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Editorial on the Research Topic

Ecophysiological analysis of vulnerability to climate warming

in ectotherms

Identifying the species most vulnerable to extinction due to climate warming is the

first step in their conservation and mitigating the impacts of climate change (Riddell

et al., 2021; Song et al., 2021). However, organismal vulnerability to climate warming

depends on the sensitivity of the organism to environmental changes, its exposure to

those changes, its ability to recover from them, and its potential to adapt to the changes

(Huey et al., 2012; van Heerwaarden and Sgro, 2021). The complexity of organismal

response to temperature change makes predicting the effects of climate warming a

great challenge for ecologists. Developing a deeper knowledge of the vulnerability of

ectotherms to climate warming enhances our understanding of extinction processes,

thereby aiding conservation efforts through the implementation of better policies and

management strategies to prevent the extinction of remaining populations (Dayananda

et al., 2016). The main objective of this interdisciplinary Research Topic is to collate

research on how ectotherms respond to climate warming at various levels. This topic

comprises investigations conducted at multiple research scales from meta-analyses to

molecular determination, and focuses on insects, amphibians, and reptiles, combining

some novel ecophysiological evidence with the considerations for evaluating the

vulnerabilities of ectotherms to climate change.

Changes in environmental temperature can alter the body temperature

of ectotherms and thus their physiological performance (Huey et al., 2012;

Seebacher et al., 2015). Ectotherms have been found to shift their geographic

range to higher latitudes or altitudes in response to climate change (Jacobsen,

2020). Body temperatures above the thermal optimum create physiological
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stress, reduced performance, and increased disease

susceptibility, ultimately leading to population declines

and extinction (Buckley et al., 2021).

The magnitude of the effects of climate warming on

ectotherms depends on their physiological and/or behavioral

plasticity (Paaijmans et al., 2013; Dayananda et al., 2016) as

well as their evolutionary adaptations, which enhance the fitness

of an organism and whose current beneficial characteristics

reflect the selective advantage of the trait at the time of its

origin (Hochachka and Somero, 2002). Most ectotherms can

precisely control their body temperature via behavioral and

postural adjustments; thus, plasticity is a significant factor in

ectotherms’ response to fluctuating environmental conditions

(Huey et al., 2003). Phenotypic plasticity can occur faster than

evolutionary genetic changes in ectotherms and is therefore

likely to directly influence their responses to climate change

(Chevin et al., 2010). However, if plasticity is inadequate in

response to climate warming, or if the adaptive change is too

slow, ectotherms face a greater risk of extinction (Lafuente and

Beldade, 2019; Logan and Cox, 2020). Furthermore, species with

a low capacity for plasticity are expected to be vulnerable to

climate warming (Rohr et al., 2018; Norin and Metcalfe, 2019),

particularly tropical ectotherms (Morley et al., 2019) which

already live close to their physiological thermal optima (Deutsch

et al., 2008).

The effects of increasing temperature on ectotherms

occur on multiple dimensions, across life-history stages, and

temporal and spatial clues (Dayananda et al., 2016). Incubation

temperature strongly influences the development of ectotherms

with important consequences for hatchling fitness (Noble

et al., 2018). In oviparous species, the thermal environment

for embryonic development depends on the location and

depth of the nest, however, in viviparous species, the thermal

environment for embryonic development depends on the

mother’s body temperature (Zhang et al., 2018). Incubation

experiments suggest that incubation temperature affects the

incubation length, embryo survival, size, shape, behavior,

sex, and performance of hatchlings (Angilletta, 2009). Thus,

assessing the oviparous embryonic responses to ongoing climate

warming and understanding their effects will provide crucial

information that can aid in their conservation (Mitchell et al.,

2016; Sun et al., 2021).

The oviparous incubation process was interactively

modulated by the warming and precipitation. For example, high

soil temperature and low soil moisture had a significant negative

effect on egg development, survival, and egg hatching of three

dominant grasshopper species (Dasyhippus barbipes, Oedaleus

asiaticus, and Chorthippus fallax) in the Inner Mongolian

grasslands (Wu et al.).

Ectotherms are sensitive to seasonal variations in

environmental temperature (Taylor et al., 2020; Liu et al.,

2022). In particular, tropical ectotherms already live in

temperatures close to their optimum physiological levels

(Deutsch et al., 2008). Body temperatures higher than the

optimum create physiological stress, reduce performance, and

increase disease susceptibility, ultimately leading to population

declines and extinction (Huey et al., 2010; Sinervo et al., 2010).

For instance, reptiles in Sri Lanka are highly vulnerable to

extinction due to the severity of anthropogenic disturbances,

however, no research has been conducted thus far to assess

how they are affected by climate warming (Dayananda et al.).

Furthermore, climate change could have strong potential effects

on amphibians in China. A recent analysis found that 54 species

are moderately vulnerable, including Echinotriton chinhaiensis

and Hynobius chinensis, and 14 species are highly vulnerable,

including Ichthyophis kohtaoensis and Zhangixalus prasinatus

(Zhao et al.).

Climate warming has increased the frequency, duration, and

intensity of heat waves during summer, causing greater impacts

on species than increased average temperatures (Breitenbach

et al., 2020). The physiological and biochemical responses

of ectotherms to heat waves remain poorly understood.

However, a recent study on the oxidant physiology of

ectotherms after exposure to a simulated heat wave found

heat waves did not lead to oxidative damage in ectotherms

with low metabolic rates. For example, Mauremys mutica (Li

et al.) and Nanorana pleskei (He et al.) did not suffer any

oxidative damage after exposure to heat waves. However, the

physiological responses to heat waves differed between the

two species.

Lizards from medium and high latitudes could respond

to thermal variation through multiple levels of metabolic

acclimation, whereas their congeners from low latitudes lacked

any level of modification and are thus more vulnerable to

global warming (Sun et al., 2022). Embryonic and hatchling

development can be improved by moderate warming in Lacerta

agilis from the low-latitude margin population of a high-altitude

species (Cui et al.), and moderate warming benefits hatchling

fitness in the cold-climate lizard, Takydromus amurensis (Liu

et al., 2022). In tropical regions, species with limited dispersal

abilities, small geographic ranges, and restrictions to high

altitudes are particularly vulnerable to extinction (Huey et al.,

2012). However, the thermal biology traits of a tropical lizard

(Takydromus kuehnei) are not severely threatened by ongoing

climate change, highlighting the importance of thermal biology

traits in evaluating the vulnerability of a species to climate

change (Tao et al.). Furthermore, a study on Asiatic toads

(Bufo gargarizans) from two altitudinal zones found that low-

altitude toads might enhance their hypothermic reaction if they

shift their ranges to higher altitudes to survive the warming

climate (Yao et al.). Two low-altitude lizards (the oviparous

Phrynocephalus axillaris and the viviparous P. forsythii) may

live at high altitudes by reducing behavioral activity and

increasing energy efficiency (Qi et al.). Taken together, more

studies are requited to understand how the species with limited

dispersal abilities, small geographic ranges, and restriction to
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high altitudes shift their phenotypic plasticity to adapt to

climate warming.

In the future, investigations of species’ vulnerability to

climate warming are likely to benefit from measurements of

environmental conditions, taken at the scale experienced by

the organisms (Williams et al., 2008). Moreover, a comparison

of intra- and inter- species vulnerability provides a variety

of adaptive strategies for global warming (Huey et al., 2009).

However, predicting the effects of climate warming on species

is extraordinarily difficult owing to the complex nature of

ecosystems; thus, this remains a major challenge for ecologists.
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