate for Hindon Maar, so this outlier

cannot be included in the specifications that use MAT as a fixed

effect.

Data from Seymour Island and King
George Island

Another irregularity in Currano et al. (2021)’s approach is

the exclusion of the two “high-latitude” southern assemblages

(McDonald et al., 2007) from the latitudinal analysis. (These

two assemblages, Seymour Island and King George Island, occur

between 60◦S and 66◦34’S, and thus are assigned to their “high-

south” latitudinal bin but would be assigned to the mid-southern

bin if their latitudinal boundaries more consistently followed

latitudes of astronomical significance).

The authors justify the exclusion of these two assemblages

from their latitudinal analysis by writing, “high S sites were

not included due to insufficient sample sizes.” This statement

is vague, but neither interpretation withstands scrutiny. This

statement cannot be interpreted to mean that the high-south

assemblages were excluded due to insufficient sampling of each

assemblage, because over 1,000 leaves were examined from

each island; the authors included Hanna Basin Level C in their

analysis even though it falls two leaves short of their stated 300-

leaf threshold for inclusion. However, the other interpretation

of their justification does not make much more sense. If they

excluded the high-southern latitudinal bin from the latitudinal

analysis because it contains merely two assemblages, why did

they consider two assemblages to be sufficient to speculate on the

importance of the tropics as a museum or cradle of leaf mining

diversity as discussed above?

Because the authors did not report damage type richness for

Seymour Island and King George Island in their supplemental

data, I had to extract these data myself fromMcDonald (2009). I

downloaded all of the electronic supplemental files of McDonald

(2009). from the e-thesis online service hosted by the British

Library, but these files did not contain any paleontological

data. McDonald (2009) did not use the Damage Type system

for classifying insect damage, and instead classified damage

into “trace morphotypes.” These trace morphotypes appear to

correspond roughly to damage types, and were treated here as

analogs of damage types).

Damage type data for Seymour Island were extracted from

McDonald (2009)’s Table 7.4 on page 190–1. Damage type data

for King George Island were extracted from Table 7.1 on page

181, Table 7.2 on page 184, and Table 7.3 on page 188. These

data were cross-referenced with Table 3.3 on page 41–2, Table

3.4 on page 46–8, Table 3.5 on page 56–7, and Table 3.6 on page

61. There were only three inconsistencies among Tables 3.3–6

and Tables 7.1–4. Trace morphotype K1.4 is said to occur on two

specimens in Table 3.3 and on one specimen in Table 7.1. Trace

morphotype K2.17 is said to occur on seven specimens in Table

3.4, and on eight specimens in Table 7.2. Trace morphotype K3.4

is said to occur on five specimens in Table 3.5, but this line is

blank in Table 7.3. I treated trace morphotype K3.4 as occurring

on five specimens. To split the difference for trace morphotypes

K1.4 and K2.17, I treated trace morphotype K1.4 as occurring

on two specimens and trace morphotype K2.17 as occurring on

seven specimens.

Currano et al. (2021) did not provide a definition of

“specialized” damage types, complicating the task of replicating

their methods. To estimate which trace morphotypes from

King George Island and Seymour Island would be considered

“specialized” under their unexplained scoring scheme, I treated

all galling and mining trace morphotypes as specialized. I also

treated as specialized all other trace morphotypes that were

noted on three or more specimens, if all such specimens belong

to the same taxonomic family or the same plant morphotype

(e.g., “Unknown 6”).

MAT estimates for Seymour Island and King George Island

were updated following Cantrill and Poole (2012) and Hunt and

Poole (2003), respectively.

To estimate Shannon’s diversity index for Seymour Island

and King George Island, I used the data from McDonald

(2009)’s Figure 3.19 and estimated the abundances of the

additional host plants, not included in this figure, by

assuming that all additional host plants at King George

Island are less abundant than Morphotype 2.18 and that all

additional host plants at Seymour Island are less abundant

than Morphotype 7. For each island, I simulated Shannon’s

diversity index for a scenario in which the host plants not

illustrated in Figure 3.19 have abundances that decreased

linearly by two toward a value of 1. For example: 39, 37,

35...5, 3, 1. Occurrences of the least abundant host plants

were subtracted from the vector until the total number

of specimens matched the number reported by McDonald

(2009).
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